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ABSTRACT Prediction of the severity of multipath fading is fundamental to the design of point-to-point
terrestrial fixed microwave links at frequencies below 10 GHz, but error in this prediction may be significant
in countries such as Australia, not represented in the dataset used to generate existing empirical models.
We take advantage of recently collected worst-month fading data from Australia, and find new parameters
particularly useful in predicting the severe fading experienced in Northern Australia. These parameters are
from very irregularly spaced weather stations, so we investigate various interpolation techniques for this
situation, including a new version of natural neighbour interpolation. Conventional multipath prediction
models are based on ordinary least squares (OLS) regression, but we refine this, taking spatial correlation
into account with generalised least squares (GLS) regression. We then demonstrate further improvement in
regions well populated by measured data, by employing universal kriging.

INDEX TERMS Fading channels, interpolation, least squares approximation, microwave propagation,
radiowave propagation, regression analysis.

I. INTRODUCTION
Terrestrial microwave radio links have been a significant
component of communication networks for over half a cen-
tury, and empirical models to predict the clear-air fading
events (not associated with rain) that they occasionally suffer,
have been of interest to radio link designers for most of that
time. Optical fibre has largely replaced digital radio on most
major long routes in the transmission network, but digital
radio is still important on routes where optical fibre is un-
economical, such as off-shore islands, or niche applications
such as low-latency networks.

Radio link design depends on accurate estimation of the
severity of fading events, as this determines the required
design fade margin. This is the attenuation of received sig-
nal, compared to median conditions, which may be tolerated
before serious transmission errors occur. Increasing the sys-
tem fade margin is expensive as it involves costs such as
increased antenna size and stronger support structures, but
insufficient fade margin leads to poor link error performance.
Above 10 GHz rain attenuation tends to dominate terrestrial
radio link fading, but below 10 GHz clear-air fading, the sub-
ject of this study, tends to dominate.
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A. EARLY HISTORY OF CLEAR-AIR FADING MODELS
It has long been recognised that multipath propagation, due
to variations in the refractive index of the air at different
heights in the surface layer of the atmosphere, is a signifi-
cant factor in fading of microwave paths [1]. During fading
events, the signal strength tends to be Rayleigh distributed,
or in other words, the tail of the fading distribution for small
percentages of time tends to have a slope of 10 dB per decade
of probability. The deep-fading distribution may be estimated
in terms of a slope of 10 dB per decade of probability relative
to the fade depth (dB) for 0.01% of the worst month of an
average year, A0.01, and this formulation is used throughout
this paper. Based on measurements in the United Kingdom,
Pearson [1] suggested a predictionmodel, in terms of distance
d (km) and path roughness s (m), which may be written as

A0.01 = 27.8 log(d)− 12.37 log(s)+ 2.43 dB. (1)

Another early example by Morita [2], had separate models,
depending on the terrain or climate type. Expressed in a
similar form to (1), the version provided in [3] is, firstly for
inland paths:

A0.01 = 12 log(f )+ 35 log(d)− 30 dB, (2)

or mountainous paths:

A0.01 = 12 log(f )+ 35 log(d)− 34.09 dB, (3)
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or coastal paths, temperate and fairly flat:

A0.01 = 12 log(f )+ 35 log(d)

−5 log(h1 + h2)− 10.04 dB, (4)

where f is the frequency (GHz), and h1, h2 are terminal
antenna heights (m) above mean sea level.

Well known is the Barnett-Vigants model [4], [5], again
consisting of different versions, depending on the terrain or
climate. For ‘‘average terrain’’:

A0.01 = 10 log(f )+ 30 log(d)− 22.22 dB, (5)

or over-water or Gulf Coast:

A0.01 = 10 log(f )+ 30 log(d)− 16.2 dB, (6)

or mountains or dry climate:

A0.01 = 10 log(f )+ 30 log(d)− 28.24 dB. (7)

Although expressed above logarithmically in terms of fade
depth for 0.01% of the worst month, the above models are
often expressed in a power-law form, in terms of percentage
p of the worst month that the fade depth exceeds A dB. Thus
the Barnett-Vigants model may be written [3] as

p = KQfd310−A/10 (8)

where K is a factor representing the effect of terrain and
climate, and Q is a factor accounting for the effect of path
variables other than d and f . We use the equivalent logarith-
mic form of the models in this paper, for simplicity in later
discussion of multiple linear regression models.

Terrain roughness, or standard deviation of terrain height
along the radio path, s, was taken into account in a later
version of the US or Barnett-Vigants model, given in [3]; we
note the similarity of the following to (1) around 4GHz. In the
case of coastal or over water paths:

A0.01 = 10 log(f )+ 30 log(d)− 13 log(s)− 3.87 dB, (9)

or maritime subtropical:

A0.01 = 10 log(f )+ 30 log(d)− 13 log(s)− 5.09 dB, (10)

or inland:

A0.01 = 10 log(f )+ 30 log(d)− 13 log(s)− 6.78 dB, (11)

or mountainous:

A0.01 = 10 log(f )+ 30 log(d)− 13 log(s)− 10 dB. (12)

A fundamental problem with the above models (2) to (12),
is the need to choose a version of the model, based on the sub-
jective assessment of the terrain or climate type. This problem
remained in the ITU-R prediction model until 1999 [6], [7],
as the model contained constants to be chosen according to
terrain type (plains, hills or mountains). Comparative testing
of the above models is provided in [8].

B. MEDIAN DEPRESSION FADING
During multipath fading events, a depression in the median
signal level is often seen. An early description [1] was that
‘‘median depression during worst fading hour is approxi-
mately 0.3 × fade depth for 0.1% of the worst month.’’
This reference, based on experience in the United Kingdom,
even reported ‘‘almost complete loss of signal (space-wave
fadeout) that can occur on some paths.’’

One possible cause identified for median depressions was
positive vertical gradients of radio refractivity in the atmo-
sphere, known as subrefraction. The upward curvature of
ray-paths caused by a linear gradient of this type, if suffi-
ciently severe, may be expected to cause terrain obstruction of
a radio link that is normally unobstructed. A ray-path between
transmitter and receiver when there is a positive refractivity
gradient will travel closer to the ground than the standard
refractivity case of mildly negative vertical gradient.

Radio refractivity is normally expressed in ‘‘N-units,’’ or
parts per million by which atmospheric refractive index for
radio waves exceeds unity. Thus, vertical refractivity gradi-
ents are expressed in N-units per km. Standard refactivity for
terrestrial radio links is typically assumed to be a gradient of
–39 N-units per km.

The refractivityN is estimated as proportional to the partial
pressures of various gas constituents of the atmosphere and
inversely proportional to absolute temperature T , except that
in the case of water vapour pressure e, there is another term
inversely proportional to absolute temperature squared, due
to the polar nature of the water molecule. Expressed simply,
with total air pressure P, consisting of dry air pressure P− e
and water vapour pressure e, we have, for example, the Bean
model [9]

N = 77.6
(
P− e
T

)
+ 72

e
T
+ 375000

e
T 2 , (13)

or the more recent Rueger ‘‘best average’’ model [10]

N = 77.689
(
P− e
T

)
+ 71.295

e
T
+ 375463

e
T 2 . (14)

While non-linear gradient refractive effects, such as
focussing or de-focussing, or even caustics that cause
ray-paths from the transmit antenna to miss the receive
antenna entirely [11], may cause median depression fading,
a simple model for the worst subrefractive gradient likely to
be experienced in a temperate climate [11] has been employed
as part of clearance criteria for line-of-sight path design for
many years [3], [6], [12]. This model depends on radio path
length d (km), and may be expressed as a vertical refractivity
gradient:

dN
dh
=

2670
d
− 13 N-units per km. (15)

However, more severe median depression fading has been
observed in some regions; for example, the coastal region
of the Nullabor Plain in southern Australia [13], inland
Queensland in north-eastern Australia [14], or south-eastern
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USA [15], [16]. A common feature of these studies is the
assumption that a linear positive refractivity gradient is the
likely worst-case of a subrefractive atmosphere. Boundary
layer similarity theory [17] indicates that surface refractivity
gradients are likely to be stronger near the surface than at
greater heights, and a subrefractive profile of this non-linear
form has been shown to be capable of greater attenuation on
a terrestrial path than a linear gradient with the same increase
in refractivity over the lowest 100 m of the atmosphere [18].

Nevertheless, the idea of complementing a multipath fad-
ing model with a subrefractive diffraction model [16] has
been often adopted as a convenient way to estimate the overall
fading of radio paths in regions where the available multipath
models alone are insufficient. The necessary data for the
Schiavone model [15] has been produced for the contiguous
states of USA [19], but not for other regions. A subrefractive
model, assuming the main cause to be advection of moist air
over a dry nocturnal duct, during the early hours of the morn-
ing [14], may in principle be applied world-wide, subject
to the availability of suitable (preferably 3-hourly or better)
surface weather station data.

C. MEDIAN DEPRESSION, MULTIPATH, AND DIVERSITY
During the minimum signal conditions in median depression
events, received signal fluctuation suggests that multipath is
occurring, and this tends to be supported by a fading distri-
bution slope of about 10 dB per decade in the region of 0.1%
of the worst month, for the severe median depression fading
7.5 GHz path from Cooks Tank to Rosewood in Queensland,
Australia [20]. The worst median depression in this month
on that path, with a depth of about 50 dB, cannot be created
by multipath cancellation alone, as all four receivers, on two
different frequencies for the two directions of transmission,
and with receiver antennas at two different heights at each ter-
minal, all experience the deep median depression at the same
time. This characteristic is generally seen in other median
depression events on other radio paths.

These characteristics suggest that on line-of-sight
microwave paths, severemultipath fading andmedian depres-
sion tend to occur together, as parts of a continuum, rather
than distinct events. This is inherent in the ITU-R multipath
model [12], since the multipath occurrence factor P0 (inter-
cept of the extrapolated deep fading distribution with the
zero dB or time axis) is generally greater than the multipath
activity parameter η, the proportion of the time that multipath
is assumed to be occurring. In the model [12], the two are
related by the expression

η = 1− exp(−0.2P0.750 ). (16)

Radio links often employ diversity reception to reduce
errors and outage during multipath fading, using two or more
receivers with different antenna heights (space diversity) or
receiving a second transmission on a different frequency
(frequency diversity), taking advantage of their partially cor-
related multipath fading. Provided the depth of the median
depression is less than the system fade margin, there may

still be some diversity improvement during median depres-
sion fades, albeit quite limited. The median depressions are
generally simultaneous between the different receivers, but
the superimposed multipath is likely to de-correlated to some
extent. A recent revision of the diversity improvement mod-
els in Recommendation ITU-R P.530 [12] has ensured that
fading severity is taken into account in all diversity improve-
ment models, to reflect the degradation in all types diversity
improvement seen during severe median depression fading
events.

D. DEVELOPMENTS IN THE LAST TWO DECADES
1) THE ATMOSPHERIC PHYSICS APPROACH
The fading prediction models described above were empir-
ical, rather than scientific. A potential atmospheric physics
approach may be to predict the state of the atmosphere
with a numerical weather prediction (NWP) model, and then
use a terrain parabolic equation model (PEM) [21], [22] to
predict the radio propagation. This idea has been pursued
for some time, both for radio link propagation [23], and in
radar propagation research, but sub-meter resolution may be
required in generating the refractivity profile [24]. An NWP
reanalysis product with at least several years of data at very
high resolution would be required, to practically implement
fading prediction for path design, using this approach. Even
then, the link designer would have to run a few years
equivalent of PEM simulations, to accurately determine the
average year worst month performance of the link; despite
advances in computing capability, this still seems rather
impractical.

There is doubt about the accuracy of radio refractivity
predictions in the surface layer using existing NWPmodels in
some locations [25]. In that study, a relatively simple empir-
ical model provided better accuracy than NWP reanalysis
data, in predicting surface refractivity gradient cumulative
distributions. Testing of surface layer gradient accuracy, per-
haps particularly water vapour pressure gradient accuracy,
would be required before adopting a new NWP for radio path
fading prediction.

2) MULTIPLE LINEAR REGRESSION
A significant advance came with the development of ordinary
least squares (OLS) regression models, using as many param-
eters as were found to be practically useful [26]. By this time,
265 records had been accumulated in the ITU-R line-of-sight
link fading databank, DBSG3 Table I-2 [27], ‘‘Line-of-sight
average worst-month multipath fading and enhancement in
narrow bandwidths,’’ and 251 of those were found to be
suitable for the regression analysis. As well as additional
observed fading records, several new prediction parameters
had been added since an earlier study with only 47 observed
records [28]. A progressive approach was now used in select-
ing prediction parameters; the one with greatest positive or
negative correlation with the observed fading selected first,
and an OLS regression model generated. The next parameter
chosen was that with strongest correlation with the residuals
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(observed minus predicted) from the previous model, and a
new regression model produced. This process was continued
until further improvements in the model accuracy became
minimal.

Most early prediction models, such as (2) to (12) above,
included link frequency in the form a log(f ), or f a/10 in the
power-law form of (8). Despite the 251 databank records then
available, log(f ) did not appear to be a significant parameter
in the regression analysis; f was statistically more significant,
so based on this work, the ITU-R prediction model was
amended [29] to

A0.01 = 32 log(d)− 9.2 log(1+ |εp|)− 4.2 log(sa)

+0.32f − 0.03dN1 − 0.0085hL − 39 dB, (17)

where εp is the path inclination in mr, hL is the height above
sea level of the lowest antenna, sa is terrain elevation standard
deviation (m, over a 1 degree latitude by 1 degree longitude
square), and dN1 is the 1% point of the cumulative distribu-
tion of refractivity gradient in the 65 m surface layer from
2 years of NWP reanalysis data from the European Centre
for Medium-range Weather Forecasting (ECMWF).

Although not evident from the OLS regression analy-
sis, there was concern that the model variation between
1 GHz and 10 GHz (3 dB) was insufficient, while the
increase in model prediction between 10 GHz and 80 GHz
(22 dB) appeared to be excessive. Accordingly, it was
decided, and internationally agreed, to amend the frequency
term [30] to 8 log(f ). Clearly there was a need for more
data from links in different frequency bands in the data-
bank, to clarify the choice of frequency coefficient in future
models.

More data records were added to the DBSG3 table, 3 from
Turkmenistan and 8 from Kyrgyzstan in 2007. Then a tech-
nique was developed in Australia to produce monthly fad-
ing distributions from installed radio links, by estimating
the cumulative distribution in each 15 minute period from
observed maximum and minimum receive levels, and num-
ber of seconds below certain thresholds [20]; data that was
being routinely captured by the networkmanagement system.
This enabled average-year worst-month fading distributions
to be produced for many links, without the cost of installing
additional monitoring equipment. By 2016, 70 records from
Australia had been produced, all in the 7.5 and 8 GHz bands.
Additional information on processing this data from small
and medium capacity systems to avoid the influence of selec-
tive fading is given in [31], and summarised in Appendix A.
A new OLSmodel was developed, for the first time including
a number of records from Australia [32].

A similar process to that described above for [26] was
used to select variables for the OLS regression, but as
well as new data records (there were now 327), we added
new prediction parameters, obtained from surface weather
station data. Two were composite parameters v1 and v2,

given by

v1 =
N 0.3
sA90−10d

0.5

H0.25
8500

, and (18)

v2 =
dN 3

75mH

H2
8500

, (19)

where H8500 is the mean height of the rayline above the
terrain (at standard refractivity gradient or -39 N-units per
km, ignoring tree cover, if any). The Harvey [14] 75 m
point subrefraction (we assume for 0.1% of the worst month
of the year) is dN75mH, while NsA90−10 and NsA0.1 are
the interdecile range and 0.1% point respectively of the
distribution of surface refractivity anomaly, the difference
between surface refractivity and the median value at that
location for the same hour of the day and month of the
year. In that study [32], these parameters dN75mH, NsA90−10,
and NsA0.1, were obtained from surface weather station data
for the years 2012 to 2014. The resulting OLS regression
model was

A0.01= 2.04v1 + 0.0679v2 + 17.71 log(d)− 0.171NsA0.1
−9.06 log(1+ |εp|)− 0.0278dN1 + 0.0374dN1ERAI

+7.41 log(f + 6)− 0.003hL − 19.63 dB, (20)

This OLS model had much better accuracy than the exist-
ing ITU-R model [12] for the post-2007 links that were not
included in fitting that model, and similar accuracy as before
for the ones that were included in fitting that model. The
log(f ) term still appeared insignificant, but log(f + 6) was
found to be significant.

It was suspected that the statistical significance attributed
to some of the parameters in this new model by the
t-statistic may have been inflated, so we investigated taking
spatial correlation into account, by using generalised least
squares (GLS) regression instead of OLS regression [33].
This analysis confirmed that parameter dN1ERAI, nominally
the same parameter as dN1 but from a more recent and much
more extensive ECMWF reanalysis [34], was not significant
after all.

E. ORGANISATION OF THIS PAPER
In the following sections we examine techniques for spatial
interpolation of parameters obtained from surface weather
station data, and then describe a new GLS regression model,
taking advantage of additional link fading data now available.
Accurate guidance to designers on the improvement provided
by increased antenna height is important, so we test that
aspect of the new model.

Finally we introduce a new technique in fading pre-
diction — universal kriging. This combines GLS regres-
sion with interpolation of residuals from nearby links
with known fading, to improve the accuracy of pre-
dictions in regions well populated with observed fading
data.
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FIGURE 1. Surface weather stations, showing regions with many stations (red diamonds), less stations (blue squares), and 67 with no pressure data
(yellow triangles).

II. DATA SOURCES
A. PARAMETERS FROM WEATHER STATIONS
The surface weather station data is obtained from the NOAA
FTP site [35], for the eight years 2010 to 2017. In regions with
a relatively dense population of stations having temperature,
humidity, and air pressure data, we included those with 7.5 or
more measurements per day in every month for at least 5 full
years; there were 2778 stations in those regions. Elsewhere,
we included stations with at least 3 full years of data, and
5 or more measurements per day; this provided a further
2781 stations. There remained extensive regions in three
continents with no data, due to an absence of air pressure data,
so a further 67 stations with only temperature and humidity
data were included. For these stations a nominal sea-level
pressure of 1000 hPa is assumed. All station pressures were
estimated from sea-level pressures by assuming a lapse rate
of −0.12 hPa per m.

Overall, 5626 surface weather stations are included in
generating the digital maps used in this study, as depicted
in Fig. 1.

B. RADIO LINK FADING DATA
The link fading data consists of 409 records from the most
recently accepted data table the ITU-R line-of-sight link

fading databank, DBSG3 Table I-2 [27], ‘‘Line-of-sight aver-
age worst-month multipath fading and enhancement in nar-
row bandwidths,’’ after excluding 48 of the total 457 records
because of data inconsistencies, or absence of one or more
parameters required for this study. To this we add 126 recently
generated Australian records, not yet considered by ITU-R
Study-Group 3 for inclusion in the DBSG3 databank, result-
ing in a total of 535 data records for this study.

We divide these records into 20 regions, each including
links within 1500 km of centre coordinates, chosen initially
for each region as the link centre coordinates of the first link
encountered that falls outside the 1500 km radii of regions
already defined, and then updated to the median coordinates
as more links are added to each region. The details of these
regions are shown in Table 1.

C. POTENTIAL IMPACT OF CLIMATE CHANGE
Direct observation of a trend in average year worst month
fading is not possible because worst month fading data for
individual years is not recorded in the data table. Even if it
were, year-to-year variability would obscure any trend as the
fading data from most links is only generated from one or
two years of observations. We can however make long-term
observations of weather station data parameters that we find
to be significant in predicting fading severity.
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TABLE 1. Fading data records by region, showing coordinates, number of
records, and number of different link locations, for each of the
20 regions. The mid-point coordinates of all links in each region are
within 1500 km of the coordinates in the table.

The fading measurements used in this study date back to
as early as 1953, with many of the measurements outside
Australia occurring in the 1970’s to 1990’s. However, we use
parameters generated from weather station data from 2010 to
2017. This is an appropriate time period for the Australian
fading data, all from 2009 to the present, but is two or more
decades later than the fading observed in other countries.

The possibility that there may have been some drift in
the prediction parameters from weather stations, over time,
must be considered. The 5626 stations for the years 2010 to
2017 includes many that are in regions where there was
no fading data prior to 2007, so we exclude stations east
of 90 degrees east longitude, or west of 140 degrees west
longitude, or stations in the USA south of 40 degrees north
latitude (there are no USA fading records in the data table,
but a number of records from Canada). Only stations with
continuous data for the years 2010 to 2017 as well as 1990 to
1997 are included in this comparison.

These leaves 616 stations where we compare parameters
NsA0.1 and dN75mH from the years 2010 to 2017 with the same
parameters from the same stations for years 1990 to 1997.
For both these parameters, the number of stations having
an increase or a decrease over the 20 years are reasonably
similar; 55% of them have an increase in severity of NsA0.1,
while 46% of them have an increase in severity of dN75mH.
In the case of the NsA0.1 parameter, the mean difference is -

0.14 N-units, but an unweighted mean is an OLS estimate,
which ignores spatial correlation that may exist between
nearby stations. This correlation may be taken into account
with a GLS estimate, using the methods described in [33],
or later in this paper, as the mean difference is a regres-
sion model with only an intercept and no other parameters.
In the case of NsA0.1, the GLS estimate of the difference over

20 years is−0.40 N-units, but this is only marginally signifi-
cant, with a 95% confidence interval from−0.84 to+0.04 N-
units. While a time correction for NsA0.1 drift does not appear
essential, we assume the minor correction of −0.02 N-units
per year, based on the GLS difference over 20 years.

The change in dN75mH is less significant, with an OLS
mean difference of +0.08 N-units, or a GLS estimated
increase of 0.16 N-units. The 95% GLS confidence interval
is from −0.27 to +0.58 N-units. Hence the 2010 to 2017
dN75mH data appears appropriate for the earlier fading data.

The above results for NsA0.1 and dN75mH, parameters sig-
nificant for predicting clear-air fading, are in marked contrast
to mean temperature difference for the same surface weather
stations, comparing the same time periods. The overwhelm-
ing majority (95%) of these stations have 2010 to 2017 mean
temperature greater than 1990 to 1997 mean temperature,
with an OLS mean difference of +0.69 degrees. The GLS
difference is+0.757 degrees, with a 95% confidence interval
from +0.683 to +0.831 degrees.

III. WEATHER STATION DATA INTERPOLATION
A. ORDINARY KRIGING
Kriging in its various forms [36] is a popular technique for
linear spatial interpolation as it is the Best Linear Unbiased
Predictor (BLUP) if the assumptions relevant to the particular
form of kriging are met. We therefore consider this as an
option for interpolating our parameters fromweather stations.

Named after D. G. Krige, who applied the idea to the
prediction of the spatial distribution of ore content, kriging
was fully described later [37]. Ordinary kriging is the most
popular form of this technique, and assumes the data has a
stationary but unknown mean, and has stationary and known
isotropic spatial variation, as a function of distance. The
ordinary kriging system can be described as


w1
...

wn
µ

 =

γ1,1 · · · γ1,n 1
...

. . .
...

...

γn,1 · · · γn,n 1
1 · · · 1 0


−1

γ1,P
...

γn,P
1

 (21)

where w1..wn are the weights applied to the n data points,
the terms γi,j are the predicted semivariogram function γ (h)
values for the distances between pairs of known points i and j,
and γi,P are the predicted γ (h) values for the distances h(i,P)
between known points and the interpolation point.

A number of different semivariogram functions γ (h) may
be used [38], and the nugget effect is often employed, where
γ (h) is discontinuous at the origin, with γ (h = 0) = 0
and γ (h > 0) > 0. This allows the fitted surface to not
pass through the known points. However, we are considering
exact interpolation, so the semivariogram functions described
below are continuous, forcing the interpolated surface to
pass through the known points. We find this to be work-
able provided the semivariogram function has non-zero, and
preferably maximum, slope at the origin.
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Two useful functions for map interpolation are the expo-
nential function

γ (h) = σ 2[1− exp(−h/h0)], (22)

and the power function

γ (h) = b|h|λ, 0 ≤ λ < 2. (23)

In (22), σ 2 is the data variance, although the weights given
by (21) are independent of the value of σ 2, or the value of
constant b in (23). Therefore, we may fit the semivariogram
function to the data by varying one constant, h0 in (22),
or λ in (23), to find the minimum RMS interpolation error,
as indicated by cross-validation.

Alternatively, (21)may have covariance terms, for example
Ci,j = σ 2 exp(−h(i, j)/h0)] in the case of the exponential
function, replacing the γi,j terms. This is an equivalent formu-
lation, except the Lagrange parameterµ then has the opposite
sign. The n + 1’th row and column in the semivariogram or
covariance matrix provides unity sum of weights, ensuring a
fit to the unknown mean of the data.

The stationary mean and covariance assumption of ordi-
nary kriging is unlikely to be met with world-wide surface
weather station data, with widely varying terrain and climate
types, so kriging may not necessarily be the BLUP.

Another problem for our application is that (21) requires
inversion of an n + 1 by n + 1 matrix, readily achieved if n
is a few hundred or less, but we are interpolating data from
several thousand weather stations world-wide. A solution to
this problem may be expected to be to restrict the kriging
to a smaller number of local points, but we find that that
introduces discontinuities in the interpolated surface.

B. NATURAL NEIGHBOUR INTERPOLATION
Natural neighbour interpolation provides a unique exact inter-
polation that guarantees continuous first and second deriva-
tives everywhere except at the known points [39], while
only depending on local data, the natural neighbours of the
interpolation point. Voronoi polygons contain all locations
that are closer to a particular data point location than any
other, and natural neighbours are data points with adjoining
Voronoi polygons.

Conceptually, natural neighbour interpolation is very sim-
ple, as illustrated in Fig. 2. If the interpolation point is
treated as a new data point, then the weights assigned to its
natural neighbours are proportional to the overlap areas of
its Voronoi polygon (red dashed line) with the previously
existing Voronoi polygons.

Natural neighbour interpolation is well suited to our prob-
lem of interpolating over the surface of the Earth, as this
surface has no boundary, requiring special treatment. If we
assume the Earth to be spherical, then spherical poly-
gon areas are easily calculated from the sum of internal
angles [40]. Natural neighbour interpolation is ideally suited
to interpolation of parameters from highly irregular dis-
tributed locations [39], as is the case with our weather sta-
tions. This interpolation method appears to have the ability

FIGURE 2. Natural neighbour interpolation: an example showing the
Voronoi polygons corresponding to the known points, overlapped by a
new polygon for a location to be interpolated. The interpolation weights
are proportional to the six areas of overlap of the original polygons.

FIGURE 3. Voronoi polygons for surface weather stations in the
Australian region. The red crosses are station locations, and those on the
west coast of Australia have polygons extending far into the Indian
Ocean, where there are few stations. Coastal stations a little further to
the west than their neighbours appear to have disproportionally large
Voronoi polygons.

to generate an interpolated surface from only the neighbours
of the interpolation point, to rival that achieved by kriging
using all known points, in terms of smoothness and accuracy.
We compare accuracies, by cross-validation, below. Using
only local data is an advantage, as it obviates any stationarity
requirement.

However, points far removed from the interpolation point
may be given considerable weight if the data points are very
irregularly spaced [41], as is the case with surface weather
station data. This is likely to be the case for coastal weather
stations having large Voronoi polygons extending out into the
ocean where there are few stations. Fig. 3 demonstrates this
for the Australian region.

We introduce an amendment to combat the irregular poly-
gons displayed in Fig. 3. Each vertex of a Voronoi polygon
is the centre of a circumcircle of three or more data point
locations. The radii of the circumcircles of the vertices of
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FIGURE 4. Voronoi polygons for surface weather stations in the
Australian region, with additional interpolated ‘‘quasi-stations’’ to
eliminate very irregular polygons. These interpolated points are added at
polygon vertices until no polygon has vertex circumcircle radii spanning a
ratio exceeding 5:1.

a polygon will vary greatly in the case of polygons with a
centroid far removed from the corresponding data point.

A potential solution to the problem may be to identify
the polygon with the largest ratio between maximum and
minimum radius of its vertex circumcircles. If that ratio
exceeds a pre-defined threshold, say 5:1, then the natural
neighbour interpolated value at the maximum radius vertex
of that polygon is calculated, and a new ‘‘quasi-known’’ point
is created at that location. That process is repeated until no
polygons have a maximum to minimum vertex circumcircle
ratio exceeding the threshold value. The result of that process
applied to the stations of Fig. 3 is shown in Fig. 4, for a radius
ratio threshold of 5:1.

C. INTERPOLATION TESTING
The Harvey [14] 75 m subrefractive parameter dN75mH in the
Australian region is a sensitive test case for different inter-
polation methods, as it varies over a wide range over much
of the Australian land mass, more extensively than any other
continent. The results of interpolation testing for 354 weather
stations in this region (latitudes 10 to 50 degrees south, lon-
gitudes 90 to 160 east), by leave-one-out cross-validation are
shown in Table 2.

We test ordinary kriging (OK) with the lowest RMS error
exponential model and power model found in the testing,
as well as conventional natural neighbour interpolation (NNI,
no infill), and added interpolated points as described above
(NNI, infill if ratio>5:1).

A popular ad-hoc interpolation method in the past was
Shepard interpolation [42]. It is often rather incorrectly
described as inverse distance weighting, but in fact the algo-
rithm is far more involved than that. A good detailed descrip-
tion of the algorithm is given in [43]. The interpolation uses
a small number of closest local known points, typically 7,
but always at least 4 in sparsely populated regions and no
more than 10 in heavily populated regions. We use the point

TABLE 2. Leave-one-out interpolation cross-validation for parameter
dN75mH from 354 weather stations in the Australian region. Ordinary
kriging (OK) with a power model has lowest RMS error, closely followed
by the exponential model and natural neighbour interpolation (NNI)
with added points.

FIGURE 5. Ordinary kriging of dN75mH from the 50 closest stations, with a
power model γ (h) = b|h|0.7, for the Australian region. Leakage of high
overland values to the ocean to the south-west is seen, and discontinuity
where high-value stations are included or excluded from the kriging
system.

selection method and complete interpolation algorithm as
described in [43], for the Shepard results in Table 2.

For each method, leave-one-out testing is used; for each
station the observed value is compared with an interpola-
tion that does not include that station. The RMS error (N-
units), and Pearson’s correlation coefficient, R, between the
observed and interpolated values, are shown in Table 2.

Although ordinary kriging with a power model, γ (h) =
b|h|0.7, has lowest RMS error and best correlation in Table 2,
this method, using the 50 closest points, is less local than
natural neighbour interpolation, using typically 6 natural
neighbours. As a result, the kriging interpolation appears
to suffer more than NNI from leakage of the high coastal
and inland values into the ocean where values are low but
measurements very sparse. In addition, kriging with just the
50 closest stations suffers from discontinuities as outlier sta-
tions are switched in or out of the interpolation. These effects
are demonstrated for kriging in Fig. 5.

Fig. 6 shows the same parameter, with natural neigh-
bour interpolation, modified by adding interpolated points
to eliminate vertex circumcircle radius ratios exceeding 5:1.
While this seems to improve accuracy, judging by the results
in Table 2, conventional natural neighbour interpolation,
shown in Fig. 7, has smoother contours and appears to have
less leakage of land values into the ocean than the modified
method of Fig. 6.

The added points in the modified method of Fig. 6 poten-
tially add discontinuities in the derivatives of the interpolated
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FIGURE 6. Natural neighbour interpolation, with added points to
eliminate vertex circumcircle radius ratios exceeding 5:1, of parameter
dN75mH. While leave-one-out testing suggests these added points
improve accuracy, the contours in ocean areas appear to be less smooth
than the conventional technique, and leakage of land values into ocean
areas may be increased.

FIGURE 7. Conventional natural neighbour interpolation of weather
station parameter dN75mH. A smooth interpolated surface is obtained
even though only a small number of local points are used in each
interpolation.

surface. This may be the reason for the Indian ocean contours
in Fig. 7 being smoother than those in Fig. 6.

Accordingly, we choose conventional natural neighbour
interpolation to produce digital maps of the weather station
parameters, as cross-validation indicates it is close to the
accuracy achieved by kriging, while producing a superior
digital map.

In practice a digital map on a regular grid, at a spacing
typically in the region of 0.5 degrees in latitude and longitude,
is used to obtain parameter values for radio link design. The
path center coordinates of the link are used to interpolate
a value. Two methods of doing this are provided in [44].
Bilinear interpolation from the four grid points surrounding
the interpolation location has been generally used, but bicubic
interpolation may be considered. We test these options by
producing the world-wide digital map from the station data,
on a 0.5 degree grid, using natural neighbour interpolation,
and then re-interpolate back from the grid to the station
coordinates, and observe the error.

The unexpected result is that bilinear interpolation appears
to be generally more accurate than bicubic interpolation,
when tested in this way, so in the following regression mod-
els, we use bilinear interpolation of values from a digital map
with a 0.25 degree grid spacing. This replicates the procedure

to be used by link designers in making a prediction, rather
than interpolating directly from weather station locations to
link locations.

IV. DEVELOPMENT OF THE NEW MODEL
A. OLS AND GLS
A detailed desciption of OLS and GLS estimation is given
in [33], but briefly, OLS assumes uncorrelated errors, and the
regression coefficients bOLS are given by

bOLS = (X′ X)−1X′y, (24)

where y is the column vector of observed responses, corre-
sponding to the rows of matrixX, whose columns are the pre-
diction parameters, the first column being all ones, to estimate
the intercept, the first element of bOLS. The regression model
estimate ŷ = XbOLS minimises the sum of squared residuals
e = ŷ− y.
If the errors are known to be correlated, GLS esti-

mation minimises the squared residuals of a transformed
problem, the aim being to eliminate error correlation by
pre-multiplying X and y by symmetrical matrix P:

bGLS = (X′S−1 X)−1X′S−1y

where

S−1 = P′P. (25)

For simplicity, we assume an exponential spatial correla-
tion function [33] of the form

φij = (1− kn) exp
(
−
rij
r0

)
, (26)

where rij is the distance between different locations i and j,
to give matrix S as

S =


1 φ12 φ13 . . . φ1n
φ21 1 φ23 . . . φ2n
φ31 φ32 1 . . . φ3n
...

...
...

. . .
...

φn1 φn2 φn3 . . . 1

 . (27)

The suitability of the GLS scheme may be judged by a
correlation test on the transformed residuals Pe. We do this
with a spatial equivalent [33] of the Durbin-Watson statistic
dw, the sum of squared residual forward differences divided
by the sum of squared residuals. A value of dw close to 2 is
expected for uncorrelated residuals; dw < 2 for a positive
correlation, or dw > 2 for a negative correlation.

The parameters in (26) are found by producing a semivari-
ogram γ (h) of the OLS residuals, using the Cressie-Hawkins
robust estimator [38] applied to distance classes numerically
equal to the number of residual pairs with zero geographic
distance (h = 0). The sill value of the semivariogram is
assumed to be OLS residual variance σOLS, and the nugget
parameter kn is set to the Cressie-Hawkins estimate of γ (h =
0) divided by σOLS. The parameter r0 is set to the value where
equal numbers of the semivariogram estimates for distances
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FIGURE 8. Worldwide map of the Harvey model for worst-case radio refractivity increase with height in the lowest 75 m of the atmosphere, dN75mH.

less than 2000 km are above and below the exponential curve
γ (h) = σOLS[1− (1− kn) exp(−h/r0)].
While OLS estimation of the regression parameters min-

imises the RMS error of the model with respect to obser-
vations included in the model fitting, we explore the use of
GLS regression models, the aim being to reduce the influ-
ence of spatially correlated observations. The effective spatial
Durbin-Watson statistic [33] of the residuals of the following
OLS model, dw = 1.06, indicates very significant positive
spatial correlation. The GLS model, with kn = 0.105 and
r0 = 219.5 km, has transformed residual dw = 1.95,
indicating substantial elimination of the spatial correlation.

B. CROSS-VALIDATION AND PARAMETER SELECTION
In previous OLS regression models for multipath
fading [26], [32], model parameters have been selected one
at a time, as the one with the strongest correlation, initially
with the observations, and then with the residuals of the
previous regressionmodel. The riskwith this procedure is that
an initially significant parameter may become insignificant,
as more parameters are added.

Another problem is that if OLS residual RMS is taken as
the criterion, without cross-validation (testing with observa-
tions not included in the model fitting), the model will appear
to always improve as new parameters are added, whether they
are really useful or not.

We address these problems by a form of cross-validation
thatmay be described as leave-one-region-out. For each of the
regions described in Table 1, predictions are performed with
regression models fitted to the data from the other 19 regions.
Rather than progressively adding parameters to the model, all
possible binary combinations of including or not including

parameters in the model are tested, and the combination
producing the lowest overall leave-one-region-out RMS error
is chosen.

The parameters are similar to those in (20), but using more
extensive weather station data, and with some improvements,
as follows.

A new parameter H8500 is now included, the mean rayline
clearance (m) above terrain (ignoring tree cover, as its height
is often unknown) at standard refractivity gradient (effective
Earth radius of 8500 km).

The subrefractive parameter v2 of (19) is now replaced by
vsr, now depending on path length d (km) as well as H8500,
to avoid excessive values for low clearance very short paths
in regions of high dN75mH:

vsr =
(
dN75mH

50

)3

exp
(
−
H8500

4
√
d

)
. (28)

The cubic dependency with dN75mH is retained, as that is
found to provide better accuracy than alternative exponents.

A world-wide map of dN75mH is shown in Fig. 8.
This parameter suggests that subrefraction appears to be a
wide-spread and severe problem in much of Australia, more
so than other countries.West Africa and parts of the Americas
in particular, appear to have subrefraction of lesser severity.

After testing of a number of different options, we find
that a new path inclination parameter |εp|0.2 appears to be an
improvement over the conventional log(1+ |εp|).
The recent inclusion of a number of relatively low fre-

quency 2 GHz records in the fading data, reduces uncertainty
in estimating frequency dependence of the model. A new fre-
quency parameter log(f 2+36) appears to be more significant
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TABLE 3. Best leave-one-region-out cross-validated OLS (RMS error
5.94 dB) and GLS (RMS error 5.96 dB) models. Both regression
coefficients, and the corresponding t-statistics, indicating statistical
significance, are shown. As there are many data points, the t-distribution
here is close to a normal distribution with unit variance.

than the previous parameters log(f + 6) in (20), or log(f ) in
the current ITU-R model [12].

Terrain area standard deviation Sa is used in this new
model, similar to that employed in [12], but with a refined
method of evaluation.

The new Sa is a standard deviation from the same 30 second
terrain data, but over a circular area of 100 km radius, with
raised cosine weighting tapering to zero at the edge of the
area. In order to avoid undue weighting of polar regions
due to the longitude grid converging at the poles, random
sampling of the terrain data with probability 4 cos(φ), where
φ is latitude in radians, is used at latitudes with magnitude
exceeding 75.522 degrees.

The regression coefficients for the best OLS and GLS
models, found by leave-one-region-out cross validation, are
shown in Table 3. The best OLS and GLS models each have
the same 9 parameters.

There are some minor differences in the regression model
coefficients between the OLS and GLS models, and their
significance indicated by the t-statistic is generally less for
the GLS model than the OLS model.

The most extreme example of this coefficient difference is
the elevation of the lowest antenna, hL . It has a coefficient of
-0.00564 dB per m in the OLS model, and highly significant
with t = −5.72. In the GLS model its coefficient is -
0.00167 dB per m, and barely significant with t = −1.31.
However, we retain it in the GLS model as the leave-one-
region-out cross-validation suggests that it is useful.

The new GLS model

A0.01 = −39.65+ 34.21 log(d)− 7.284|εp|0.2

− 3.217 tanh((Sa − 70)/50)+ 5.761 log(f 2 + 36)

− 0.01089dN1 − 0.00167hL
− 2.805 tanh((H8500 − 250)/75)

+ 48.06vsr − 0.1655NsA0.1 dB (29)

has parameters log(d), hL and dN1 in common with the
current ITU-R model [12] for detailed design

A0.01 = −44+ 34 log(d)− 10.3 log(1+ |εp|)

TABLE 4. Mean and standard deviation of prediction error by region,
showing number of records, error statistics of the existing Rec. ITU-R
P.530 model, and the new GLS model of Table 3. Significant mean
under-prediction by the P.530 model in Central Asia, Ghana, and Northern
Australia, is largely eliminated by the new GLS model, and is substantially
reduced in Arctic Canada.

− 4.6 log(10+ sa)+ 8 log(f )

− 0.027dN1 − 0.0076hL dB, (30)

while (29) has revised forms of the frequency f , path incli-
nation εp and terrain area standard deviation Sa parameters,
as well as a new subrefractive parameter vsr, path clearance
parameter tanh((H8500 − 250)/75), and surface refractivity
anomaly parameter NsA0.1.

C. ACCURACY OF THE NEW GLS MODEL
The prediction error statistics of the GLSmodel of Table 3 are
detailed in Table 4, separated into the 20 regions of Table 1,
as well as overall. The error statistics for predictions with the
current ITU-R model [12] are shown for comparison. The
new GLS model demonstrates a significant improvement in
accuracy over the ITU-R model in Central Asia, Ghana, and
the three northern Australian regions, due to elimination of
the large mean underprediction errors of the ITU-R model in
these regions.

Overall, the new GLS model has less less mean error
and lower error standard deviation than the current ITU-R
model. Next we consider the alternative approach of treating
multipath fading and subrefractive median depression fading
as separate mechanisms.

D. COMPARISON WITH SEPARATE MULTIPATH AND
LINEAR SUBREFRACTIVE GRADIENT MODELS
A conventional approach [14], [15] assumes a linear refrac-
tivity gradient diffraction loss model for subrefractive median
depressions, with a separate multipath model to represent
other clear-air fading events. We simulate this approach by
taking the GLS model of Table 3 or (29), omitting the subre-
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fractive term +48.06 vsr, as the non-subrefractive multipath
model for fade depth A0.01MP for 0.01% of the worst month
of the average year. The subrefractive model for fade depth
for 0.01% of the worst month A0.01SR is estimated as 10 dB
greater than the diffraction loss estimated for a worst-case
subrefractive gradient, assumed to represent the gradient for
0.1% of the worst month. The diffraction loss is predicted
using the ‘‘method for a general terrestrial path’’ of [45].
The added 10 dB accounts for Rayleigh fading, assumed to
be present during the subrefractive fade. The predicted fade
depths for the two mechanisms are then combined as

A0.01 = 10 log
[
10

A0.01MP
10 + 10

A0.01SR
10

]
. (31)

Path profiles, of terrain elevation with distance along the
path, are available for 483 of the 535 data records in this
study, so we compare our GLS model with the above lin-
ear subrefractive gradient approach for these records. For
these the GLS model has a mean error of −0.41 dB, and
an error standard deviation of 5.72 dB. The parameters for
the Schiavone subrefractive model [15] are not available for
the fading data locations, so we test two models based on the
Harvey model for worst-case gradient at a location, dN75mH.

1) ORIGINAL HARVEY EFFECTIVE GRADIENT MODEL
A model for an effective uniform linear refractivity gradient
GH along a path [14] was estimated from the model for
effective Earth radius factor Ke39 for a 39 km path:

Ke39 =
0.6

1+ dN75mH
11.775

+ 0.17. (32)

This is scaled in proportion to the square root of path length
d , to give the Harvey effective gradient GH as

GH = 157

[
1

Ke39

√
39
d
− 1

]
N-units per km. (33)

Thismodel was based onmeasurements at locationswith very
severe subrefractive fading, but tends to be too severe at many
locations. For the 483 test paths the mean error of (31) with
this gradient model is+24.4 dB, with error standard deviation
of 31.1 dB; significantly inferior to the GLS result.

2) COMBINED HARVEY-BOITHIAS-BATTESTI GRADIENT
MODEL
We suggest an alternative subrefractive gradient model, based
on (15), a model for a ‘‘continental temperate’’ climate. There
is no indication in [11] of the actual location of the radio links
used to develop this model, but the mean value of dN75mH
for the 222 weather stations in France, Spain, Switzerland,
and Liechtenstein in our data, is 11.01 N-units. Assuming
then that ‘‘continental temperate’’ climate corresponds to
dN75mH = 11, and scaling according to dN75mH, we have
the effective subrefractive gradient model

GHBB =
dN75mH

11

[
2670
d
− 13

]
N-units per km. (34)

This model performs well for the 483 records where path pro-
files are available: mean error of (31) with this gradient model
is +0.001 dB, with error standard deviation of 5.93 dB. This
is close to the accuracy of the GLSmodel, so we compare this
subrefractive plus multipath model (31) with the GLS model
for its accuracy in predicting fading severity variation with
antenna height (height gain).

E. HEIGHT-GAIN PREDICTION
An important issue for the guidance of radio link designers
is accurate prediction of improvement with antenna height,
for systems severely affected by median depression fading.
If this fading is attributed to subrefaction, assuming a lin-
ear refractivity gradient model, a considerable improvement
with antenna height may be predicted, so we compare the
height-gain predictions with this type of model with the
predictions from our Table 3 GLS model.

There are a number of records in the fading data with
simultaneous observations at two different receive antenna
heights, where the data was collected from space-diversity
systems. We identify those likely to have significant subre-
fractive fading as those where the contribution to the GLS
model from parameter vsr at both antennas exceeds 3 dB. This
yields 38 pairs of measurements, all from Australia.

Themean error of the GLSmodel for these 76 observations
is−0.93 dB with 5.89 dB standard deviation. For these same
observations, the linear gradient subrefractive model of (31)
and (34) predicts A0.01 with a mean error of −0.40 dB with
6.35 dB standard deviation.

The real interest is the prediction of fade depth reduc-
tion with antenna height, or height gain. In this respect,
the GLS model performs well, with a mean prediction error
of −0.26 dB, and 2.59 dB standard deviation. The sub-
refractive gradient diffraction model has mean +0.92 dB
over-prediction of height gain, with 2.86 dB standard devi-
ation. The mean of the latter appears small, but is not much
less than the mean observed height gain of +1.47 dB.

The GLS model predicts 65.8% of the height gains
within 2 dB of observed value, while the subrefractive model
of (31) and (34) only predicts 34.2% of the height gains
within 2 dB, and in fact over-predicts 44.7% of them by more
than 2 dB.

F. CLEARANCE CRITERIA
The conventional approach to line-of-sight radio links [12]
requires grazing line-of-sight clearance at the refractivity
gradient given by (15) in a temperate climate, or an unob-
structed path at this gradient in a tropical climate. An alter-
native proposal [16] is to design for a limited amount of
obstruction fading, estimated by assuming diffraction loss
at a certain positive refractivity gradient. The height-gain
results described above suggest that the new GLS model we
propose may be a more reliable basis for this type of approach
than diffraction loss estimates assuming a linear refractivity
gradient, due to the greater height-gain accuracy of the GLS
model.
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Often radio links employ various diversity reception
schemes [11], [12] to improve performance, by taking advan-
tage of multiple receivers with partially correlated fading.
This breaks down if the depth of median depression fade
approaches or exceeds the system fade margin. Amendments
to diversity improvement predictionmodels in themost recent
version of the ITU-R Recommendation [12], now ensure that
fading severity is now taken into account for all forms of
diversity reception.

Thus it may be feasible to replace clearance criteria for
choosing antenna heights, by performance predictions using
the new GLS model, subject to validity of that model.
As an empirical model, the GLS model may be consid-
ered valid for the range of parameters represented in the
data.

We find no evidence that the accuracy of the model is
affected for median refractivity path clearances approaching
grazing line-of-sight, despite several dB of predicted path
obstruction. We note here that the GLS model is for fad-
ing with respect to median signal level, not unobstructed
free-space signal level. There is just one case, the fading of a
space diversity receiver in a 1.8 GHz system, where grazing
line-of-sight clearance is not quite achieved at median refrac-
tivity gradient, yet the error in the GLS fading prediction error
is only 3.4 dB overprediction.

Considering these results, we suggest that provided the
design meets availability and performance specifications,
using the new GLS multipath model together with the
recently revised diversity improvement models of [12],
the clearance criteria of [12] may be relaxed, by applying
them at median refractivity gradient (nominally -39 N-units
per km), instead of the currently suggested subrefractive
gradient of (15). This may lead to more economical system
designs in some cases.

V. UNIVERSAL KRIGING
Universal kriging [36] extends ordinary kriging of (21) to
allow for non-stationary mean, estimated in terms of p func-
tions of location s, f1(s) to fp(s). The semivariogram matrixG
is similar to that in (21), but with additional rows and columns
for the functions f1(s) to fp(s):

G =



γ1,1 . γ1,n 1 f1(s1) . fp(s1)
. . . . . . .

γn,1 . γn,n 1 f1(sn) . fp(sn)
1 . 1 0 0 . 0

f1(s1) . f1(sn) 0 0 . 0

. . . . . .

fp(s1) . fp(sn) 0 0 . 0


(35)

and the value at location sP is obtained as a weighted mean
of the n known values at locations s1 to sn. The weights w1 to

wn are given by 

w1
...

wn
m0
m1
.

mp


= G−1



γ1,P
...

γn,P
1

f1(sP)
.

fn(sP)


. (36)

If a semivariogram function without nugget effect is used,
such as (22) or (23), the result of (36) is a smooth interpolation
surface that passes through the known points, and close to
them it is predominantly interpolated from them. If the nugget
effect is employed, as in (26), the requirement to pass through
the known points is relaxed, and in their region the surface is
a best fit rather than an exact interpolation. We use the same
exponential model with nugget effect, (26), that we use for
the GLS estimation. As a semvariogram function, (22) then
becomes

γ (rij) = σ 2[1− (1− kn) exp(−rij/r0)] for i 6= j,

otherwise

γ (rij) = σ 2. (37)

At locations distant from known points the estimation
becomes predominantly a GLS estimate in terms of the func-
tions f1(s) to fp(s).

A. APPLICATION TO FADING PREDICTION
Geoclimatic factor may defined for a multipath fading model
as the part of the model that is invariant for any link with the
same path center coordinates. For the GLS model of Table 3,
it may be defined as

KG = −39.65− 3.217 tanh((Sa − 70)/50)

− 0.01089dN1 − 0.1655 log(NsA0.1) dB. (38)

The predicted fade depth for 0.01% of the worst month A0.01
is then

A0.01 = KG + 34.21 log(d)+ 5.761 log(f 2 + 36)

− 7.284|εp|0.2 − 0.00167hL + 48.06vsr
− 2.805 tanh((H8500 − 250)/75) dB. (39)

The subrefractive parameter vsr is included in (39), and not
in the geoclimatic factor (38), because its value, given by
(28), depends on mean rayline clearance height H8500 and
path length d , as well as the Harvey subrefractive climate
parameter dN75mH.

At locations where link fading data provides an observed
value of A0.01, an observed value of KG may be obtained by
re-arranging (39) as

KG = A0.01 − 34.21 log(d)− 5.761 log(f 2 + 36)

+ 7.284|εp|0.2 + 0.00167hL − 48.06vsr
+ 2.805 tanh((H8500 − 250)/75) dB. (40)
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FIGURE 9. Worldwide map of geoclimatic factor KG, produced by universal kriging. This indicates predicted severity of multipath fading.

If there is more than one observation at the same loca-
tion, we take the mean of the KG values for those
observations.

The universal kriging system of (35) and (36) is set up,
using the exponential semivariogram function (37), and the
functions f1 to fp are the parameters tanh((Sa − 70)/50),
log(NsA0.1), and dN1, in (38).
A world-wide map of the resulting universal kriging geo-

climatic factor KG is provided in Fig. 9.

B. ACCURACY OF THE UNIVERSAL KRIGING MODEL
As the universal kriging geoclimatic factor prediction error
at known locations is minimised, a useful test of prediction
accuracy requires the test location to be excluded from the
matrix G of (35). This may be described as ‘‘leave-one-
location-out’’ cross validation.

The results of this testing are shown in Table 5, comparing
prediction error means and standard deviations with those of
the existing ITU-R model [12]. A notable characteristic of
these universal kriging results is the very lowmean prediction
error in all regions. None have magnitude exceeding 2.5 dB,
and all regions with 15 or more link locations havemean error
magnitude of 0.6 dB or less.

The use of universal kriging fading prediction can pro-
vide a significant benefit to regions of the world that are
currently under-represented in the fading data, if they pro-
vide new fading data records, and the univesal kriging
model is updated accordingly. As universal kriging uses
interpolation of nearby data as well as regression, this
local benefit is likely to be much greater than would be
the case for a fading model that only uses OLS or GLS
regression.

TABLE 5. Mean and standard deviation of prediction error by region,
showing number of records, error statistics of the existing Rec. ITU-R
P.530 model, and leave-one-location-out testing of the new universal
kriging (UK) model.

VI. CONCLUSION
We describe an empirical regression model for line-of-sight
microwave link fading prediction that significantly improves
prediction in some regions, such as Australia, where pre-
viously prediction accuracy was poor. This improvement is
partly due to additional link fading observations, and partly
due to new prediction parameters. Application of universal
kriging to the solution of this problem is described for the
first time, leading to even greater improvements in accuracy
in regions with a good number of observations. Some parts
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of the world are still under-represented in the fading data,
particularly the Americas, Africa, and East Asia. The Aus-
tralian experience has shown that this data can be generated
at low cost, if the necessary data is available from installed
radio equipment, and is collected and archived by the network
management system, and some resources are allocated to pro-
cessing the data. The universal kriging technique described
here would see substantial design improvement for regions
where this was done.
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APPENDIX A FADING DATA FROM DIGITAL LINKS
A brief description is provided here of the procedure used
in Australia [20], [31], to produce average year worst-month
fading distributions from installed radio links.

1) Identify line-of-sight links, with automatic transmit
power control disabled, whereminimum andmaximum
receive level data is continuously available for every
15 minutes, over a period of one or more years.

2) Process the data, estimating the receive level distribu-
tions for each 15 minute period, and accumlate these
into monthly distributions. If only the 15 minute min-
imum and maximum levels are known, assume a uni-
form voltage distribution between those limits for each
15minute period [31], but use any additional data; most
Australian links also reported time below 4 levels.

3) Plot the receive level time series of fading months,
to check that apparent fading is not equipment related.
These plots include rain data from nearby weather sta-
tions, to ensure fading events are not rain related.

4) Each percentage point in the worst month distribution
for the year is taken to be the worst case at that percent-
age point for the fading months. If more than one year
of data is available, take the dB mean as the average
year worst month distribution.

5) The Australian data is from 6 to 24 MHz bandwidth
systems, but the fading distribution for a very narrow
bandwidth system is required, having an approximate
Rayleigh 10 dB per decade deep fading tail slope. Dig-
ital radio systems with finite bandwidths typically have
an initial fading distribution tail slope around 10 dB
per decade, but then reducing slope at the smallest
percentages of time. This <10 dB per decade tail region
is ignored, as not representative of narrow band fading.
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