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any sensors exhibit nonlinear characteristics
[1]-[5] and are deployed in noisy environments

M

standards, this is a challenging area. However, it also presents

[1]-[7]. In terms of device design and forming

opportunities for non-conventional signal processing meth-
ods based on stochastic resonance that have been shown to be
of benefit for individual nonlinear sensors [1]-[7], sensor ar-
rays [3]-[10], sensor networks [3], [8], [11], and even portable
devices for people with reduced sensory capacity [12]-[14].
The most fascinating property of stochastic resonance is that
nonlinear sensors connected in parallel or in a network yield
improved performance over that achieved by using individual
sensors [1]-[10]. Studies in stochastic resonance have led to ev-
idence of noise-enhanced signal transmission and processing
in nonlinear sensors, and noise can be exploited in the design
of engineered devices [2]-[7], [10] and biological systems [1],
[11]-[13]. This paper studies noise-enhanced signal transmis-
sion and processing in nonlinear sensors and also exploits the
positive role of noise in the design of engineered devices that
enhance the sensitivity of hand movements.

From a Single

sensor array. We here encounter a dilemma: the type of noise
&(n) may have a large deviation, and the available sensors are
not necessarily optimized to the noise, while the optimal sen-
sors derived by the Neyman-Pearson criterion or the criterion
of minimum probability of error may be out of reach as either
too complex or too costly. An interesting option is to artificially
add noise components 7,(1) into an array of non-ideal sensors,
delivering the signals y..(1) (m =1,2,...,M)) to deal with this di-
lemma, as shown in Fig. 1.

The information-carrying digits 0 and 1 are modulated as
the pulse-amplitude modulation waveforms so(1n) = -A and
s1(n) = +A with equal probabilities, respectively. Assume the
environmental noise &(n) is Gaussian distributed with zero
mean and standard deviation o, and the sensors are binary
quantizers with input-output characteristics:

v, (n) _ {1, x(n)+77m (n) >,

0, x(n)+77m (n) <7,
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Fig. 1. A schematic diagram of binary signal transmission in a sensor array.
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Fig. 2. Probabilities of error versus: (a) the added noise level in binary quantizer arrays of size M, and (b) the input SNR for the matched detector and the

quantizer array.

and the threshold y[1]-[3]. Under this circumstance, the sensor
input x(n) + n.(n) will excite the quantizer with the probabil-
ity pi = Prob(y. = 1) = 1 — Fy - s;), where F, is the cumulative
distribution of the noise &. For a sufficiently large number M,
the sum y= iy of outputs of m quantizers asymptotically tends
to a Gaussian distribution with mean y; = Mpi and variance
o’ =Mp, (1 - pi) [3]. Then, the decision threshold Ais chosen as
two Gaussian distributions that are equal, i.e.,
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The decoded binary digits 0 and 1 are then obtained from
y <Aandy > 4, respectively. Compared with the digital source,
the probability of error P. is obtained. In Fig. 2a, for the input
signal-to-noise ratio (SNR) 10log(A/o;) = 1.46 dB, P. is plot-
ted versus the added noise level o, of Gaussian noise 1,, for
a different number of M sensors. As the added noise level o,
increases, P, first decreases, and then reaches a minimum at
an optimal level o,, and finally increases for very large noise
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levels o,. Moreover, as the number of quantizers M increases,
the minimum of P. can gradually decrease. This is the stochas-
tic resonance effect in quantizer arrays.

Interestingly, for a large number of M sensors (e.g., M =10%),
the minimum P, manifests over a wide range of added noise
level of o, € [0.8,10]. This robust feature facilitates the incor-
poration of the added noise into the signal detection without
finding the optimal noise level. For a technological applica-
tion, for instance, a long-span bridge may need thousands of
sensors for continuous monitoring of its structural state, and
those sensors also endure strong ambient noise that stems
from wind or car tires. An experimental investigation has been
carried out with a low-grade iPhone accelerometer to extract
the first four fundamental frequencies of a highway bridge
[7]. A parallel array of such sensors distributed over a long-
span bridge could possibly benefit from the ambient noise for
detecting structural conditions of the bridge. Another techno-
logical application is the addition of noise to the image sensor
unit of 10 x 10 photodetectors that can widen the response re-
gion and let the system respond to strong light [10]. Similar
exploitation of the background noise is potentially accessible
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Fig. 3. Binary signal transmission in a discrete Hopfield network with M= 3 neurons.

for data processing from large numbers of low-cost sensors in
sensor-swarm or sensor-cloud applications.

For detecting a known signal in additive white Gaussian
noise, the optimal detector rests on a linear test statistic known
as the matched filter or correlation receiver [1], [3], [9]. This lin-
earity entails simplicity for both practical implementation and
theoretical analysis, and as a result, the matched filter is very often
exploited for detection, even when it s, strictly, no longer optimal
for detecting known signals in non-Gaussian noise. For these rea-
sons, the matched filter represents a meaningful reference that we
shall use for comparison with our quantizer arrays. For detecting
the binary pulse-amplitude modulated waveforms si(17) = A in
the noisy input x(17) over a time interval no<n <ny+ N (Nis anin-
teger), the matched filter utilizes the test statistic:

sl(n)x(n)ZO 3)

to accept the hypothesis s:(n) = +A (digit 1), and otherwise
so(n) = —A (digit 0) with the decision threshold of zero. The
probability of error of matched filter [1], [3], [9] can be com-
puted as:

+oo 1 t2
p= | —,_exp(——]dt. )
NA?/o% 2z 2

Forinstance, ata fixed added noise level o,/ y=1and for the
quantizer array size M = 10°, the probability of error P, is plot-
ted as a function of input SNRs in Fig. 2b. For comparison, the
probability of error P, of the matched filter in (4) is also plotted
for N = 1. For low input SNRs, the noise-enhanced quantizer
array performs as well as the matched filter.

From Parallel Array of Sensors to
Hopfield Networks

Recent results provide insight into the noise benefit to the
functional organization of complex neural or communication
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networks [8]-[11]. To illustrate the behavior of a Hopfield net-
work for transmitting binary signals, an architectural graph of
M =3 neurons is shown in Fig. 3. The discrete Hopfield neural
network has two M-dimensional fundamental memory vec-
tors o (k= 0,1). The binary digits 0 and 1 map onto vectors o
and ¢, respectively. The modulated amplitude is A and the
bit duration is Ts. Then, the modulated vectors Aa(n) are cor-
rupted by the background noise vector &(n), yielding the input
vector of the network as:

S’“(n)zAa’“(n)+§(n). 5)

Each element S* (n) is fed into the m-th neuron with its ac-

m

tivity function ¢ and output:

M

xm(n+1)=(/{ wimxm(n)+5,’; (n)+77m(n)], 6)

i=1

where the synaptic weight from neuron i to neuron m is wi, and
the added noise components are 7,,(11). We can combine these
synaptic weights wi, as the M-by-M matrix form:

w :%g}a’( (a’()T 7)

according to Hebb’s rule of the outer product [11]. At sampling
times 7, the outputs x,(1) comprise the network output state
vector X(n), as shown in Fig. 3. We define the potential energy
function as:

w, X, (n) +Aa), (n)}dxm, 8

E(n):%X'(n)WX(n)—miI(z{

M
i=1

which has one global minimum but multiple possible local
minima at stable vectors X = o(WX + Ac*). For a not too short
bit duration T, we expect that the state vector X(T:) converges
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Fig. 4. Probability of error P, versus added noise level o, for Hopfield
networks with M neurons.

to the designed stable vector X that are very close to but not
simply identical to the stored memory vector . Then, at sam-
pling times n = jT, for j = 1,2,..., we compute the scalar inner
products X"(jTy) o' = X"(jT,) e to decode the network output
as the digit 1 and otherwise the digit 0, where X"(jT:) " is also
called the overlap between X(jT;) and o,

When comparing the decoded digits with the original dig-
its, the probability of error P. is plotted as a function of added
noise level o, for different numbers of neurons in the Hopfield
network, as shown in Fig. 4. Due to the weak amplitude of the
vector Ao/(n), the state vector X(n), assistance from the noise,
switches correctly to follow the variability of the binary infor-
mation carried in each of the successive time intervals Ts. As a
result, a high probability of detection error P, ensues, which is
gradually reduced as the noise level ¢, rises above zero, with a
more pronounced improvement for larger array sizes M, and
with an optimal non-zero amount of noise maximizing the
benefit. Here, the modulated amplitude A/ o, =1, the bit dura-
tion T, = 3 and the activity functions ¢(-) = tanh[f(-)] with the

Table 1 -Vibration levels of micro-motors

versus driving voltages

Voltages (V) 0 0.6 1.4 1.8 2.2 29
Levels 0 1 2 B 4 5

slope parameters f = 1.2. Both background noise &(n1) and the
added noise n.(n) are Gaussian distributed. As the number
of neurons M increases, the probability of error P. gradually
drops to a valley, reaches the valley bottom at an optimal inter-
val noise level ¢,, and finally climbs out of the valley for large
noise levels o,. The noise benefit to the binary signal transmis-
sion is also evident in the Hopfield network. We emphasize
that the noise-induced effect in Hopfield networks occurs in
a multi-dimensional vector space {¢/}, which greatly extends
two unidimensional states of quantizers in sensor arrays. Atan
optimal noise level o,, the network state vector X(n), assisted
by internal noise, will capture the variability of input binary
modulated vectors more correctly. It can be noted that infor-
mation is carried here in the instant values of the input signal
visiting the two patterns ¢f and ¢ but not in the memory con-
tained in the temporal sequencing of these values. In addition,
the binary signal transmission scheme can be extended to the
M-ary signal case, wherein the multiple stored patterns o rep-
resent M-ary digits.

From Neural Networks to Human Hand
Balance

Noise or vibration plays a positive role not only in the detect-
ability of the sensor arrays and networks [1]-[10], but also in
the sensitivity of medical and biological systems [11]-[14]. Me-
chanical and electrical noise has been shown as beneficial to
human sensory systems [11]-[14].

High-frequency sinusoidal interference can be viewed as a
special kind of noise [9], [14]. This inspires us to exploit the ef-
fects of mechanical vibration of micro-motors on the balance
control of human hands, as illustrated in Fig. 5. The reason
is that the cutaneous mechanoreceptors reach a perception

Fig. 5. (a) A subject grasping a laser pointer to draw a line on the whiteboard; (b) Opisthenar of the subject stimulated by micro-motors (8 mm diameter and

3.5mm thickness).

February 2020

IEEE Instrumentation & Measurement Magazine 47



and define the correlation

1.2 T T T T T T 10 — T T T T T
9l i
115+ 1
N 8 i 1
O —_
= [}
o | | c 7t J
g5 <
> L 4
8¢ o
T O L i = L 4
s 1.05 = 5
T O 9o
g £ T 4f :
22 1 £
- 37
%)
2 L 4
0.95 1
1 L
0
0 1 2 8 4 o) 0 1 2 8 4 ©
Vibration levels Vibration levels
(a) (b)

time 7= noAt as:

R(7)<0.05R(0) (10)
with the sampling time
At = 0.04s. As indicated
in Fig. 6b, at the vibration
levels 2-3, the correlation
time 7is much higher than
that obtained by other lev-
] els, which indicates more
coherence of hand move-
ments in the interval of
g correlation time 7. These re-

sults imply that vibration
has the potential for hand
balance control and might
provide a noninvasive

method for the sensitivity

Fig. 6. (a) Sway standard deviations and (b) correlation times of the trajectories of the laser pointer versus vibration levels

of micro-motors.

threshold, and that situation mimics the McCulloch-Pitts
neuron model to the central nervous system for information
processing. Each motor is driven by the microcontroller STM-
32F103ZET6[14], and several micro-motors, tied by nonwoven
fabric, are applied on the cutaneous mechanoreceptors of the
opisthenar. The integrated development environment is KEIL-
MDK ver. 5.0, and the micro-motors, of reference CO834B002F,
has a rated speed 9000 ~ 15000 rad /min and a rated current
100 mA. The microcontroller has 4 channel outputs of the
pulse width modulation to control the electric voltage of mi-
cro-motors [14]. Vibration interference amplitudes that are
proportional to the driving voltage are listed in Table 1. For in-
stance, the zero level implies no driving voltage, and level 1 is
at the perception threshold. Wearing vibration micro-motors
operated at different levels, subjects draw a line on the white-
board, which is recorded and processed by the Video-Capture
class of the OpenCV software at the rate 25 (fps) of frame cap-
ture. At sampling times nAt forn=0,1,2,..., therecoded images
provide the trajectory ordinates by the Simple-Blob detector,
yielding the sequence of the trajectory x(n). Each trial takes 20-
30 s, during which the upper arm of the subject does not rest
on the body [14].

After 30 trials for six subjects, the average sway standard
deviation at each vibration level is illustrated in Fig. 6a. The
sway standard deviation of the laser pointer within the sub-
ject’s hand is smallest at the vibration level 2. In order to
measure the relation between different times, we also approx-
imately compute the autocorrelation function of the trajectory
x(n) of the laser pointer as:

R(n) =< :x(n)x(n+m), ©)
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improvement of the human
hand for daily living tasks.

Summary

In this article, the constructive role of noise in sensors is pre-
sented. From an individual sensor to an array of sensors, it is
found that the noise benefits get enhanced as the array size in-
creases. Moreover, for a representative Hopfield network, the
switch between multi-dimensional state vectors can be as-
sisted by a suitable amount of neuronal noise, yielding lower
error-probability transmission for binary signals. Further-
more, we attach vibrating micro-motors on human hands and
find an optimal vibration level that enhances the sensitivity of
hand movements. Since noise is inevitable in sensors or neu-
rons, some interesting structures can be devised by exploiting
noise in nonlinear sensors.
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