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Abstract—A multichannel thin-film sensor is implemented from
a set of microstrip-coupled split-ring resonators (SRRs) with dif-
ferent dimensions. Each SRR exhibits a unique high-Q resonance
that is sensitive to the presence of a sample in a particular area.
Hence, this SRR-based sensor can function (i) to detect different
samples simultaneously to increase the throughput or (ii) to char-
acterise nominally identical samples at multiple frequencies to in-
crease the sensor selectivity. In addition, the sensitivity of this SRR-
based sensor is optimized through strategic design of the resonator
shape to produce a strong confined electric field at each sensing re-
gion. The design principle is validated with simulation and mea-
surement. Owing to the optimized design, sensing a low-permit-
tivity film with a thickness as small as one thousandth of the oper-
ating wavelength is achievable.

Index Terms—Metamaterial, multichannel sensors, split-ring
resonator.

I. INTRODUCTION

PLIT-RING RESONATORs (SRRs) are among many fun-
S damental building blocks for metamaterials that can col-
lectively provide customizable values of the permittivity and/or
permeability. A SRR is typically made of one or two concentric
subwavelength metallic rings (namely single or double SRR, re-
spectively) with a narrow split in each ring [1]. In response to
electromagnetic excitation, it exhibits a strong magnetic reso-
nance whose frequency is determined by its dimensions, geom-
etry, and constituent materials. On resonance, the ring develops
an intense and localised electric field at the narrow split. The
sensitivity of the resonance frequency to constituent materials,
together with the field localization, subwavelength ring size, and
high-Q resonance, makes SRRs ideal for thin-film sensing.
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Owing to these properties, SRRs have recently been imple-
mented for biosensors in different configurations. Planar arrays
of SRRs were employed for thin-film sensing [2]-[8]. However,
those sensors require a relatively large amount of the sample
to uniformly cover an array with tens to hundreds of SRRs
during the measurement. The constraints of the sample size and
uniformity can be eliminated by using either microstrip-cou-
pled SRRs [9]-[11] or waveguide-loaded SRRs [12]. Although
both microstrip and waveguide arrangements can be used for
thin-film sensing, electromagnetic coupling is much stronger in
the former case, resulting in its higher immunity against noise.

For the microstrip-coupling configuration, an SRR is posi-
tioned in a close proximity to a microstrip transmission line,
which builds up a magnetic field around itself in a quasi-TEM
wave propagation. This oscillating magnetic field induces circu-
lating current in the SRR loop. In the quasi-static limit, an SRR
can be approximated by an inductor and a capacitor in the form
of a series LC resonant circuit. Specifically, the ring forms the
inductor, and the split forms the capacitor. The resonance takes
place in the SRR when the electric energy stored in the capac-
itor is balanced with the magnetic energy stored in the inductor.
Loading a sample onto the SRR surface alters the total capaci-
tance of the structure and hence results in a detectable change
in the resonance frequency.

This article presents a thin-film sensor based on microstrip-
coupled SRRs. Two significant improvements over previous de-
signs are reported. First, the proposed sensor can detect the pres-
ence of multiple samples simultaneously. This function can be
beneficial when a considerable number of samples have to be
tested. Furthermore, since the sensor can characterize a nom-
inally identical sample at multiple frequencies, the selectivity
can be expected in sensing dispersive materials. The other im-
provement involves the sensitivity of the sensor. By creating a
strong and localized field enhancement in the sensing region, a
high sensitivity can be achieved.

II. DESIGN AND FABRICATION

In earlier designs, several double SRRs [9]-[11] or a single
SRR with two splits [12] have been used for thin-film sensing.
In such structures, several distributed capacitors collectively de-
termine the resonance frequency, and a considerable amount of
sample is required to alter the electrical properties all of these
capacitors. If the sample partially covers the structure, the unaf-
fected capacitors reduce the sensitivity in the sensing region as
the capacitive change is then not as pronounced. In the present
design, each resonance is caused by a single SRR with only
one split, as shown in Fig. 1(a), and consequently, only one
distributed capacitor is present. A change in this capacitor by
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Fig. 1 (a) Diagram (not to scale) for each SRR, placed alongside a microstrip
line, in the multichannel sensor. The sensing area is indicated by the red dotted
circle. (b) Fabricated four-channel sensor containing four SRRs.

sample loading in the small split region has a direct and large
impact on the resonance frequency.

Fig. 1(a) also depicts some other important features of the
implemented resonators. Each SRR has a rectangular shape to
maximize coupling to the microstrip transmission line. This
leads to a stronger resonance that is robust to measurement
uncertainties. At each SRR split, sharp tips are adopted to
concentrate the electric field to a small spot [12]. In terms of
a series LC circuit, the tapered shape of the tips decreases
the capacitance at the split, and hence increases the resonance
Q-factor.

In order to perform multichannel sensing, several optimized
SRRs with different sizes are placed along a microstrip line.
Thus, the sensor exhibits multiple resonances, each of which
represents a single channel governed by an individual SRR.
Each resonance is sensitive to the presence of a sample de-
posited at the narrow split of the corresponding SRR. Since
every resonator possesses a high-Q resonance at a unique fre-
quency, mutual interaction among the resonators is minimal.
Therefore, several SRRs can be placed densely without com-
promising the performance.

Fig. 1(b) shows the proposed sensor fabricated by using stan-
dard photolithography and chemical etching. This particular
four-channel sensor is realized from four different SRRs posi-
tioned along a 50-C) microstrip line. All of the resonators share
the same dimensions excepting the width, w, that equals 8, 6,
4.5, and 3 mm for R1, R2, R3, and R4, respectively. This causes
a difference in the loop inductance and hence in the resonance
frequency among the SRRs. The other dimensions common
to all of the SRRs are as follows: [ = 7 mm, ¢ = 0.15 mm,
d = 0.525 mm, r = 0.2 mm, ¢ = 0.65 mm, s = 2 mm, and
t = 1.7 mm. The metal for the SRRs, microstrip, and ground
plane is copper with a thickness of 35 um, coated with gold to
prevent oxidization. The substrate is an RT/duroid 6010.2LM
high-frequency laminate (ceramic-PTFE composite) with a
thickness of 1.90 mm, a relative permittivity of 10.2, and a loss
tangent of 0.0023. This sensor specification yields four high-Q
resonances in the microwave S band.

III. EXPERIMENT AND RESULTS

A. Sensor Characteristics

During the experiment, the sensor is connected to a vector
network analyzer, Agilent Technologies N5230A, and the
transmission parameter S is registered at room temperature
in the range between 1.5-3.5 GHz with a resolution of 3 MHz.
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Fig. 2. Transmission profiles from simulation and experiment with no sample
loading. Each resonance, i.e., channel, corresponds to an individual SRR. The
indicated resonance frequencies are extracted from the experimental results.

The numerical simulation is carried out with a commercial
full-wave electromagnetic solver, CST Microwave Studio,
based on the Finite-Integration Technique (FIT). The gap size g
in each ring resonator is retrospectively slightly adjusted in the
simulation to reflect the fabrication imperfections, as observed
under a microscope.

The measured and simulated transmission profiles of the
sensor without any sample are shown in Fig. 2 with small
discrepancies caused by fabrication tolerances and limits in
simulation accuracy. The results show four non-overlapping
resonances corresponding to the four distinct SRRs. The lowest
resonance frj is associated with R1, which has the largest
inductance, the second lowest resonance frs with R2, and so
on. No change in the resonances is observed during 5 hours of
measurement, demonstrating the thermal stability of the sensor.

Further insight can be obtained from the simulation, as shown
in Fig. 3, where the electric-field distribution on the sensor sur-
face is calculated for every channel. At each resonance fre-
quency, only the relevant SRR establishes a strong and highly
confined electric field around the capacitive split, and no field
enhancement is observed elsewhere. The field enhancement in
any active ring is as high as 380 kV/m, given the input power
of only 1 W. These calculated field distributions confirm the ex-
treme field confinement achieved with the implemented SRRs,
which is a basis for high-performance sensing.

B. Multichannel sensing

In the next experiment, ethanol is used as a sample under test
by the multichannel sensor. At 3 GHz, ethanol has a relative per-
mittivity and loss tangent of 6.0 and 0.96, respectively [13]. In
each measurement, 5 pL of ethanol is dropped by using a high-
precision pipette onto the split of a selected SRR channel, and
the sensor’s response is observed. The transmission results are
shown in Fig. 4. The observed resonance shifting and damping
indicate the presence of the sample in the selected channel. By
comparing the resonance frequencies of the loaded sensor in
Fig. 4 with the reference values in Fig. 2, it is clear that non-ac-
tive SRR channels show no detectable change in the resonance
frequency. Hence, it is clear that the four sensing channels can
operate independently.

Each SRR can be approximated by a series LC circuit with
a resonance frequency fo = 1/(2rv/LC), where L denotes
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Fig. 3. Simulated electrical-field amplitude distribution on the sensor surface
at four resonance frequencies. The peak input power supplied to the sensor is
1 W. The color scale is linear.
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Fig. 4. Transmission profiles for unloaded (dotted lines) and loaded (solid
lines) SRRs. Each subfigure represents a comparison of sample loading at an
individual SRR channel. The specified numbers are the resonance frequencies
in GHz of the loaded sensor, and the italization indicates shifted resonances.

the ring inductance and C' denotes the split capacitance. The
sensitivity of the resonance frequency to the split capacitance
can be expressed as [14]

fo_ C0f _ s

S5 = 790 0.5. (1)
It can be deduced from this equation that if the relative change
in the capacitance formed by the split, AC/C, is constant, the
relative change in the resonance frequency, A f/ fo, is fixed, re-
gardless of the ring inductance. Nonetheless, the relative change
in the resonance frequency for the active channel varies between
—4.6% and —6.1% among the four channels, despite a fixed
volume of sample. This small variation is presumably caused by
manual sample deposition, which results in a slight difference in
the sample location. This uncertainty can be readily overcome
via an automated process.

The sample volume used in the experiment is considerably
small. Nevertheless, additional simulations suggest that only
one nanolitre of ethanol, i.e., a 0.1-mm cube, is unambiguously
detectable with a frequency shift of 15 MHz. In other words, the
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ratio between the operating wavelength and the film thickness
can be as large as three orders of magnitude.

IV. CONCLUSION AND FUTURE WORK

In conclusion, this article presents a thin-film sensor with a
series of optimized SRRs as sensing elements. The fabricated
sensor successfully performs multichannel detection with an
enhanced sensitivity. Scaling down the structure to operate at
higher frequencies further reduces the minimum amount of de-
tectable sample. More channels can be added to the sensor pro-
vided that resulting resonances are sparse enough to avoid mu-
tual coupling. The resonance of each channel can be positioned
at an abritary frequency where unique dielectric features of the
sample are expected. The realization can be used for on-site dis-
posable sensors, which allow sensing with either high selectivity
or high throughput.
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