
Received December 26, 2017, accepted January 22, 2018, date of publication February 7, 2018, date of current version March 15, 2018.

Digital Object Identifier 10.1109/ACCESS.2018.2802478

Centerline Extraction of Vasculature Mesh
MINGQIANG WEI 1, QIONG WANG2, YICHEN LI4, WAI-MAN PANG5, LUMING LIANG1,
JUN WANG1, KELVIN KIAN LOONG WONG 3, DEREK ABBOTT6, (Fellow, IEEE),
JING QIN7, AND JIANHUANG WU3
1Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
2Shenzhen Key Laboratory of Virtual Reality and Human Interaction Technology, Shenzhen Institutes of Advanced Technology,
Chinese Academy of Sciences, Shenzen 518055, China
3Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzen 518055, China
4Nanjing Normal University, Nanjing 210097, China
5Caritas Institute of Higher Education, Hong Kong, Hong Kong
6University of Adelaide, Adelaide, SA 5005, Australia
7The Hong Kong Polytechnical University, Hong Kong

Corresponding author: Jianhuang Wu (jh.wu@siat.ac.cn)

This work was supported in part by the National Natural Science Foundation of China under Grant 61502137, Grant 61672510, and
Grant 61233012, in part by the China Postdoctoral Science Foundation under Grant 2016M592047, in part by the Shenzhen Science and
Technology Program under Grant JSGG20150602143414338 and Grant JCYJ20160429190300857, and in part by the Guangdong Science
and Technology Program under Grant 2016A020220016.

ABSTRACT Mesh representation of vasculature is fundamental to many medical applications. The benefit
is a clean and tidy appearance in terms of visualization, as well as the possibility of applying computer-
assisted intervention and preoperative planning for patients. A vasculature mesh is often reconstructed by
iso-surfacing its segmented volume data. Clinicians are usually interested in both the vasculature and its
centerline. In this paper, we introduce a mesh centerline extraction approach in the case that volume data are
unavailable. The extraction method is inspired by an observation that the vasculature is generally composed
of piecewise cylindrical shapes. This observation leads to a conceptually simple but effective strategy to
tackle the challenging problem of vasculature centerline extraction, which gracefully combines a branch
segmentation scheme and a series of advanced techniques in discrete geometry processing. Our method
competes favorably with three state-of-the-art methods in the completeness and accuracy of the extracted
centerlines from real human vessels, including the pathological vasculature. Our method also usually leads
to maximal and mean extraction errors of less than 1% and 0.5%, respectively.

INDEX TERMS Vasculature mesh, centerline extraction, rotational symmetry axis, vasculature
segmentation, discrete geometry processing, interventional radiology simulation.

I. INTRODUCTION
Vasculature centerlines are important cues for medical appli-
cations. In the interventional radiology simulation [1] as an
example, the simulator requires operators to move both the
guidewire and catheter, minimally colliding with a vessel’s
inner walls. It can be achieved by encouraging the operators
to move them along the vessel’s centerline. Fig. 1 shows
our system for the assessment of trainee performance, where
the vasculature centerlines are equipped to provide guidance
information.

The vasculature centerlines aremostly extracted on volume
data [2], [3], such as the commercial software MeVisLab,
and Materialise Mimics (MedCAD). However, these soft-
ware provides few choices for users to construct a vascular
centerline, when volume data are unavailable. In this paper,

FIGURE 1. Our vascular intervention simulator is performed on a cerebral
vessel. If we manipulate the virtual guidewire (see the black curve within
the vasculature mesh) to move along the extracted centerline, colliding
with vessel walls can be largely avoided.

we focus on another important representation of 3D data,
i.e., the vasculature mesh, when the volume data are absent.
The other reasons for us to perform centerline extraction on
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FIGURE 2. Centerline extraction for the complex vasculature with tumors (an anterior and posterior communicating artery). From left to right: the
prosthesis object with a same-size ratio of a patient’s blood vessel, the iso-surfaced model by Marching Cubes and the postprocessing technique in [6]
(with tumors highlighted in red rectangle frames), the extracted centerline, and the corresponding magnified fragments. The centerline in these tumors is
also captured.

the vasculature mesh are that: First, when an iso-surfaced
mesh of a vascular network is reconstructed from the seg-
mented volume data, it usually needs to be re-aligned to
another coordinate system for specific applications, e.g., non-
rigid and rigid organ registration [4]. In this case, the cen-
terline extracted from volume data cannot be applied to the
re-aligned mesh, unless the corresponding transformation is
maintained. Otherwise, the mesh and the centerline require
to be re-registered. Second, vasculature models generated
by modeling tools or obtained from vascular prothesis by
laser scanners usually lack volume data, which cannot be
processed by the traditional volume-based extraction meth-
ods [5]. Third, special operations, e.g., collision detection,
become possible on meshes, because they are watertight.
Last, the triangular mesh representation of 3D surfaces is
perfectly supported by modern graphics hardware.

Extracting vasculature centerlines is a non-trivial task. This
is because, the vasculature possesses complicated geome-
try (e.g., vascular tumors) and topology (e.g., thin struc-
tures). In addition, artifacts (e.g., staircases and noise) exist
in these vasculature meshes that also hinder the centerline
extraction [6].

We propose a simple but effective strategy to meet these
challenges. Our method is inspired by an observation that,
the vasculature is generally composed of piecewise cylin-
drical shapes, except at joint regions. This observation is
closely related to the rotational symmetry axis (ROSA) that is
proposed in [7], in which the observation is applied to extract
a curve-skeleton from an incomplete point cloud. We can
segment the vasculature into multiple branches. It avoids
the mutual interference of branches when extracting each
branch’s centerline. We have demonstrated that our method
outperforms three state-of-the-art methods on the individual
case. We have further demonstrated the effectiveness of the
proposed method by employing it in a virtual reality based
simulation system for interventional radiology training.

Fig. 2 shows a result of centerline extraction on a complex
vascular network. Our contributions are two-fold:

• We propose an improved method for the vasculature
centerline extraction from surface meshes based on the
piecewise cylinder assumption.

• The integrated smoothing, thinning, and re-centering
algorithms, which are tailored for the vasculature with
complex geometry and topology, contribute to construct
a complete and accurate 1D centerline.

II. RELATED WORK
A centerline is closely related to curve skeletons [8].
However, the centerline/curve-skeleton extraction from 3D
shapes is not a well-defined problem [9]. It has resulted,
over the decades, in the development of many different
techniques, each attempting to comply with special require-
ments. We divide existing techniques into three categories:
(i) volume-based methods, where the centerline extraction is
based on a discretization of volume data; (ii) surface mesh
based methods, and (iii) point cloud based methods, where
the centerline/skeleton extraction is directly on primitives that
define the surface.

A. VOLUME-BASED METHODS
Voxel-thinning methods obtain a centerline through the
iterative removal of the boundary voxels that satisfy cer-
tain topological and geometric constraints of the voxel
object [10]–[12], [5]. Based on a distance transformation,
some methods first compute the minimum distance to the
boundary for internal voxels to get a distance field, and then
find ridge voxels through the distance field, which are used
as candidate voxels for centerline construction [13]–[17].
Livesu et al. [18] presented a fundamentally different
approach based on the visual hull: They extract curve skele-
tons from a set of 2D views of a 3D shape. This approach
requires only a set of 2D views of the input shape, which can
deal with an incomplete 3D shape model.

A triangularmesh of an object is usually watertight.We can
first transform it into a voxelized representation, and then
follow the pipeline of volume-based methods to construct
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its centerline. Unfortunately, this is prone to errors [19] in
constructing an object’s internal geometry and topology.

B. POINT CLOUD-BASED METHODS
Sharf et al. [20] achieve the curve skeleton extraction via
Laplacian-based contraction, and Tagliasacchi et al. [7] to
achieve its extraction through a ROSA-based method. These
two methods can deal with point clouds with moderate
amounts of missing data. Huang et al. [9] introduce the
medial curve skeleton of a point cloud. However, this method
does not intend to distinguish points from different struc-
tures. For complex shapes that contain close-by surface sheets
(e.g., vasculature), it, therefore, produces curve skeletons
with incorrect topology. Kurlin [21] proposes a homologi-
cally persistent curve skeleton based on subgraph construc-
tion, which focuses solely on 2D point clouds.

These methods can usually produce quality results for
simple objects that are represented by point clouds. Once they
are deployed on complicated 3D vasculature models, where
artifacts and extensive small structures exist, the extracted
centerlines are also not optimal. Since the trend to represent
vasculature with a watertight surface mesh, these extraction
methods are not suitable for the vasculature meshes.

C. SURFACE MESH-BASED METHODS
Wang and Lee [22] perform an iterative least-squares opti-
mization scheme to shrink models to extract a curve skeleton.
Hassouna and Farag [23] first select a centerline automati-
cally as the position of global maximum Euclidean distance
from the boundary, and then extract the centerline robustly
by means of a level set algorithm. Au et al. [24] perform
mesh contraction for skeletonization. This method contracts
the mesh geometry into a zero-volume skeletal shape by
applying implicit Laplacian smoothing with global positional
constraints. Pascucci et al. [25] use a robust on-line computa-
tion of Reeb graphs to extract a curve skeleton. Li et al. [26]
use the well-known quadratic error minimization to compute
a structurally simple, geometrically accurate, and compact
representation of the medial axis transform. In summary,
these methods are designed to handle a series of shapes for
a wider applicability that produce quality extraction results.
However, they are usually complicated and not robust to be
directly performed on vasculature meshes.

Wang et al. [8] extract curve skeletons from the vasculature
meshes using a variant of mesh contraction [24]. However,
an important drawback of their method is that the operation of
mesh contraction leads to vascular tumors collapsing to a cen-
terline point, which runs the risk of losing clinically important
topology information of vascular structures. In contrast, our
method can handle tumors as other parts of the vasculature,
since a tumor is treated as a small vascular branch. In this
regard, the topology information of this small tumor branch is
successfully included in the centerline. Our method can also
obtain a smooth centerline with the following properties:

• Thinness: A centerline is a compact 1D representation
of a vasculature.

• Centeredness: A centerline is the rotational symmetry
axis of a vasculature which is invariant in any affine
transformation (rotation, symmetry).

• Homotopy: A vasculature and its centerline are homo-
topically equivalent.

FIGURE 3. A diagram to illustrate the rotational symmetry axis (ROSA)
and the centerline point (CP) in a vasculature branch.

III. PROBLEM STATEMENT
The general premise of our method is that a vascular system
is composed of short cylinders, as shown in Fig. 3. The
rotational symmetry axis (ROSA) from these cylinders thus
forms the vasculature centerline. Considering an infinitesi-
mal point on the centerline, namely centerline point (CP),
we have its associated rotational symmetric cylinder with an
infinitesimal area surrounding it. This cylinder lies on a cut-
plane/cross-section of the vasculature, where the cut plane is
perpendicular to the direction of the vasculature centerline.
In a vasculature mesh, the infinitesimal cylinder is formed
by oriented mesh vertices. We define a subset S consisting
of mesh vertices from the same cut plane, and the CP as
c = (xcp, vcp) with its position xcp and normal vector vcp.
c is rotationally symmetric about S.

For each mesh vertex, we associate a subset S with it
to compute its corresponding CP. However, determining the
subset S for each vertex is not easy for the following three
reasons: 1) we should find the optimal one which contains
vertices consistently forming a good cut plane from all of the
candidate subsets; 2) the cut plane intersects with multiple
vasculature branches, it makes the subset S become ‘‘fat" and
leads to the failure in the estimation of CPs; 3) we cannot
employ the approach in [7] directly, which will search for the
optimal cut plane containing vertices of a cross-section of the
vasculature.

FIGURE 4. The steps of the proposed method: (a) the input vasculature
mesh is segmented; (b) the CPs (red) of each branch are computed and
then (c) smoothed; (d) the CPs at the joint region are detected and the
thinning is performed; (e) the CPs are re-centered and each joint
collapses to a unique joint center (blue); and (f) sub-sampling and
connecting the samples with short curve segments to obtain a 1D
centerline.

The steps of our method are illustrated in Fig. 4. We per-
form segmentation on the vasculature to separate branches as
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the first step (Fig. 4(a)). This segmentation divides vertices
into groups, where each group contains vertices from a single
branch. We then determine an optimal cut plane as well as
the corresponding CP for each mesh vertex according to the
ROSA-based method reported in [7]. However, instead of
searching the optimal cut plane from the whole vasculature
surface [7], we narrow down the searching range to each
branch that the vertex lies on, thereby making the calculation
more efficient and precise. The generated CPs are shown
in Fig. 4(b). To bridge the CPs at the endpoints of multi-
ple branches, we employ Laplacian smoothing to initially
encourage the CPs in each branch’s endpoints to move to the
joint region (Fig. 4(c)). We detect the CPs in the joint regions,
and leverage the filter proposed in [27] to thin the CPs that are
only associated with the branches (performing the filter to the
CPs in the joint regions is not necessary). The detected CPs
in the joint regions (blue points) and the thinning results on
the branches are illustrated in Fig. 4(d). We then fine tune the
centredness of these CPs, especially these located in the joint
regions. The adjusted results are shown in Fig. 4(e), whereby
in a joint, the CPs collapse to a unique joint center. Finally,
we construct a 1D centerline by sub-sampling and connecting
the samples with short curve segments (Fig. 4(f)).

FIGURE 5. The poor portal vein model is optimized using the
context-aware filter in [6]. Left: the polygonized iso-surface extracted
from an inhomogeneous binary volume with noise and staircase artifacts,
the middle colored model is rendered by discrete mean curvature to show
the artifacts. Right: the optimized model with its morphology preserved,
the right-most colored result shows that the model has become
consistent after the optimization.

IV. VASCULATURE CENTERLINE EXTRACTION
Our method inputs an optimized iso-surfaced mesh obtained
from the context-aware filter in [6]. An example of the opti-
mized results by Wei et al. is shown in Fig. 5. We generate a
centerline point for each mesh vertex in this section, and in
the next section these centerline points are refined to form a
1D centerline. In order to avoid the interference from other
branches, the vascular model is first segmented meaningfully
by clustering techniques and interactive tools. Based on the
segmentation results, the centerline points can be extracted
effectively.

A. VASCULATURE SEGMENTATION
We employ the K-means fuzzy clustering algorithm to seg-
ment the branches with the geodesic distance as the dissim-
ilarity measurement. We leverage the shortest paths algo-
rithm [28] to calculate the geodesic distance of each vertex
pair. We first assign each edge of the mesh a distance weight
(Euclidean distance in our implementation) to construct a
weighted graph for the input mesh, and then utilize the

shortest path between two vertices on theweighted undirected
graph to approximate the geodesic distance of the two ver-
tices.We further adopt the newly proposed shortest path faster
algorithm (SPFA) [29] to accelerate the computation.

Since our target is to form a set of segments that have
approximate cylindrical shapes, the initial cluster number K
in the K-means fuzzy clustering algorithm must be carefully
selected. Themost straightforwardway is to setK as the num-
ber of branches of the input vasculature. It is observed that the
endpoint(s) of a branch can be considered as a salient feature
for a branch. We apply the method reported in [30] to extract
the tips of the branches in the input mesh. The extracted
branch tips from the input mesh are, therefore, used for the
initialization of the K-means fuzzy clustering algorithm. We
also apply the method proposed in [31] to optimize the tips to
yield the optimal initial clustering centers, since the locations
of the initial clustering centers are important for achieving
satisfactory results.

After the initial clustering centers are determined, the K ×
n probability matrix U is computed using the following
function:

uij =
[ ∑K

t=1(
d(i,j)
d(i,t) )

2/(m−1)
]−1

, (1)

whereK is the number of the clustering centers; n is the vertex
number of the triangular mesh; d(i, j) and d(i, t) denote the
geodesic distances from the mesh vertex pi to the clustering
centers cj and ct , respectively; m ∈ (1,∞) is the weight
index, and we obtain satisfactory results by setting m = 2
in our implementation.

The probability uij indicates the possibility that a vertex i
belongs to a cluster j. Vertices are assigned to a cluster,
if its probability uij exceeds a certain threshold µ. We experi-
mentally set µ = 0.5, which performs very well in our exper-
iments. All other vertices form a fuzzy area. The centroid
of the fuzzy area represents the center of the k + 1 cluster.
The algorithm repeatedly computes the probability matrix
and relocates the clustering centers, until no cluster centers
move any more, and the objective function is defined as:

J =
K∑
i=1

n∑
j=1

u2ijd(i, j), (2)

and the cluster centers are computed by

ci =

∑n
j=1 uijvj∑n
j=1 uij

. (3)

The segmentation results can be further refined by an
interactive method [32]. Two typical segmentation results are
shown in Fig. 6. Our segmentation method can segment the
complicated vasculature into a set of cylinder-like segments
that serve for the following centerline extraction.

B. OPTIMAL CUT PLANE AND CENTERLINE POINT
After the vasculature segmentation, we avoid ambiguities
when finding cross-section vertices subsets for the CP gener-
ation, such as the inclusion of vertices from many branches.
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FIGURE 6. Segmentation results on two complex vasculature models.
These segmentation results supply important information for extracting
a complete and accurate centerline.

FIGURE 7. Comparison between traditional method [7] and our method:
(a,c) the cut plane that is calculated by the vertex subsets generated
by [7] and (b,d) the cut plane that is calculated by the vertex subsets
generated only from the segmented branches in our method.

For example, as demonstrated in Fig. 7(a), the cut plane
ϕj associated with a mesh vertex pj is cutting through two
branches at the same time. However, we only need the blue
mesh vertices. The red mesh vertices are considered as arti-
facts. In Fig. 7(b), mesh vertices are separated according to
branches (colored differently) and the cut plane only cuts
through the branch where pj lies. This problem is especially
serious in real vascular newworks, when branches are close,
as shown in Fig. 7(c). The segmentation facilitates our search-
ing of the optimal cut plane, as shown in Fig. 7(d).
We need to estimate a cut plane ϕi and a CP ci = (xcp, vcp)

for each vertex pi = (xi, vi) (xi and vi denote its position
and normal respectively) on the vasculature mesh. The esti-
mation of the cut plane and the CP is actually simultaneous,
because the normal of the cut plane is the same as the CP’s
normal vcp. After the cut plane is fixed, the CP’s position xcp
can be determined by solving a least-squares optimization.
Therefore, the normal vcp and position xcp of a CP ci are
solved separately [7], as shown in Fig. 8, given a subset Si.
More details are given in the Appendix.

As a result, we can start from a random vertex pi in an
arbitrary branch. The cut plane ϕi for pi can be represented

FIGURE 8. Finding the CP c with its position xcp and normal vcp from the
subset S simultaneously, potentially leads to a non-convex problem [7].
Fortunately, the position and normal of a CP can be solved separately. The
red points consisting of oriented mesh vertices from a cross-section of a
vasculature denote the local subset Si . (a) The normal vcp (the red arrow)
is obtained by minimizing the sum of angular variations from the CP’s
normal to its surrounding normals of those oriented mesh vertices.
(b) The position xcp (green dot) is determined by minimizing the sum of
distances from the CP’s position to the normals extensions (gray lines).

by (xi − x) · vcp = 0. The objective is to find a vcp to
construct a cut plane ϕi through pi, which best reflects its
local rotational symmetry. Specifically, vcp should be most
rotationally symmetric about the mesh vertex normals of
subset Si surrounding the vertex pi. Here, Si is formed by
adding vertices which are close to ϕi within a threshold dcut .
In our implementation, setting dcut = 0.025L yields optimal
results, where L is the length of the bounding box diagonal
of the vasculature model.

The optimal cut plane is obtained by an iterative algorithm
proposed in [7]. We set the initial cut plane normal to be v0cp,
which satisfies v0cp · vi = 0. In the k th iteration, the normal of
the cut plane is then updated according to the local oriented
subset Ski that is given by

vk+1cp = argmin
N∑
j=1

var〈vkcp, vj〉, (4)

where N is the size of the local oriented subset Ski associated
with the current cut plane after the k th iteration. The itera-
tion is stopped when the cut plane normal is not changed.
Therefore, the cut plane ϕi can be obtained with the optimal
normal vcp. Fig. 9(a-b) demonstrates the iteration procedure.

FIGURE 9. 2D example for illustrating the iterative procedure. (a) The
process for obtaining the optimal cut plane from an initial cut plane ϕ0

i
(dashed lines denote the candidate cut planes). (b) The optimal cut
plane ϕi (the blue line) associated with pi is obtained at the end of the
iterations, and the corresponding CP is obtained simultaneously.

C. SMOOTHING AND THINNING
We adopt Laplacian smoothing to filter the CPs: it makes
those CPs on a branch’s intermediate region smoother, and
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pushes the other CPs located at the region of a branch’s end-
points to move to a joint region which is useful for bridging
CPs on separated branches.

We thin all CPs, except the ones that have moved to
joint regions, because these regions are not cylindrical. Thus,
before thinning, we need to distinguish the CPs in the joint
regions from those in the branches. To do this, we examine a
standard linearity measure

β(ci) =
λ
(1)
i

λ
(1)
i + λ

(2)
i + λ

(3)
i

(5)

at a CP ci, where λ
(j)
i is the jth largest eigenvalue from the

principal component analysis (PCA) at ci. Typically, if β(ci)
is larger than a threshold ω, we consider ci that belongs to a
branch, otherwise it belongs to a joint.

We employ the filter proposed in [27] for the CPs belong-
ing to the branches. For a random CP ci, we first obtain its
neighboring CPs cj within a spherical region of radius h,
i.e. cj − ci < h. The filter is then defined as

cnewi =

∑
σjcj∑
σj
, (6)

where the kernel function is σj = sin(πd)/πd , and
d =‖ ci − cj ‖.

FIGURE 10. Thinning filtering by constant (top) and adaptive (bottom)
values of radius h. The corresponding filtering results are shown on the
right. Near joint regions, the radius h is adjusted by iteratively enlarging
the neighborhood until ρ(X ,Y ) exceed a threshold.

The above filter performs well in thinning when the
CPs along the target thinning line are distributed uniformly
enough. An exception occurs near the joint regions, as shown
in Fig. 10 (upper), where a fixed and small radius can easily
obtain an unsatisfactory thinning, since neighboring CPs are
not exhibiting a strong directional relationship. To solve the
problem, we propose a scheme to adaptively adjust the neigh-
borhood radius h. As a result, more robust and satisfactory
results can be achieved, as shown in Fig. 10 (bottom).
Given a CP ci and the initial neighborhood radius h0,

we first obtain the CP set cj. The covariance matrix of ci

is then calculated to obtain the eigenvalues λ(k)i and their
corresponding eigenvectors v(k)i .

We project these cj onto the plane defined by the two
eigenvectors v(1)i and v(2)i with the largest corresponding
eigenvalues. All projected points are then reduced to a 2D
local coordinate system. If the coordinates of the projected
points are interpreted in terms of a distribution of two random
variables X and Y , we can analyze their cross-correlation
coefficient defined by

ρ(X ,Y ) =
Cov(X ,Y )
SD(X )SD(Y )

, (7)

where Cov(X ,Y ) = E[X − E(X )] [Y − E(Y )] is the covari-
ance between X and Y , SD(·) denotes the standard devi-
ation, ρ(X ,Y ) has a value between [−1,+1] representing
the degree of linear dependence between X and Y . A larger
absolute value for ρ(X ,Y ) indicates that there is a strong
linear relationship between X and Y . Thus, we can adjust
the neighborhood radius according to ρ(X ,Y ), i.e., if ρ(X ,Y )
is less than a pre-defined threshold δh, we will increase the
radius value until ρ(X ,Y ) > δh. After the adaptive adjust-
ment of radius h, the CPs of branches will be thinned by
the filter. Algorithm 1 gives the pseudo-code of the proposed
thinning algorithm.

Algorithm 1 Algorithm of the CPs Thinning
1: Input: CP set C , initial neighborhood size h0, step size
εh, threshold δh

2: Output: Thinned CPs cnew

3: for (each ci in C) do
4: h←− h0
5: Compute neighborhood set cj
6: Project cj to plane sustained by v(1)i , v

(2)
i

7: Compute correlation ρ(X ,Y )
8: if (ρ(X ,Y ) > δh) then
9: Compute cnewi according to Eq. 6
10: else
11: h←− h+ εh
12: return to Step 5
13: end if
14: end for

D. RE-CENTERING AND 1D CENTERLINE CONSTRUCTION
The steps taken so far, e.g., smoothing and thinning, may
distort the centeredness of the CPs. Thus, we re-center the
CPs according to their types (belonging to a branch or a
joint). We exploit spatial coherence: close-by samples over
the underlying shape of the triangular mesh should corre-
spond to close-by CPs. Re-centering within a branch follows
Eq. 10. A branch CP is re-calculated according to all the mesh
vertices which lie on any cut plane of a small neighborhood cj
of ci. Within a joint, the CPs collapse to a unique joint center
according to Eq. 10, using all the mesh vertices which lie on
any cut plane of all CPs in the joint. After the re-centering,
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FIGURE 11. Centerlines of typical vasculatures. The top row shows the extracted results (red curves), and the bottom row shows the corresponding
magnified fragments.

the centerline points are sufficiently close to be 1D. We apply
sub-sampling and connect the CPs with short curve segments
in order to obtain a final 1D centerline representation.

V. RESULTS AND DISCUSSIONS
We first assess our method on some complicated human vas-
cular systems. In addition to visualization on these models,
we adopt three metrics, i.e., Omax,Omean, and Ovar , to cal-
culate the errors relative to the manual centerline extraction
results from volume data by an experienced clinician for the
numerical analysis. However, it is nearly impossible to obtain
a ground-truth centerline from a vasculature mesh. We use
the extracted centerline from volume data as the ground
truth. There are two main reasons for doing this. (1) Volume
data having inner structures contain more information than
an empty surface mesh. (2) An experienced clinician can
help to extract centerlines by using commercial software,
e.g., the VTK toolkit and the ITK toolkit. Thus, we consider
the extracted centerlines of corresponding volume data by
an experienced clinician as the ‘‘ground truths", although
they inevitably have deviations from real ones. The three
metrics are based on Hausdorff distance. The Omax com-
putes the maximal deviation distance between our extrac-
tion result and the manual result; the Omean computes the
averaged deviation distance from our result to the manual
result; and the Ovar computes the mean deviation variation.
We then compare our results to three state-of-the-art methods
in the individual case. In addition, the extracted centerlines
are also performed on an application of computer-assisted
simulation.

A. PARAMETERS SETTING
To address the problem of centerline extraction, we combine
a branch segmentation scheme and a series of advanced
techniques in discrete geometry processing. It, therefore,

involves a set of parameters, mainly the weight index m in
Eq. 1, the probability threshold µ to determine whether a
vertex belongs to a cluster in Eq. 1, the threshold dcut to
measure the distance of a vertex to a cut plane, the threshold
ω used in Eq. 5, the radius h, and εh and δh. Fortunately,
five of these parameters can be empirically fixed in advance
according to the references; for examples, m = 2, µ = 0.5,
dcut = 0.025L, h = 1, and εh = 0.1. We leave only two
parameters for users to adjust. Here we list their value ranges
for reference: We use local covariance analysis to distinguish
the CPs between the vasculature branches and joint regions.
Satisfiable results are obtained when the threshold ω is set in
the range of [0.7, 0.8]. Another threshold is the correlation
coefficient δh. In practice, any δh ≥ 0.6 brings desirable
filtering results.

B. COMPLICATED VASCULATURE
From Fig. 2 we observe that our method is sensitive to
vascular tumors, where centerlines in these tumors are well-
captured (check the magnified fragments), thanks to the
branch segmentation used (a tumor has been considered as
a small branch by our method).
From Fig. 11 it can be observed that complete and smooth

centerlines are obtained for the six kinds of vasculature.
In addition, as shown in Fig. 12, we construct a vascula-
ture centerline as the ground truth, and reconstruct a 3D
vasculature mesh from it by using the method in [33].
We finally employ our extraction algorithm to obtain a cen-
terline. We can observe that the extracted centerline is highly
faithful to the constructed one.
In addition to visualization, we present the numerical anal-

ysis on these models in Figs. 11 and 12. From Table 1 we
know that the deviation errors using our method are usually
less than 1% of the diagonal length (denoted as Ldia) of a
mesh’s bounding box.
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TABLE 1. Centerline errors relative to ‘‘ground truths’’.

FIGURE 12. Our extracted centerline is highly faithful to the constructed
one. From left to right: the manual centerline, the 3D reconstruction from
the manual centerline by using the method in [33], and our extraction
result from the 3D reconstruction.

C. COMPARISONS
Our method is inspired by the generalized ROSA pro-
posed in [7], which is employed in centerline extraction
from objects with generally cylindrical shapes. Therefore,
we first compare our method with this method. It is observed
in Fig. 13 that our method can successfully avoid the ambigu-
ities introduced by thin, close and long vascular structures and
produce convincing results that are consistent with the result
from volume data. By contrast, the method proposed in [7]
produces a centerline with the incorrect topology. The main
reason leading to the incorrect topology in [7] is that extensive
non-relevant vertices from other different branches contribute
to calculate the optimal cut planes and CPs. In contrast,
by incorporating the branch segmentation, we can reduce the
non-relevant vertices involved in the calculation and success-
fully create desirable results.

Second, we perform a comparison with Huang et al.’s
L1−medial method [9]. The results are illustrated in Fig. 14.
The vasculature centerline obtained from Huang et al.’s
method misses a number of branches, including the bottom
branch at the cross junction and a few small branches on the
right part of the input vasculature (look inside the orange box
for details). This reason is that it uses only position infor-
mation in distinguishing points from different parts of the
vasculature. It is insufficient since the position information

FIGURE 13. Comparison with [7]. The left is considered as the ground
truth manually generated from a volume data. The middle is the result of
Tagliasacchi et al. [7]. The right is our result. Tagliasacchi et al. produce a
centerline with the incorrect topology, because of extensive non-relevant
vertices from different branches involved. By reference to the ground
truth centerline, our result is improved, due to the branch segmentation
and series of advanced techniques in discrete geometry processing used.

FIGURE 14. Comparison with [9]. The left is our result, the right is
Huang et al.’s result [9]. Huang et al. produce an incomplete centerline
due to insufficient information to distinguish vertices from different parts
of the vasculature (see the magnified fragments in the middle column).
We employ vasculature segmentation and PCA to carefully extract
geometric and topological information of vertices, in order to achieve a
more satisfactory result.

is easily interfered from many nearby structures. In contrast,
we achieve a more satisfactory result.

FIGURE 15. Comparison with [8] on a vasculature with a tumor.
(a) The surface geometry of the vasculature and the tumor is highlighted.
(b) Our method is sensitive to vascular tumors. Our method can handle
the vascular tumor well by segmenting the tumor as a small branch.
(c) Wang et al.’s [8] method produces no curves in this area (different/
incorrect topology compared to the original data), because the mesh
contraction scheme that is used tends to collapse the tumor to one
centerline point in their method.

Third, we further compare with the method of
Wang et al. [8] on a vasculature model with tumors. Our
method can effectively handle the tumors as other parts of
the vasculature, as shown in Fig. 15(b), since the tumor is
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segmented as a small branch in the segmentation stage. In this
regard, the topology of this small tumor branch is successfully
included in the centerline. This is very important for some
virtual medical diagnosis and treatment procedures, such as
intervention radiology, where surgeons usually need to locate
tumors along the centerline of the vasculature. Whereas,
the tumor collapses to one point in Wang et al.’s [8] result.
Fourth, we compare the simulation quality of our centerline

with the result of Wang et al. [8] (which is tailored for
handling the vasculature). in a computer-assisted diagnosis
and treatment application. Interventional radiology is widely
used in the treatment of cardiovascular diseases. Computer-
based training simulators provide solutions to overcome some
drawbacks of the traditional apprenticeship training [34]. The
simulation of interventional radiology is very complicated,
involving many computation-intensive tasks. Among these
tasks, the angiography, which is based on the contrast agents
diffusion process, is an important cue in interventional radiol-
ogy that can allow surgeons to manipulate the catheters and
guidewires in a vasculature. Therefore, the realistic simula-
tion of the contrast agents diffusion process is essential for a
successful simulator.

We simulate this diffusion process based on smoothed
particle hydrodynamics (SPH). The blood flow in each vascu-
lature is modeled as an incompressible viscous fluid flowing
through the vasculature. Based on biomechanical research,
the velocity of blood flow usually shows a quadratic decrease
from the vessel center to the vessel wall. In this case,
we should realistically simulate this flow pattern when con-
trast agents flow with blood, once they are injected into the
vasculature.

FIGURE 16. The simulation results of contrast agents with the repulsive
forces calculated based on the centerlines generated from Wang et al.’s
method: (a) and (c), and based on the centerlines generated from our
method (b) and (d). (a) and (b) are one group for comparison, while
(c) and (d) are another group for comparison. Regions highlighted with
yellow circles and red circles show that our method can produce more
realistic simulation results.

In order to simulate this effect, according to the dis-
tances between particles and the centerline of the vascu-
lature, we can construct a varying repulsive force to each
particle in the flow. In this case, the centerline plays an
important role in ensuring the realism of the flow simulation.
As shown in Fig. 16, comparedwith the cases where repulsive
forces are calculated based on the centerline generated from

Wang et al.’s method [8], the distribution of particles and the
flow pattern are more realistic when exerting the repulsive
forces calculated based on the centerline generated by our
proposed method.

D. DISCUSSION
First, our algorithm seamlessly integrates a number of
advanced techniques in discrete geometry processing to pro-
duce centerlines of the complex vasculature. However, some
of these techniques involve complicated, and computation-
ally intensive steps (e.g., CP thinning). Therefore, the whole
processing pipeline is relatively time-consuming. The cur-
rent implementation of the algorithm is only suitable for
the off-line extraction of the high-quality vasculature cen-
terlines (see the timing on the vascular models in Table 2,
the approach is implemented by using VC++ and OpenGL;
the experiments are performed on a PC with a 2.9 GHz
Intel core i5 and 8 GB of RAM). In the future, we will
attempt to accelerate some parts of the proposed approach by
employing GPUs.

TABLE 2. Timing (minute) for models in Fig. 11 (from left to right).

Second, our algorithm has to work with the vasculature
containing enough samples on the vessel walls, so that the
shape of the general cylinder can be maintained. Otherwise,
it fails to extract the centerlines, as shown in Fig. 17. A poten-
tial solution to this is to explicitly re-sample the vessel wall
mesh with denser points.

FIGURE 17. An undersampled vascular structure does not work well with
our method, since it can easily violate our assumption of having enough
sample points to reveal the cylindrical shape of vessel branches.

Third, we assume that, the vasculature is generally com-
posed of piecewise cylindrical shapes. Based on this assump-
tion, we improve an existing K-means fuzzy clustering to
segment it into multiple branches. The clustering method
adopted here may not be the only choice, it is possible to
refer to [35] for inspiring more ideas on the vasculature
segmentation problem.

Fourth, medical surface meshes reconstructed by iso-
surfaced methods (such as Marching Cubes) contain a high
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degree of noise and staircase artifacts. A smart method, which
is performed on these coarse data without sensitivity of arti-
facts, is more welcome, because several preprocessing steps
may be avoided by users.

Fifth, bridging the CPs at the endpoints of multi-
ple branches is somewhat arbitrary (bifurcation/trifurcation
bias). The Laplacian smoothing may introduce the artifacts,
i.e., the centerlines at around joints may prefer to branches,
as shown in 4(f).

In addition, when discussing flow dynamics, we take into
account only the laminar and not the turbulent flow. Calcula-
tions, such as tortuosity, hydraulic diameter or hydraulic ratio,
would be helpful.

VI. CONCLUSION
Extracting centerlines of the vasculature represented by sur-
face meshes is a challenging problem in the fields of dig-
ital medicine and computer-aided diagnosis. This work is
intended to support vasculature-related virtual surgery, and
to potentially supply doctors with more vasculature informa-
tion in the progress of disease diagnosis with the possibility
of reducing human subjective errors. We have proposed an
effective centerline extraction approach for 3D vasculature
surface meshes. Our approach is inspired by an observation
that the vasculature consists of meaningful components in
the form of general cylinders, and a vascular system can be
decomposed into a variety of piecewise cylindrical branches.
Experimental results demonstrate that our method can com-
pletely and accurately extract centerlines from complicated
vascular models. The proposed method has significant poten-
tial for use in computer-assisted interventions for vascular
diseases.

APPENDIX
CENTERLINE POINTS (CPs) GENERATION
In order to make the CP rotationally symmetric about the
mesh vertex normals of S, the normal vp of one CP is cal-
culated by minimizing

argmin
N∑
i=1

var〈vp, vi〉, (8)

where vi is the normal of an arbitrary vertex in S, var rep-
resents variations, and var〈·〉 measures the angle between
two vectors. Eq. 8 has a closed form solution which can be
dealt by singular value decomposition (SVD). Eq. 8 can be
re-written as one which minimizes the quadratic form vTpMvp
with matrix

M =

 X2 − X
2

2XY − 2X Y 2XZ − 2X Z

2XY − 2X Y Y 2 − Y
2

2YZ − 2Y Z

2XZ − 2X Z 2YZ − 2Y Z Z2 − Z
2

,
(9)

where X denotes a random variable for the x-component of
the point normals in S and X denotes the average of these

x-components. That is the same for Y , Y , Z and Z , respec-
tively. The quadratic problem can be solved analytically using
singular value decomposition (SVD).

To guarantee the centeredness of the centerline point, the
position xcp is calculated by minimizing the sum of squared
distances from the centerline point to the line extensions of
the mesh vertex normals in a subset S:

argmin
N∑
i=1

‖ (xcp − xi)× vi ‖2, (10)

where pi = (xi, vi) is a vertex of an oriented mesh S, N is the
size number of S, and (xcp − xi) × vi is the cross product of
two vectors. Eq. 10 can be easily solved by straightforward
differentiation.
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