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M any sensors exhibit nonlinear characteristics 
[1]–[5] and are deployed in noisy environments 
[1]–[7]. In terms of device design and forming 

standards, this is a challenging area. However, it also presents 
opportunities for non-conventional signal processing meth-
ods based on stochastic resonance that have been shown to be 
of benefit for individual nonlinear sensors [1]–[7], sensor ar-
rays [3]–[10], sensor networks [3], [8], [11], and even portable 
devices for people with reduced sensory capacity [12]–[14]. 
The most fascinating property of stochastic resonance is that 
nonlinear sensors connected in parallel or in a network yield 
improved performance over that achieved by using individual 
sensors [1]–[10]. Studies in stochastic resonance have led to ev-
idence of noise-enhanced signal transmission and processing 
in nonlinear sensors, and noise can be exploited in the design 
of engineered devices [2]–[7], [10] and biological systems [1], 
[11]–[13]. This paper studies noise-enhanced signal transmis-
sion and processing in nonlinear sensors and also exploits the 
positive role of noise in the design of engineered devices that 
enhance the sensitivity of hand movements.

From a Single 
Sensor to a 
Sensor Array
In order to elucidate inter-
esting aspects of stochastic 
resonance, we first consider 
binary signal transmission 
in sensor arrays with the 
help of artificially added 
noise, as shown in Fig. 1. 
The binary information is 
modulated as the wave-
form signal s(n) that is 
corrupted by the channel 
noise (n), yielding the in-
put x(n) = s(n) + (n) of the 

sensor array. We here encounter a dilemma: the type of noise 
(n) may have a large deviation, and the available sensors are 
not necessarily optimized to the noise, while the optimal sen-
sors derived by the Neyman-Pearson criterion or the criterion 
of minimum probability of error may be out of reach as either 
too complex or too costly. An interesting option is to artificially 
add noise components m(n) into an array of non-ideal sensors, 
delivering the signals ym(n) (m = 1,2,…,M)) to deal with this di-
lemma, as shown in Fig. 1.

The information-carrying digits 0 and 1 are modulated as 
the pulse-amplitude modulation waveforms s0(n) = -A and 
s1(n) = +A with equal probabilities, respectively. Assume the 
environmental noise (n) is Gaussian distributed with zero 
mean and standard deviation , and the sensors are binary 
quantizers with input-output characteristics:
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Fig. 1. A schematic diagram of binary signal transmission in a sensor array.
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and the threshold  [1]–[3]. Under this circumstance, the sensor 
input x(n) + m(n) will excite the quantizer with the probabil-
ity pi = Prob(ym = 1) = 1 − F( − si), where F is the cumulative 
distribution of the noise . For a sufficiently large number M, 
the sum 

=

=
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y y  of outputs of m quantizers asymptotically tends 
to a Gaussian distribution with mean μi = Mpi and variance 

( )σ = −2 1i i iMp p  [3]. Then, the decision threshold  is chosen as 
two Gaussian distributions that are equal, i.e.,
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The decoded binary digits 0 and 1 are then obtained from 
y <  and y ≥ , respectively. Compared with the digital source, 
the probability of error Pe is obtained. In Fig. 2a, for the input 
signal-to-noise ratio (SNR) 10log(A/) = 1.46 dB, Pe is plot-
ted versus the added noise level  of Gaussian noise m for 
a different number of M sensors. As the added noise level  
increases, Pe first decreases, and then reaches a minimum at 
an optimal level , and finally increases for very large noise 

levels . Moreover, as the number of quantizers M increases, 
the minimum of Pe can gradually decrease. This is the stochas-
tic resonance effect in quantizer arrays. 

Interestingly, for a large number of M sensors (e.g., M = 104), 
the minimum Pe manifests over a wide range of added noise 
level of  ∈ [0.8,10]. This robust feature facilitates the incor-
poration of the added noise into the signal detection without 
finding the optimal noise level. For a technological applica-
tion, for instance, a long-span bridge may need thousands of 
sensors for continuous monitoring of its structural state, and 
those sensors also endure strong ambient noise that stems 
from wind or car tires. An experimental investigation has been 
carried out with a low-grade iPhone accelerometer to extract 
the first four fundamental frequencies of a highway bridge 
[7]. A parallel array of such sensors distributed over a long-
span bridge could possibly benefit from the ambient noise for 
detecting structural conditions of the bridge. Another techno-
logical application is the addition of noise to the image sensor 
unit of 10 × 10 photodetectors that can widen the response re-
gion and let the system respond to strong light [10]. Similar 
exploitation of the background noise is potentially accessible 

Fig. 2. Probabilities of error versus: (a) the added noise level in binary quantizer arrays of size M, and (b) the input SNR for the matched detector and the 
quantizer array.
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for data processing from large numbers of low-cost sensors in 
sensor-swarm or sensor-cloud applications.

For detecting a known signal in additive white Gaussian 
noise, the optimal detector rests on a linear test statistic known 
as the matched filter or correlation receiver [1], [3], [9]. This lin-
earity entails simplicity for both practical implementation and 
theoretical analysis, and as a result, the matched filter is very often 
exploited for detection, even when it is, strictly, no longer optimal 
for detecting known signals in non-Gaussian noise. For these rea-
sons, the matched filter represents a meaningful reference that we 
shall use for comparison with our quantizer arrays. For detecting 
the binary pulse-amplitude modulated waveforms si(n) = ±A in 
the noisy input x(n) over a time interval n0 ≤ n ≤ n0 + N (N is an in-
teger), the matched filter utilizes the test statistic:
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to accept the hypothesis s1(n) = +A (digit 1), and otherwise 
s0(n) = −A (digit 0) with the decision threshold of zero. The 
probability of error of matched filter [1], [3], [9] can be com-
puted as:
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For instance, at a fixed added noise level / = 1 and for the 
quantizer array size M = 103, the probability of error Pe is plot-
ted as a function of input SNRs in Fig. 2b. For comparison, the 
probability of error Pe of the matched filter in (4) is also plotted 
for N = 1. For low input SNRs, the noise-enhanced quantizer 
array performs as well as the matched filter.

From Parallel Array of Sensors to 
Hopfield Networks
Recent results provide insight into the noise benefit to the 
functional organization of complex neural or communication 

networks [8]–[11]. To illustrate the behavior of a Hopfield net-
work for transmitting binary signals, an architectural graph of 
M = 3 neurons is shown in Fig. 3. The discrete Hopfield neural 
network has two M-dimensional fundamental memory vec-
tors  ( = 0,1). The binary digits 0 and 1 map onto vectors 0 
and 1, respectively. The modulated amplitude is A and the 
bit duration is Tb. Then, the modulated vectors A(n) are cor-
rupted by the background noise vector (n), yielding the input 
vector of the network as:

 ( ) ( ) ( )κ κ= +S α ξ .n A n n  (5)

Each element ( )κ
mS n  is fed into the m-th neuron with its ac-

tivity function  and output:
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where the synaptic weight from neuron i to neuron m is wim and 
the added noise components are m(n). We can combine these 
synaptic weights wim as the M-by-M matrix form:
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according to Hebb’s rule of the outer product [11]. At sampling 
times n, the outputs xm(n) comprise the network output state 
vector X(n), as shown in Fig. 3. We define the potential energy 
function as:
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which has one global minimum but multiple possible local 
minima at stable vectors X* = (WX* + A). For a not too short 
bit duration Tb, we expect that the state vector X(Tb) converges 

Fig. 3. Binary signal transmission in a discrete Hopfield network with M = 3 neurons.
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to the designed stable vector X* that are very close to but not 
simply identical to the stored memory vector . Then, at sam-
pling times n = jTb for j = 1,2,…, we compute the scalar inner 
products XT(jTb)1 ≥ XT(jTb)0 to decode the network output 
as the digit 1 and otherwise the digit 0, where XT(jTb) is also 
called the overlap between X(jTb) and . 

When comparing the decoded digits with the original dig-
its, the probability of error Pe is plotted as a function of added 
noise level  for different numbers of neurons in the Hopfield 
network, as shown in Fig. 4. Due to the weak amplitude of the 
vector A(n), the state vector X(n), assistance from the noise, 
switches correctly to follow the variability of the binary infor-
mation carried in each of the successive time intervals Tb. As a 
result, a high probability of detection error Pe ensues, which is 
gradually reduced as the noise level  rises above zero, with a 
more pronounced improvement for larger array sizes M, and 
with an optimal non-zero amount of noise maximizing the 
benefit. Here, the modulated amplitude A/ = 1, the bit dura-
tion Tb = 3 and the activity functions (·) = tanh[(·)] with the 

slope parameters  = 1.2. Both background noise (n) and the 
added noise m(n) are Gaussian distributed. As the number 
of neurons M increases, the probability of error Pe gradually 
drops to a valley, reaches the valley bottom at an optimal inter-
val noise level , and finally climbs out of the valley for large 
noise levels . The noise benefit to the binary signal transmis-
sion is also evident in the Hopfield network. We emphasize 
that the noise-induced effect in Hopfield networks occurs in 
a multi-dimensional vector space {}, which greatly extends 
two unidimensional states of quantizers in sensor arrays. At an 
optimal noise level , the network state vector X(n), assisted 
by internal noise, will capture the variability of input binary 
modulated vectors more correctly. It can be noted that infor-
mation is carried here in the instant values of the input signal 
visiting the two patterns 0 and 1 but not in the memory con-
tained in the temporal sequencing of these values. In addition, 
the binary signal transmission scheme can be extended to the 
M-ary signal case, wherein the multiple stored patterns  rep-
resent M-ary digits. 

From Neural Networks to Human Hand 
Balance
Noise or vibration plays a positive role not only in the detect-
ability of the sensor arrays and networks [1]–[10], but also in 
the sensitivity of medical and biological systems [11]–[14]. Me-
chanical and electrical noise has been shown as beneficial to 
human sensory systems [11]–[14].

High-frequency sinusoidal interference can be viewed as a 
special kind of noise [9], [14]. This inspires us to exploit the ef-
fects of mechanical vibration of micro-motors on the balance 
control of human hands, as illustrated in Fig. 5. The reason 
is that the cutaneous mechanoreceptors reach a perception 

Fig. 4. Probability of error Pe versus added noise level  for Hopfield 
networks with M neurons.

Fig. 5. (a) A subject grasping a laser pointer to draw a line on the whiteboard; (b) Opisthenar of the subject stimulated by micro-motors (8 mm diameter and 
3.5mm thickness).

Table 1 – Vibration levels of micro-motors  
versus driving voltages

Voltages (V) 0 0.6 1.4 1.8 2.2 2.9

Levels 0 1 2 3 4 5
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threshold, and that situation mimics the McCulloch-Pitts 
neuron model to the central nervous system for information 
processing. Each motor is driven by the microcontroller STM-
32F103ZET6 [14], and several micro-motors, tied by nonwoven 
fabric, are applied on the cutaneous mechanoreceptors of the 
opisthenar. The integrated development environment is KEIL-
MDK ver. 5.0, and the micro-motors, of reference CO834B002F, 
has a rated speed 9000 ∼ 15000 rad/min and a rated current 
100 mA. The microcontroller has 4 channel outputs of the 
pulse width modulation to control the electric voltage of mi-
cro-motors [14]. Vibration interference amplitudes that are 
proportional to the driving voltage are listed in Table 1. For in-
stance, the zero level implies no driving voltage, and level 1 is 
at the perception threshold. Wearing vibration micro-motors 
operated at different levels, subjects draw a line on the white-
board, which is recorded and processed by the Video-Capture 
class of the OpenCV software at the rate 25 (fps) of frame cap-
ture. At sampling times nΔt for n = 0,1,2,…, the recoded images 
provide the trajectory ordinates by the Simple-Blob detector, 
yielding the sequence of the trajectory x(n). Each trial takes 20-
30 s, during which the upper arm of the subject does not rest 
on the body [14]. 

After 30 trials for six subjects, the average sway standard 
deviation at each vibration level is illustrated in Fig. 6a. The 
sway standard deviation of the laser pointer within the sub-
ject’s hand is smallest at the vibration level 2. In order to 
measure the relation between different times, we also approx-
imately compute the autocorrelation function of the trajectory 
x(n) of the laser pointer as:
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and define the correlation 
time  = n0Δt as:

( ) ( )τ ≤ 0.05 0R R  (10)

with the sampling time 
Δt = 0.04s. As indicated 
in Fig. 6b, at the vibration 
levels 2-3, the correlation 
time  is much higher than 
that obtained by other lev-
els, which indicates more 
coherence of hand move-
ments in the interval of 
correlation time . These re-
sults imply that vibration 
has the potential for hand 
balance control and might 
provide a noninvasive 
method for the sensitivity 
improvement of the human 
hand for daily living tasks. 

Summary
In this article, the constructive role of noise in sensors is pre-
sented. From an individual sensor to an array of sensors, it is 
found that the noise benefits get enhanced as the array size in-
creases. Moreover, for a representative Hopfield network, the 
switch between multi-dimensional state vectors can be as-
sisted by a suitable amount of neuronal noise, yielding lower 
error-probability transmission for binary signals. Further-
more, we attach vibrating micro-motors on human hands and 
find an optimal vibration level that enhances the sensitivity of 
hand movements. Since noise is inevitable in sensors or neu-
rons, some interesting structures can be devised by exploiting 
noise in nonlinear sensors.
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