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Linear Measurements from 
Nonlinear Sensors: Identifying 

Distortion with Incidental Noise
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N onlinearity in many systems is heavily dependent 
on component variation and environmental fac-
tors such as temperature. This is often overcome 

by keeping signals close enough to the device’s operating 
point that it appears approximately linear. But as the signal 
being measured becomes larger, the deviation from linearity 
increases, and the device’s nonlinearity specification will be 
exceeded. This limits the range over which the device will pro-
duce directly useful measurements, often to far less than the 
device’s safe range of operation.

Although these nonlinear measurements may exceed the 
device’s nonlinearity specification, they nevertheless contain 
useful information. We have shown that the input noise of a 
system can provide the necessary information to determine 
the function relating the input signal to the output signal, al-
lowing us to invert it numerically and recover the original 
signal, even if the device has been driven quite heavily into 
nonlinearity.

In this article, we will provide an overview of the tech-
nique and results from [1]–[3] and show how it can be used 
to provide real-time compensation of distortion, providing a 
significant advantage over the state-of-the-art techniques stan-
dardized in [4] when dealing with grossly-distorting systems. 
We begin by showing how noise can be used to measure the 
nonlinearity of a system; then we discuss different models of 
nonlinearity that are suitable for use in real-time compensation 
tools and show how this can be applied in practice.

Measuring Nonlinearity
The first step is to measure the nonlinearity, in order that we can 
compensate for it; this is a system identification problem that 
has been tackled in many different ways depending on the ap-
plication. In our work, we follow the lead of the data-converter 
literature, mapping each digitized value (or code) onto its cor-
responding range of input values, and aiming to ensure that 
these ranges are as similar as possible. The difference between 
the width of these ranges and the average width is known as 
the differential nonlinearity (DNL) [4]. Integrating these differ-
ential nonlinearities yields the integral nonlinearity (INL) [4], 

the variation between the measured value at some input level 
and a linear fit between the limits of the input range.

Directly measuring the widths of these ranges is slow and ex-
pensive, requiring very high-precision dc sources. The current 
state of the art is standardized in [4] (§4.7); these methods require 
a dc source with a resolution and accuracy at least four times that 
of the digitizer being measured, and the source is adjusted un-
til it lies on the boundary between each pair of adjacent codes.

An alternative approach is statistical in nature: apply a sig-
nal to the measurement system that has a known distribution, 
and then measure the distribution of the measurements; codes 
whose ranges are wider or narrower will be obtained more or 
less frequently than the input signal distribution would pre-
dict. Analysis is simplest with a uniformly-distributed input 
signal, such as a triangle function; however, these are very dif-
ficult to generate with high precision. Sinusoidal signals can 
be generated with excellent levels of spectral purity, resulting 
in a highly-precise input signal [5]. The two approaches can be 
combined as in [5], speeding the measurement process with-
out high-precision equipment.

These approaches work very well for factory testing, but 
in the field they have a major drawback: the device under test 
must be disconnected from its input and excited with a high-
precision test signal. This introduces dead time, and requires 
that each device contain a highly precise—and expensive—
signal source.

But this is not necessary: electronic devices provide their 
own test signal in the form of Gaussian noise, and the signal 
being measured continuously sweeps this test signal across 
the whole range of interest. Non-electronic process noise (e.g., 
vibration of an object whose position is being measured) can 
serve the same purpose if it remains similarly constant over 
time and the measurement system has sufficient bandwidth 
and a short-enough averaging time.

Suppose the system has a static nonlinear response y = f(x), 
with band-limited input signal x(t) and white Gaussian input 
noise n(t). This results in an output signal of y(t) = f(x(t)+n(t)). 
Our goal is to find a compensating function g(x) such that 
g(y(t)) ∝ x(t); we will then use this to build a device that takes 
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a distorted input signal, to produce an output signal that ap-
proximates the distortion-free input signal.

Where the noise is small relative to the signal, f(x) can be ap-
proximated by its first-order Taylor series truncation around 
x(t): y(t) ≈ f(x(t)) + n(t)f ′(x(t)) When the derivative f ′(x(t))—the 
differential gain of the system—is large, this results in a larger 
noise signal at the output, as illustrated in Fig. 1. It is this effect 
that we will use to identify f. 

As the input signal x(t) is band-limited, the distorted sig-
nal component f(x(t)) and noise component n(t)f ′(x(t)) can be 
isolated by low-pass and high-pass filtering, respectively. As 
x(t) varies, so will the amplitude of the noise component: if the 
noise at the input has standard deviation i, then the noise at 
the output will have standard deviation ( ) ( )( )σ σ= 'o it f x t . If 
the sign of f ′(x(t)) is positive—i.e., f is monotonically increas-
ing—over the region of excitation then f can be obtained and 
inverted by numerical integration; the difference between the 
input signal at time t0 and at time tn is given by:
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This demonstrates that it is possible, in principle, to iden-
tify the nonlinearity of a nonlinear system from its output 
only, provided the bandwidth of the signal of interest is small 
enough relative to the noise bandwidth. However, this ap-
proach has several drawbacks: first, the noise bandwidth must 
be quite large, as power from the signal that bleeds into the 
noise measurement band will tend to bias the signal; this prob-
lem is exacerbated when the noise power is low. This source of 
bias makes noise measurement at the compensator input prob-
lematic, as nonlinear distortion tends to add to the introduce 
high-frequency harmonic content. Additionally, methods based 
on numerical integration are inefficient; we must consider other 
approaches if we are to perform such compensation in real time.

Representing Nonlinearity
If the approach is to be used in real-time, we must drastically 
reduce its computational burden. This means that we cannot 
look at each prior measurement but must instead reduce the 
raw measurements to a more compact representation of the 
function that can be continuously updated.

Requirements
The representation has three main requirements. The first of 
these is practical:

 ◗ Efficiency: It must be possible to efficiently compute and 
update the representation. In practice, this means that 
numerical integration must be avoided.

The remaining two follow from a spirit of “first, do no 
harm”:

 ◗ Representation of linear functions: The representation must 
be capable of exactly modelling a linear system.

 ◗ Differentiability: The representation must not itself intro-
duce significant harmonic content. We therefore avoid 
jumps and sharp corners, preferring differentiable 
approximations.

Several possible representations are shown in Table 1. We 
considered global representations such as polynomials, but 
these have the disadvantage of requiring a relatively large 
number of computations to compute and update; tolerating 
more complex nonlinearities requires an increase in degree 
that slows down evaluation across the entire input range. Us-
ing a Fourier basis rather than orthogonal polynomials has 

Fig. 1. The effect of distortion on a noisy signal. In regions of high differential 
gain, the noise is amplified; conversely, when the differential gain is low, this 
results in suppression of the signal’s noise component.

Table 1 − Nonlinear transfer function representations

Efficient evaluation Efficient update
Perfect 

representation of 
linear functions

Differentiability

Polynomial (Legendre, etc.) ◐ ◐ • •
Fourier ○ ◐ ○ •
Piecewise-linear • • • ○
Integrated piecewise-linear ◕ • • •
Code: ○ = false, ◐ = partially true, • = true.
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similar downsides but also suffers from the Gibbs effect and so 
also has difficulty representing linear functions.

Piecewise representations, on the other hand, can be much 
more efficient: rather than increasing the degree of the approx-
imating polynomials, thereby slowing down every operation, 
it is possible to simply split the input range into smaller pieces, 
costing memory but not time when it is evaluated.

A piecewise linear representation can be computed ef-
ficiently while still being able to represent linear systems; 
however, it introduces sharp corners into the signals being pro-
cessed, potentially modifying the spectral characteristics of the 
original signal.

An alternative is to represent the compensation function 
as the integral of a continuous piecewise-linear function. This 
can be efficiently evaluated without resort to numerical in-
tegration, making this representation almost as efficient as a 
piecewise-linear one.

Integrated Piecewise-linear
Our test platform is based around an STM32F4DISCOVERY 
evaluation board [6] whose processor, the STM32F407VG, con-
tains a fast floating-point unit. We therefore opted initially to 
use an integrated piecewise-linear approximation to the com-
pensation function, represented by triangular radial basis 
functions [7], as shown in Fig. 2. 

The estimated derivative  ( )−1 'f y  of the compensation func-
tion is therefore written as the sum of translated and scaled 
basis functions:
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where Δ is the width of the basis function. We space these apart 
by Δ = (ymax − ymin) / npieces, such that almost every point in the 
system’s output range is covered by two basis functions. This 
yields the model representation:
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where n = (y − ymin)/Δ and ck is the weight of the basis func-
tion centered at ymin + kΔ.

This is a piecewise-quadratic function; the coefficients for 
each piece can be pre-computed when the model is updated, 
making evaluation very efficient.

Real-Time Compensation of Distortion

Floating-point Implementation
We have developed a distortion compensation library suitable 
for devices with a floating-point unit [8]. The library’s com-
pensation algorithm works as follows, also illustrated in Fig. 3:

 ◗ Use a second-order Butterworth low-pass filter to isolate 
the distorted signal and subtract it from from the noise,

 ◗ For batches of samples, estimate the standard deviation of 
the noise signal across the measurement range,
 • Update the basis weights for the compensation func-

tion derivative according to the measured standard 
deviation in that segment of the measurement range,

 • Re-integrate the derivative to obtain new parameters 
for the compensation function

 ◗ Apply the compensation function to the raw signal. 
The basis weights are chosen to approximate the derivative 

of the inverse of the nonlinear response function of the system. 
From before, ( ) ( )( )σ σ= 'o it f x t ; once again supposing that the f 
is monotonically increasing, this implies that o(t) / i = f ′(x(t)), 
and so we can estimate  ( )( ) ( )σ− ∝

'
1 1 / ˆof y t t . This is an expensive 

operation, requiring both computation of a square root and a 
division. We update the basis weights using a first-order IIR 
filter to average this estimate over many blocks, while allow-
ing the weights to adapt to change in the nonlinear response 
of the system. We also take into account the value of the basis 
function at the point y(t); basis weights are more strongly de-
pendent on measurements taken near the center of the basis 
function. Full details are given in [2].

To evaluate this algorithm, we produced distorted signals 
by passing the output of a signal generator through a com-
mon-emitter amplifier without emitter degeneration, and 
then providing them to the on-chip ADC of the STM32F407 
running our algorithm, writing the compensated signal to a 
DAC. The 10-bit ADC and 12-bit DAC each operate at a sample 

Fig. 2. Integrated radial basis function model of the compensation function. 
By integrating a continuous representation of estimated inverse derivative as 
above, we avoid sharp “corners” in the compensated signal.
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rate of 1.55 MHz. The mean 
and standard deviation of 
the signal are calculated 
from blocks of four sam-
ples, taken at 128-sample 
intervals. The integrated 
piecewise-linear model 
uses 256 triangular basis 
functions, which are rein-
tegrated every 1024 blocks. 
The effect of the algorithm 
on a distorted triangle 
wave is shown in Fig. 4.

In order to quantify 
the algorithm’s ability to 

reduce distortion, we used the same amplifier to distort sinu-
soidal signals at various amplitudes, as shown in Fig. 5.

The total harmonic distortion before and after applying our 
algorithm is shown in Fig. 6. Our algorithm reduces the total 
harmonic distortion by between 10 dB and 15 dB at most levels, 
which is a significant improvement. 

However, this approach carries with it a large computa-
tional burden, and our implementation made heavy use of 
floating-point arithmetic, and in particular an expensive in-
verse-square-root operation; we are therefore motivated to 
find a more efficient approach to distortion compensation.

Fixed-point Compensation
Computing the derivative of the estimated inverse transforma-
tion requires a computationally expensive inverse-square-root 
operation. However, this and other floating-point opera-
tions can be avoided by the use of feedback instead of direct 
computation.

Fig. 3. Distortion compensation library for floating-point implementation. The distorted input is processed to estimate the 
inverse function of the nonlinear response of the system that produced it. This compensation function is applied to the raw 
signal, yielding an estimate of the signal before it was distorted. Adapted from [2] (© 2014 IEEE).

Fig. 4. Distorted triangle wave output by our overdriven common-emitter 
amplifier (channel 1; yellow), and the estimated pre-amplifier signal produced 
by our algorithm (channel 2; blue). The algorithm significantly reduces the level 
of distortion, making the triangular shape of the signal given to the amplifier 
clearly visible. Reproduced from [2] (© 2014 IEEE).

Fig. 5. Distorted sinusoid output by our overdriven common-emitter amplifier 
(channel 1; yellow), and the estimated pre-amplifier signal produced by our 
algorithm (channel 2; blue). The algorithm significantly reduces the level of 
distortion, even when the amplifier is clipping heavily. Reproduced from [2]  
(© 2014 IEEE).

Fig. 6. Total harmonic distortion before and after compensation of a distorted 
sinusoid with the device presented in and as measured in [2], as a function of 
distortion level and signal frequency (© 2014 IEEE).
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This is based on the observation that the noise distribution 
of a perfectly linear system will stay constant as the signal var-
ies. When the noise of the compensated signal rises above its 
average value, this indicates that the differential gain at this sig-
nal level is too great and must be suppressed, and vice-versa.

This suggests we might use negative feedback to set the 
model parameters: when the level of noise is greater than av-
erage, we reduce the differential gain, and when less than 
average, we increase it. Because the noise is measured at the 
output of the compensator, the signal will be less likely to 
spill over into the noise band, as the compensator has already 

removed most of the distortion, eliminating some of the har-
monic content. However, this is difficult with our previous 
model, since the integration is too slow to do for every block. 
Weight updates will occur only with some delay, raising stabil-
ity concerns [9]. Instead, we need a model that can be updated 
in real-time in response to deviations from linearity. We chose 
to use a piecewise-linear compensating function, with each 
fixed-size range of input codes mapped to a corresponding 
range of output codes, as illustrated in Fig. 7. Updating the 
differential gain of a section involves incrementing or decre-
menting the corresponding span.

This is not difficult to evaluate using only fixed-point arith-
metic. However, one difficulty still remains: the number of 
output codes is fixed, while the spans wi may vary. Whenever 
some wi is increased or decreased, the others must change ac-
cordingly. We reallocate this code in a fair manner by selecting 
at random another range to be widened or narrowed.

The feedback direction is determined by comparing the 
current noise variance with an average over the entire output 
range, calculated by low-pass filtering the noise variance mea-
surements with a slow time-constant. We have evaluated this 
technique with simulated tanh(x)-distorted data, yielding the 
results shown in Fig. 8.

This approach avoids expensive inverse-square-root op-
erations, but is more sensitive to sampling noise; as such, it 
is better suited to situations where distortion is large and the 
sampling rate is high enough to permit the use of large block 
sizes.

Conclusions
In this article, we presented a new approach to the handling 
of static nonlinearity that can be applied in post-process-
ing without any special knowledge of the function that has 
been applied to the signal. Nonlinearity induces a predictable 

Fig. 7. A continuous piecewise-linear compensating function. The input space is partitioned into several ranges of equal width, whose span in the output space 
varies according to the parameters wi. (a) Partitioning of input and output spaces. (b) The resulting compensation function. Adapted from [3] (© 2016 IEEE).

Fig. 8. Simulated total harmonic distortion achieved with feedback-based 
compensation. Improvements of 10–15 dB are achievable as before, but the 
output THD “bottoms out” when the input signal has little distortion. This 
noise floor depends on the number of samples per block (shown above), which 
determine the amount of noise present in the estimate of standard deviation. 
Adapted from [3] (© 2016 IEEE).
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change in the noise overlaid on the measured signal, and this 
variation can be used to infer the characteristics of the sys-
tem’s distortion. This opportunistic use of noise allows a 
degree of self-calibration that is not possible with previous 
techniques and will allow for the creation of flexible instru-
mentation that can maintain linearity over a far greater range 
of conditions.
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