
1104 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 37, NO. 5, MAY 2018

PUF-FSM: A Controlled Strong PUF
Yansong Gao, Student Member, IEEE, Hua Ma, Said F. Al-Sarawi, Member, IEEE,

Derek Abbott, Fellow, IEEE, and Damith C. Ranasinghe, Member, IEEE

Abstract—Existing strong controlled physical unclonable function
(PUF) designs are built to resist modeling attacks and they deal with
noisy PUF responses by exploiting error correction logic. These designs
are burdened by the costs of the error correction logic and informa-
tion shown to leak through the associated helper data for assisting error
corrections; leaving the design vulnerable to fault attacks or reliability-
based attacks. We present a hybrid PUF–finite state machine (PUF-FSM)
construction to realize a controlled strong PUF. The PUF-FSM design
removes the need for error correction logic and related computation,
storage of the helper data and loading it on-chip by only employing
error-free responses judiciously determined on demand in the absence of
the underlying PUF—an Arbiter PUF—with a large challenge response
pair space. The PUF-FSM demonstrates improved security, especially to
reliability-based attacks and is able to support a range of applications
from authentication to more advanced cryptographic applications built
upon shared keys. We experimentally validate the practicability of the
PUF-FSM.

Index Terms—Arbiter physical unclonable function (APUF),
error-free responses, fault attacks, modeling attacks, physical
uncloanble function (PUF), statistical model.

I. INTRODUCTION

The physical unclonable function (PUF), a hardware security
primitive, exploits manufacturing variations to extract secrecy on
demand [1], [2]. Since the advent of the silicon Arbiter PUF (APUF)
in 2002 [3], the PUF community has been pursuing so-called strong
PUFs that not only have a very large challenge response pair (CRP)
space but are also resilient to modeling attacks. The instance-specific
CRP behavior of strong PUFs is naturally appealing for lightweight
authentication protocols [2], [4], [5]. Beyond authentication, strong
PUFs are also employed for key generation and more advanced cryp-
tographic protocols, e.g., key exchange and oblivious transfer [6], [7].
However, a practical lightweight strong PUF realization compatible
with current CMOS technology remains a challenging proposition
in the face of modeling attacks responsible for breaking previously
deemed strong PUFs including the XOR-APUF, feedforward APUF,
lightweight secure PUF [8], and even the slender PUF [9], [10].

Manuscript received March 3, 2017; revised May 31, 2017; accepted
July 7, 2017. Date of publication August 15, 2017; date of current ver-
sion April 19, 2018. This work was supported in part by the Australian
Research Council Discovery Project under Grant DP140103448, and in part
by the China Scholarship Council under Grant 201306070017. This paper
was recommended by Associate Editor S. Bhunia. (Corresponding author:
Yansong Gao.)

Y. Gao is with the School of Computer Science and Technology, Nanjing
University of Science and Technology, Nanjing 210094, China, also with the
School of Electrical and Electronic Engineering, The University of Adelaide,
Adelaide, SA 5005, Australia, and also with the Auto-ID Laboratory, School
of Computer Science, The University of Adelaide, Adelaide, SA 5005,
Australia (e-mail: yansong.gao@njust.edu.cn).

H. Ma and D. C. Ranasinghe are with the Auto-ID Laboratory, School of
Computer Science, The University of Adelaide, Adelaide, SA 5005, Australia
(e-mail: mary.ma@adelaide.edu.au; damith.ranasinghe@adelaide.edu.au).

S. F. Al-Sarawi and D. Abbott are with the School of
Electrical and Electronic Engineering, The University of Adelaide,
Adelaide, SA 5005, Australia (e-mail: said.alsarawi@adelaide.edu.au;
derek.abbott@adelaide.edu.au).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TCAD.2017.2740297

Yu et al. [11] recently presented a practical strong PUF by placing
an upper bound on the available number of CRPs to an adversary.
To be precise, gaining new CRPs has to be explicitly authorized by
the trusted entity—this concept of limiting access to CRPs is akin to
controlled PUFs (C-PUFs) [12], detailed in Section II-B. Yu et al. [11]
further introduced a PUF device side nonce to prevent fault attacks
or reliability-based attacks [9], [10].

We continue the pursuit of a practical and lightweight controlled
strong PUF dubbed the PUF-finite state machine (FSM). Through the
ability to use challenges capable of generating error free responses,
the PUF-FSM is able to generate key bits without error correcting
post-processes that have hitherto been always required in PUF-based
key generators [13]. Further, the ability to remove the information
leakage, possible with the use of error correcting codes recently
exploited in [9], [10], and [14], essentially removes an attack vector
from a PUF-FSM key generator. For authentication, the PUF-FSM
avoids one major limitation of [11] in terms of available secure
authentication rounds. Contributions of this paper are as follows.

1) We propose a design for a controlled strong PUF—PUF-FSM—
with improved lightweight characteristics by employing a large
number of available error-free responses determined in the
absence of the underlying strong PUF; an APUF in this paper.
The PUF-FSM, to the best of our knowledge, is the first C-PUF
without using error correction code (ECC) logic along with the
associated helper data and with an explicit design consideration
to counter reliability-based attacks.

2) We demonstrate that the PUF-FSM has significantly improved
security through its resilience to various plausible modeling
attacks including reliability-based attacks in [14]. We validate
the practicability of the PUF-FSM through experimental results,
compare it with other related works, and briefly discuss its
applicability to a range of security applications.

Section II introduces related work. Section III details the PUF-FSM
design and analyses its security. Experimental validation of the PUF-
FSM is performed in Section IV while applications are presented in
Section V.

II. RELATED WORK

A. APUF Model for Error-Free Response Generation

The APUF consists of k stages of two 2-input multiplexers or any
other units forming two signal paths [1]. To generate a response bit,
a signal is applied to the first stage input, while the challenge C
determines the signal path to the next stage. The input signal will
race through each multiplexer path (top and bottom paths) in parallel
with each other. At the end of the APUF architecture, an Arbiter,
e.g., a latch, determines whether the top or bottom signal arrives first
and hence results in a logic “0” or “1” accordingly. Hence, it is the
time delay difference, tdif, of an APUF challenge that determines its
response.

It has been shown that an APUF can be modeled, where the
APUF response given an unseen challenge can be predicted with
high accuracy using a learned model—usually with modeling attacks
employing machine learning techniques [8]. Thus, the tdif can

0278-0070 c© 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

mailto:yansong.gao@njust.edu.cn
mailto:mary.ma@adelaide.edu.au
mailto:damith.ranasinghe@adelaide.edu.au
mailto:said.alsarawi@adelaide.edu.au
mailto:derek.abbott@adelaide.edu.au
http://ieeexplore.ieee.org
http://www.ieee.org/publications_standards/publications/rights/index.html

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 37, NO. 5, MAY 2018 1105

(a) (b)

Fig. 1. (a) C-PUF construction [12], [17]. (b) General structure of the
PUF-FSM. Only the correct sequential challenges Cset can activate the enable
signal SOE. If the enable signal SOE is disabled, the hash output is meaning-
less as it is a result of random values. Otherwise, a key is generated based on
part of the response R, Rsecret, and the nonce, where the key = HASH(Rsecret,
nonce).

eventually be predicted based on the learned APUF model with-
out physical measurements. Recent works [15], [16] show that tdif
comprises of two important pieces of information: 1) the sgn(tdif)
determines the binary response and 2) the magnitude of tdif indi-
cates the reliability of this response. If the tdif is far from zero, then
this gives full confidence that such a challenge can reproduce the
response without an error. In PUF-FSM, we show how to exploit the
bit level reliability information from such a model to build a secure,
controlled strong PUF.

B. Controlled PUF

The C-PUF [12], [17] proposed by Gassend et al. is a strong PUF
construction. It combines an underlying PUF with control logic lim-
iting the ways in which the PUF can be evaluated. In practice, the
C-PUF is built so that the underlying PUF and control logic play
complementary roles. As illustrated in Fig. 1(a), the PUF prevents
invasive attacks on the control logic, whilst the control logic pro-
tects the PUF from protocol level attacks. For example, the control
logic is enclosed by metal wire tracks running above and below the
circuitry. These tracks introduce path delays that the APUF uses
to determine its response—so if the tracks are broken while phys-
ically probing the control circuitry, the digital secret is altered or
destroyed [12]. The challenge and response in a C-PUF are pre- and
post-processed, e.g., hashed, respectively, and thus the control logic
can halt adaptive evaluations of PUFs without permission from a
trusted entity [11]. Previous studies [12], [17] require ECC logic and
the associated helper data to stabilize the noisy PUF responses before
hashing. However, the ECC logic is usually expensive, especially
for low-end devices. Most importantly, employment of helper data
exposes the C-PUF to modeling attacks exploiting noise side-channel
information [10], [14], [18].

C. FSM-Based Locking Mechanisms

Recent FSM-based locking methods together with PUFs have been
used in the literature for applications, such as IC active metering, pro-
tecting or locking intellectual property (IP) [19]–[21], and preventing
netlist reverse-engineering [22]. For instance, HARPOON [22] is a
gate-level obfuscation-based design that provides security at multiple
stages of the IC life cycle during fabrication, test and deployment.
The work in [21] enables an field-programmable gate array (FPGA)
user to pay a license fee for the specific IP and FPGA employed and,
thus, reduce costs incurred by users while protecting the revenue of
the IP core developer and FPGA vendor. In these studies, an FSM is
used as an obfuscation technique, where stability of PUF responses
need to be specifically considered and the aim is not to realize a
PUF-based security primitive.

Fig. 2. FSM example with seven levels (L = 7) and three depths (D = 3).

In contrast, we address instability of PUF responses by winnow-
ing the challenges that generate unstable responses and combine this
approach with an FSM and a random number generator (RNG)-
based response obfuscation method to: 1) hide the direct relationship
between challenges and responses; 2) eliminate the attacks that
exploit reliability information from PUF response bits obtained from
repeated evaluations; and 3) still realize an exponential challenge-
response space to build a strong C-PUF—a cryptographic primitive.
Using a PUF-FSM architecture to realize a strong PUF-based secu-
rity primitive creates the ability to build multiple security services,
as highlighted in Section V.

III. PUF-FSM: DESIGN AND SECURITY ANALYSIS

A. PUF-FSM Structure

A generalized construction of a PUF-FSM shown in Fig. 1(b). It
consists of an underlying PUF, an FSM, a hash function and an RNG
block. Similar to prior work [11], the direct PUF responses can only
be evaluated by a trusted entity (e.g., the server) in a secure environ-
ment during the PUF provisioning phase to build APUF statistical
model(s), and the direct access is destroyed afterwards, e.g., through
fusing a wire.

During deployment, a set of n sequential challenges, Cset, is issued
by the trusted entity and applied to the PUF-FSM, corresponding
error-free responses R with length n are produced internally. The R
is sequentially fed into the FSM to direct the transitions of the FSM
states, where the FSM is reset to S1 before the operation. Only a series
of correct transition conditions TR—a specific response substrings
enabling a state transition to the next state—is able to guarantee the
FSM traversing through to the SOE state to activate the key output.
Thus, only the server who possesses the APUF model is capable of
issuing a correct Cset to activate the SOE to generate a meaningful
output as a key. The key is HASH(Rsecret, nonce), where Rsecret is a
substring of R; formation of Rsecret will be described soon. The RNG
prepares two random strings, the output presents the first random
string to replace the Rsecret in the formation of the key when the
SOE is disabled, the second random string forms the nonce.

An exemplary FSM construction is depicted in Fig. 2. At the begin-
ning of the PUF-FSM operation, the FSM resets to its initial state

S1. Let us assume that the TR1 is 0110, then S1
0110−−−→ S22. Similarly

if the TR1 = 0001, then S1
0001−−−→ S21. If TR1 /∈ {0001, 0110, 1001},

or in other words the input is in TR1, then S1
TR1−−→ S1—a self tran-

sition, where the FSM remains at its current state. In this example,
for odd states S1, S3, S5, there are D edges or transitions conditioned
on D inputs to lead to one of the following D states while transitions
from other states are conditioned on a single input.

While other FSM structures can be envisioned, the FSM in this
case study has L—always an odd number—of state layers (levels),
where each even internal layer has D parallel states. At least L − 1
transitions are required to reach the SOE state. Both TRl and TRl are
4-bit in our example, therefore the maximum number of transitions
that can be employed is n/4, where we assume that n is always a
multiple of 4 for convenience. Given that we need at least L − 1

1106 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 37, NO. 5, MAY 2018

Fig. 3. Part of the n-bit R, Rsecret, is hashed to generate the key. All the
remaining bits after reaching the SOE state are not contributing to the key
(here we use the FSM example in Fig. 2 and the set of transitions followed
are marked by the red dotted line).

transitions, i.e., TRi for i = {1, . . . , L − 1}, the maximum number
of self-transitions nmax = (n/4) − (L − 1). In practice, SOE can be
activated in a manner that employs L − 1 of TRl and n of TRl inputs
subjected to n ≤ nmax. A meaningful key will be generated only after
all n bits in R are fed into the FSM—or after n clock cycles—and
the SOE state is reached. The key is a hash of a part of the response
R, specifically, the input bits defined by the sequence of TRl and TRl
employed to reach the SOE state. Illustration of the key formation is
shown in Fig. 3, while the traversed path is illustrated in Fig. 2 using
the dotted red line. Once SOE state is reached, the rest of the input
sequence is ignored and will not be used to form the Rsecret hashed
to generate the key. It is worth stressing here that the response bits
beyond Rsecret are still fed into the FSM as redundant bits to hide
the length of R secret = (L − 1) + n, where n is determined, and
therefore only known, by the server.

B. Security Analyses

1) Adversary Model: We adopt the adversary model used for the
C-PUF [12], [17]. Hence: 1) physical attacks on the control logic
or an attempt to probe the internal PUF will alter or even destroy
the PUF itself and 2) an adversary is capable of eavesdropping on
the communication channel and arbitrarily applying challenges to the
PUF-FSM interface to observe the output. Furthermore, we assume
the nonce is visible and the netlist of the PUF-FSM design is pub-
licly known. Then, the objective of the adversary is to obtain useful
information to learn an accurate model of the underlying APUF.

2) Brute-Force Attacks: The probability of finding a meaningful
key by guessing a correct Cset without the assistance from the trusted
entity is

P =
(

D

2nTR

) L−1
2 ×

(
1

2nTR

) L−1
2

(1)

where the nTR is the length of a TRl. In the example in Fig. 2,
the n TR = 4. For each odd layer (e.g., S1 and S3), the probability
of guessing nTR challenges producing a correct transition edge is
D/2nTR , while the probability of guessing nTR challenges producing a
correct transition edge given an even layer is 1/2nTR . As an example,
setting L = 41 and D = 3 implies that P ≈ 1/2128, thus, making a
successful attack infeasible.

3) Modeling Attacks: In PUF-FSM, arbitrary CRP collection is
disabled from any party except the trusted entity during the secure
enrollment phase. Subsequently, the generation of the response is
controlled by the server through the FSM and only the hash of the
response and a nonce are exposed. Thus, modeling attacks requiring
direct challenge-response pair information [8] are prevented since the
responses generated from a PUF-FSM no longer bear a relationship
to the received challenge.

Unlike previous modeling attacks, recent reliability-based model-
ing attacks [10] do not require the knowledge of the response for

a given challenge but only the binary reliability of the generated
response from the challenge.

Now, we examine a method, similar to fault-injection attacks, for
discovering challenges that produce unreliable responses by observ-
ing the PUF-FSM output when a device nonce is not used. We assume
that an eavesdropping adversary has a potential way to determine the
reliability of a response to a challenge through exhaustive search
under the condition that a priori challenge set Cset has been eaves-
dropped. We also assume that the adversary has full access to the
PUF-FSM’s challenge-response interface. The adversary chooses an
unused challenge cx �∈ Cset to replace one challenge ci in the eaves-
dropped challenge set Cset to observe the output of the PUF-FSM.
Then through repeated evaluations, the adversary can determine if cx
generates unreliable responses by simply observing any alterations
in the hashed output of the PUF-FSM. Hence, through exhaustive
searching, other unreliable challenges can be determined to mount a
reliability-based modeling attack.

However, employing a nonce, as in [11], prevents an adversary
from observing variations in the hashed output using repeated queries
to the PUF-FSM with adaptive challenges to gather reliability related
information based on eavesdropped Cset. This is because the nonce
is refreshed and hashed with the APUF response for each evaluation.
Thus, the discovery of unreliable challenges through adaptive and
repeated queries to mount a reliability-based modeling attack [9], [10]
is prevented.

4) Optical Emission Attacks: Without proper protections, similar
to nonvolatile memories, APUFs are vulnerable to optical emission-
based attacks [23]. However, these attacks usually require significant
skills and specialized equipment. Nonetheless, there are several
countermeasures against optical emission attacks [24]. Interconnect
meshes can be used to prevent optical emission attacks performed
from a chip’s frontside; for backside optical emission attacks,
through-silicon-via technologies can be exploited as a countermea-
sure. Additionally, optical interaction is a low-cost alternative to
protecting ICs against backside optical emission attacks [24].

5) Timing and Power Attacks: Although, power and timing side-
channel attacks together with machine learning methods have been
demonstrated in attacks to break APUFs [14], [25], these attacks
appear to be inapplicable in practice. For example, the required accu-
rate timing measurements may not be available on-chip [14]. Power
analysis attacks require low noise levels when repeatedly measuring
power traces. Therefore, in practice, an efficient countermeasure is
to inject noise into the circuit to prevent accurate power trace mea-
surements. For example, the RNG utilized in the PUF-FSM can be
operated in parallel when the responses are evaluated from the APUF
without extra area overhead to inject algorithmic noise that is hard
to be eliminated [14].

IV. EXPERIMENTAL VALIDATION AND COMPARISON

A. Experiment Setup and Results

We use a CRP dataset obtained from eight programmable delay
line (PDL) APUFs implemented in eight different FPGAs. Notably,
the PDL APUF has the same topology of the multiplexer-based
APUFs [16]. Each APUF is fed with 64 000 challenges, therefore,
64 000 CRPs are collected [26], [27]. Each CRP is evaluated 128
times at the same operating condition. Three temperature settings
(5 ◦C, 35 ◦C, and 65 ◦C) and three voltage settings (0.95 V, 1.00 V,
and 1.05 V) under a given temperature setting are tested.

We treat (35 ◦C, 1.00 V) as the nominal condition. We use 10 000
CRPs that are evaluated under the nominal condition to learn an
APUF model. It takes less than 15 s to enroll each APUF by using

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 37, NO. 5, MAY 2018 1107

MATLAB 2012b software running on Intel i7-3770CPU@3.4 GHz
CPU with 16 GB RAM.

B. Error-Free Response Selection Results

The APUF model has a prediction rate of 92.41%. This lower
rate attributes to the usage of PDL-based APUFs on FPGAs, that
tend to be more noisy, rather than multiplexer-based APUFs in an
application-specified integrated circuit (ASIC) design. We found that
the maximum PUF response error rate is 16.68%, which is almost
four times larger than the 4.3% error rate of the ASIC APUF in [11].

By implementing reliable response selection, we are able to select
more than 1.8 × 1017 error-free responses from a 64-stage APUF
even in the presence of response error rates up to 16.68%. Such
an extremely large number of available error-free responses is ade-
quate for almost all practical applications. In addition, the error-free
selection based on APUF model does not deteriorate other PUF per-
formance metrics, such as the randomness. We refer interested readers
to [16] for details.

C. Comparisons

We focus on comparing the PUF-FSM with the original
C-PUF [12], [17] and the recent lockdown PUF [11]. As highlighted
in [11] and [28], the area overhead is the most significant con-
cern while power and delay overheads have minor impact as the
security services, such as authentication and key generation built
upon a C-PUF are not continuously employed operations. Thus, we
concentrate on assessing and comparing the area overhead.

In Table I, all three works employ APUFs. A 64-stage APUF
implemented in an ASIC design requires 260 gate equivalent (GE)
(where a GE is equivalent to the area required by a two-input NAND

gate [11]). The lockdown PUF [11] uses four APUFs, while the other
approaches are built on a single APUF. We selected the SPONGENT
lightweight block cipher, which costs 737 GE to produce a 128-bit
output, for hashing responses [29]. The FSM is implemented by D
flip-flops; each consuming five GE. Hence, we can see that the area
overhead of the FSM is relatively small and negligible as also demon-
strated in [20]–[22]. For example, the number of flip-flops needed is
log2Nstate, where Nstate is the number of states of the FSM; thus, even
if 128 states are utilized, only 35 GE are needed to realize the FSM.
The RNG can be implemented by using metastable PUF responses
either from static random access memory PUFs [30] or APUFs [31]
by exploiting available on-chip resources. Such an RNG eliminates
potential reliability-based modeling attacks on the C-PUF [10], [14]
as detailed in Section III-B. Nonetheless, the true random number
generator (TRNG) is not restricted to PUF-based realizations, one
can use other TRNG designs [32], [33].

As shown in Table I, the area overhead of the PUF-FSM is almost
halved in comparison with the original C-PUF.1 In particular, the
PUF-FSM eliminates the attack vectors exposed by the require-
ment for error correction and helper data, such as: 1) helper data
manipulation when it is stored off-chip and loaded on-chip during
key generation and 2) reliability-based modeling attacks [10], [14].
Furthermore, we also remove the on-chip storage burdens imposed
by on-chip helper data [18]. In comparison with the PUF lock-
down technique [11] with similar overhead, the PUF-FSM eschews
the limitation imposed on the number of authentication rounds. In
addition, as a security primitive, the PUF-FSM can support appli-
cations beyond authentication as detailed in Section V. Further, the

1Area is not reported for the C-PUF in [12] and [17]. We use the opti-
mized ECC decoder area in [28]. We exclude the on-chip helper data storage
overhead and we assume the pre- and post-hash, see Fig. 1(a), share the same
hash logic, to obtain a minimum cost estimate for C-PUF.

TABLE I
COMPARING THE PUF-FSM

PUF-FSM, through the judicious challenge selection method, real-
izes significantly improved tolerance to response unreliability without
ECC logic.

V. APPLICATIONS

A. Mutual Authentication

Recall that only a trusted entity has the capability of issuing a
correct challenge sequence to activate the SOE signal. As a conse-
quence, only the PUF-FSM device and the trusted entity can compute
R secret. When the PUF-FSM is transferred to the user, the trusted
entity generates a C set and transmits it to the user, possibly through
an insecure communication channel. The user presents the Cset to the
PUF-FSM and sends the PUF-FSM response—nonce and the hashed
output—back to the trusted entity. The trusted entity, by virtue of the
underlying APUF model, can emulate responses and hence compute
HASH(Rsecret, nonce), and compares it with the received hash value.
A match authenticates the PUF-FSM. Once the PUF-FSM device is
authenticated, the user applies the same Cset to the PUF-FSM to
obtain a refreshed response. The user requests the refreshed response
computed by the trusted entity after transmitting only the nonce to
the trusted entity. The trusted entity is authenticated by the user only
if the computed output received is the same as the output produced by
the PUF-FSM held by the user. Thus, the PUF-FSM realizes mutual
authentication.

B. Key Exchange

Consider a key exchange scenario between a user and a trusted
entity. The user applies a shared Cset and sends the nonce to the
trusted entity. Now only the user who holds the PUF-FSM and
the trusted entity can generate the shared key. The user obtains it
from the PUF-FSM, while the server computes it by hashing the
Rsecret and the nonce—notably, a key (shared key) is never directly
exchanged between the parties. Such a shared key between two parties
enables a wide variety of standard cryptographic protocols [12].

VI. CONCLUSION

We have presented a practical controlled strong PUF, PUF-FSM,
by: 1) exploiting error-free responses determined in absence of an
APUF and 2) controlling the means of evaluating the PUF by using an
FSM-based control logic. As a C-PUF, PUF-FSM holds the promise
of a cost-effective way to increase resistance to various attacks. We
experimentally validated its practicability and compare it with other
related C-PUF designs.

REFERENCES

[1] G. E. Suh and S. Devadas, “Physical unclonable functions for device
authentication and secret key generation,” in Proc. Design Autom.
Conf. (DAC), San Diego, CA, USA, 2007, pp. 9–14.

1108 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 37, NO. 5, MAY 2018

[2] F. Tehranipoor, N. Karimian, W. Yan, and J. A. Chandy, “DRAM-
based intrinsic physically unclonable functions for system-level security
and authentication,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst.,
vol. 25, no. 3, pp. 1085–1097, Mar. 2017.

[3] B. Gassend, D. Clarke, M. Van Dijk, and S. Devadas, “Silicon phys-
ical random functions,” in Proc. Conf. Comput. Commun. Security,
Washington, DC, USA, 2002, pp. 148–160.

[4] D. C. Ranasinghe and P. H. Cole, “Confronting security and
privacy threats in modern RFID systems,” in Proc. IEEE 14th
Asilomar Conf. Signals Syst. Comput., Pacific Grove, CA, USA, 2004,
pp. 2058–2064.

[5] C. Zhou, K. K. Parhi, and C. H. Kim, “Secure and reliable XOR
Arbiter PUF design: An experimental study based on 1 trillion chal-
lenge response pair measurements,” in Proc. 54th ACM Annu. Design
Autom. Conf., Austin, TX, USA, 2017, Art. no. 10.

[6] U. Rührmair and M. Van Dijk, “PUFs in security protocols: Attack mod-
els and security evaluations,” in Proc. IEEE Symp. Security Privacy,
Berkeley, CA, USA, 2013, pp. 286–300.

[7] Y. Gao, H. Ma, D. Abbott, and S. F. Al-Sarawi, “PUF sensor: Exploiting
PUF unreliability for secure wireless sensing,” IEEE Trans. Circuits Syst.
I, Reg. Papers, to be published, doi: 10.1109/TCSI.2017.2695228.

[8] U. Rührmair et al., “PUF modeling attacks on simulated and silicon
data,” IEEE Trans. Inf. Forensics Security, vol. 8, no. 11, pp. 1876–1891,
Nov. 2013.

[9] G. T. Becker, “The gap between promise and reality: On the inse-
curity of XOR Arbiter PUFs,” in Cryptographic Hardware and
Embedded Systems—CHES. Heidelberg, Germany: Springer, 2015,
pp. 535–555.

[10] G. T. Becker, “On the pitfalls of using Arbiter-PUFs as building blocks,”
IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 34, no. 8,
pp. 1295–1307, Aug. 2015.

[11] M.-D. Yu et al., “A lockdown technique to prevent machine learning on
PUFs for lightweight authentication,” IEEE Trans. Multi-Scale Comput.
Syst., vol. 2, no. 3, pp. 146–159, Jul./Sep. 2016.

[12] B. Gassend et al., “Controlled physical random functions and appli-
cations,” ACM Trans. Inf. Syst. Security, vol. 10, no. 4, 2008,
Art. no. 3.

[13] M. Hiller, “Key derivation with physical unclonable functions,”
Ph.D. dissertation, Inst. Security Inf. Technol., Technische Universitat
Munchen, Munich, Germany, 2016.

[14] G. T. Becker and R. Kumar, “Active and passive side-channel attacks
on delay based PUF designs,” IACR Cryptol. ePrint Archive, vol. 2014,
p. 287, 2014.

[15] X. Xu, W. Burleson, and D. E. Holcomb, “Using statistical models
to improve the reliability of delay-based PUFs,” in Proc. Symp. VLSI,
Pittsburgh, PA, USA, 2016, pp. 547–552.

[16] Y. Gao et al., “Exploiting PUF models for error free response genera-
tion,” arXiv preprint arXiv:1701.08241, 2017.

[17] B. Gassend, D. Clarke, M. Van Dijk, and S. Devadas, “Controlled phys-
ical random functions,” in Proc. IEEE Annu. Comput. Security Appl.
Conf., Las Vegas, NV, USA, 2002, pp. 149–160.

[18] J. Delvaux, D. Gu, D. Schellekens, and I. Verbauwhede, “Helper data
algorithms for PUF-based key generation: Overview and analysis,” IEEE
Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 34, no. 6,
pp. 889–902, Jun. 2015.

[19] F. Koushanfar and G. Qu, “Hardware metering,” in Proc. Design Autom.
Conf., Las Vegas, NV, USA, 2001, pp. 490–493.

[20] F. Koushanfar, “Provably secure active IC metering techniques for piracy
avoidance and digital rights management,” IEEE Trans. Inf. Forensics
Security, vol. 7, no. 1, pp. 51–63, Feb. 2012.

[21] J. Zhang, Y. Lin, Y. Lyu, and G. Qu, “A PUF-FSM binding scheme
for FPGA IP protection and pay-per-device licensing,” IEEE Trans. Inf.
Forensics Security, vol. 10, no. 6, pp. 1137–1150, Jun. 2015.

[22] R. S. Chakraborty and S. Bhunia, “HARPOON: An obfuscation-
based SoC design methodology for hardware protection,” IEEE
Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 28, no. 10,
pp. 1493–1502, Oct. 2009.

[23] S. Tajik et al., “Photonic side-channel analysis of arbiter PUFs,” J.
Cryptol., vol. 30, no. 2, pp. 550–571, 2017.

[24] C. Boit et al., “From IC debug to hardware security risk: The power of
backside access and optical interaction,” in Proc. IEEE Int. Symp. Phys.
Failure Anal. Integr. Circuits, Singapore, 2016, pp. 365–369.

[25] U. Rührmair et al., “Efficient power and timing side channels
for physical unclonable functions,” in Cryptographic Hardware
and Embedded Systems. Heidelberg, Germany: Springer, 2014,
pp. 476–492.

[26] M. Majzoobi, F. Koushanfar, and M. Potkonjak, “Techniques for
design and implementation of secure reconfigurable PUFs,” ACM Trans.
Reconfig. Technol. Syst., vol. 2, no. 1, 2009, Art. no. 5.

[27] M. Majzoobi, F. Koushanfar, and S. Devadas, “FPGA PUF using pro-
grammable delay lines,” in Proc. IEEE Int. Workshop Inf. Forensics
Security (WIFS), Seattle, WA, USA, 2010, pp. 1–6.

[28] V. Van der Leest, B. Preneel, and E. Van der Sluis, “Soft decision
error correction for compact memory-based PUFs using a single enroll-
ment,” in Cryptographic Hardware and Embedded Systems. Heidelberg,
Germany: Springer, 2012, pp. 268–282.

[29] A. Bogdanov et al., “SPONGENT: The design space of lightweight
cryptographic hashing,” IEEE Trans. Comput., vol. 62, no. 10,
pp. 2041–2053, Oct. 2013.

[30] D. E. Holcomb, W. P. Burleson, and K. Fu, “Power-up SRAM state as
an identifying fingerprint and source of true random numbers,” IEEE
Trans. Comput., vol. 58, no. 9, pp. 1198–1210, Sep. 2009.

[31] D. C. Ranasinghe, D. Lim, S. Devadas, D. Abbott, and P. H. Cole,
“Random numbers from metastability and thermal noise,” Electron. Lett.,
vol. 41, no. 16, pp. 891–893, 2005.

[32] S. Srinivasan et al., “2.4GHz 7mw all-digital PVT-variation tolerant true
random number generator in 45nm CMOS,” in Proc. IEEE Symp. VLSI
Circuits, Honolulu, HI, USA, 2010, pp. 203–204.

[33] F. Tehranipoor, W. Yan, and J. A. Chandy, “Robust hardware true ran-
dom number generators using DRAM remanence effects,” in Proc. IEEE
Int. Symp. Hardw. Orient. Security Trust, McLean, VA, USA, 2016,
pp. 79–84.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZapfChancery-MediumItalic
 /ZapfDingBats
 /ZapfDingbatsITCbyBT-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

