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Abstract
In game theory, a popular model of a struggle for survival among three
competing agents is a truel, or three-person generalization of a duel.
Adopting the ideas recently developed in quantum game theory, we present
a quantum scheme for the problems of duels and truels. In the classical case,
the outcome is sensitive to the precise rules under which the truel is
performed and can be counterintuitive. These aspects carry over into our
quantum scheme, but interference amongst the players’ strategies can arise,
leading to game equilibria different from the classical case.

Keywords: quantum game theory, decoherence, quantum information,
quantum control, duels, n-uels

1. Introduction

The study of quantum games is motivated by a desire to
understand the nature of quantum information [1] and the
possibility that it may lead to new or improved algorithms
for quantum computers [2]. Also, in the field of quantum
communication, optimal quantum eavesdropping can be
treated as a strategic game with the goal of extracting maximal
information [3]. A truel, and its n-player generalization the
n-uel, may be used to model such a multiplayer struggle. We
present a quantum scheme with strong analogies to this classic
game-theoretic problem.

Quantum game theory is an exciting new area that
models the interactions of agents that are able to utilize
quantum strategies, that is, have the ability to make quantum
manipulations. The study was initiated by Meyer [4] who
showed that a quantum player could always beat a classical one
in the simple game of penny flip. A protocol for two player–
two strategy games (2 × 2) with entanglement was developed
by Eisert and co-workers [5–7] and extended to multiplayer
games by Benjamin and Hayden [8]. Many problems have
now been considered by quantum game theory [9–13] and an
experimental realization of quantum prisoners’ dilemma in a
liquid nuclear magnetic resonance machine has been carried
out by Du et al [14]. For further references and a review of early
work in quantum game theory see Flitney and Abbott [15].

In quantum games, a binary choice of move by a player
is encoded by a qubit, with the computational basis states |0〉
and |1〉 corresponding to the classical moves. Players carry

out local unitary operations on their qubit. The coherence of
the system is maintained until all players have completed their
moves. Then a measurement is carried out on the final state and
the payoffs are obtained from the classical payoff matrix. By
entangling the players’ qubits, the protocol developed by Eisert
et al produces results different from those obtainable through
mixed classical strategies. Players can utilize the increased
strategic space available through the use of superpositions,
as well as entanglement between the agents’ actions, to give
effects not seen in classical game theory including new game
equilibria.

2. Classical truel

In the classic Wild Western duel, two gunfighters shoot it out
and the winner is the one left standing. This situation presents
few game theoretic difficulties for the participants: shoot
first and calculate the odds later is always the best strategy!
When this situation is generalized to three or more players the
situation is more complex and an intelligent use of strategy can
be beneficial. For example, Alice, Bob and Charles decide to
settle their difference with a shoot out, firing sequentially in
alphabetic order. Consider the case where Alice has a one-
third chance of hitting, Bob two-thirds, and Charles never
misses. Bob and Charles will both target their most dangerous
opponent: each other. Clearly Alice does not want to hit Bob
with her first shot since then she is automatically eliminated
by Charles. Surprisingly, Alice is better off abstaining (or
firing in the air) in the first round. She then gets the first shot
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in the resulting duel, a fact that compensates for her poorer
marksmanship. Precise results for this case are given below.
The paradox of not wanting to fire can been seen most clearly
when all three protagonists are perfect shots. Alice is advised
not to shoot since after she eliminates one of the others she
automatically becomes the target for the third. Unless this is
the last round, Bob prefers not to fire as well for the same
reason. If there is an unlimited number of rounds no one
wants to be the first to eliminate an opponent. The result is
a paradoxical stalemate where all survive.

The rules for truels can vary. Firing can be simultaneous
or sequential in a fixed or random order, firing into the air can
be permitted or not, and the amount of ammunition can be
fixed or unlimited. In the current discussion we shall make the
following assumptions:

• Each player strictly prefers survival over non-survival.
Without loss of generality we assign a utility of one to
a sole survivor and zero to any eliminated players.

• Each player prefers survival with the fewest co-players.
That is, the utility of survival in a pair (u2 ) or in a threesome
(u3) will obey 0 < u3 � u2 � 1.

• Alice, Bob and Charles have marksmanship (probability
of hitting their chosen target) of ā = 1−a, b̄ = 1−b, c̄ =
1 − c, respectively, independent of their target and with
0 � a, b, c < 1. There is no probability of hitting a target
other than the one chosen.

• The players get no information on the others’ strategies
apart from knowing who has been hit, and in the quantum
model, not even that.

• Players fire sequentially in alphabetic order with firing
into the air permitted.

An analysis of classical truel is provided by Kilgour for
the sequential [16] and the simultaneous case [17]. A non-
technical discussion is provided by Kilgour and Brams [18].
To get a flavour of some of Kilgour’s results we shall consider
the case where the poorest shot fires first and the best last
(ā < b̄ < c̄) and ammunition is unlimited. First the
expectation value of Alice’s payoff in a duel between Alice
and Bob, with each having m bullets, is calculated:

〈$A〉m = 1 − a + ab〈$A〉m−1. (1)

When m → ∞, 〈$A〉m = 〈$A〉m−1, hence

〈$A〉∞ = 1 − a

1 − ab
. (2)

Note that 〈$B〉 = 1 − 〈$A〉. Using this result, the expectation
values for each player in a truel can be computed.

There are three important strategic mixes to consider
depending on Alice’s strategy. Whatever Alice does, Bob is
advised to shoot at Charles since he is the one that Bob least
wants to fight in a duel, and Charles, if he survives, similarly
does best by shooting back at Bob. If Alice fires in the air on
her first shot (or whenever both other players are alive) Alice
is the sole survivor with probability

PA0 = 1 − a

1 − bc

[
1 − b

1 − ab
+

b(1 − c)

1 − ac

]
. (3)

If Alice shoots at Bob or Charles (when she has a choice) her
resulting odds of survival are

PAB = 1 − a

1 − abc

[
a(1 − b)

1 − ab
+

c(1 − a) + ab(1 − c)

1 − ac

]
,

PAC = 1 − a

1 − abc

[
a(1 − b) + b(1 − a)

1 − ab
+

ab(1 − c)

1 − ac

]
,

(4)

respectively. From the fact that b > c it follows that PAC >

PAB so Alice never fires at Bob while Charles is still alive.
To make this example concrete, consider the case mentioned
above: a = 2/3, b = 1/3 and c = 0. Then PA0 = 25/63
which is better than PAC = 59/189 and PAB = 50/189,
meaning that Alice is advised to begin by shooting in the air and
then to shoot at whoever is left standing after the first round.
Surprising, even though Alice is the worst shot, this strategy
will give her a better than one third probability of survival. Her
advantage comes from the fact that she is not targeted until there
is only a pair of players left and she gets the first shot in the
resulting duel. In contrast, Charles has only a 2/9 chance of
emerging as the sole survivor even though he is a perfect shot!
He has the disadvantage of shooting last and being the one that
the others most want to eliminate. The results can be sensitive
to a minor adjustment of the rules. For example, if the number
of rounds is fixed, at some stage Alice may be better served by
helping Bob to eliminate Charles, particularly if Bob is a poor
marksman, even at the risk of not getting the first shot in a duel
with Bob. However, the paradoxical disadvantage of being the
best shot and the advantage of being the poorest are common
to many truels.

3. Quantum duels and truels

3.1. A quantum protocol

Although the protocol for 2 × 2 quantum games has become
quite well established, the quantization of a more complex
game situation is not unique1. We propose the following model
of a quantum truel. Each player has a qubit designating their
state, with the basis states |0〉 and |1〉 representing ‘dead’ and
‘alive’, respectively. The combined state of the players is

|ψ〉 = |a〉 ⊗ |b〉 ⊗ |c〉 = |abc〉, (5)

with the initial state being |ψi〉 = |111〉. In a quantum duel,
the third qubit is omitted. In a classical truel the players are
located separately. However, in the quantum case the qubits
representing the states of the players need to be in the one
location so that operations can be carried out on the combined
state. We envisage, for example, a referee applying operators
with the prior instruction of the players. The analogue of firing
at an opponent will be the attempt to flip the opponent’s qubit
using a unitary operator acting on |ψ〉. In a duel between Alice
and Bob, the action of Alice ‘firing’ at Bob with a probability of
success of ā = sin2(θ/2) can be represented, with maximum
generality, by the operator

ÂB = [
e−iα cos(θ/2)|11〉 + ieiβ sin(θ/2)|10〉] 〈11|

+
[
eiα cos(θ/2)|10〉 + ie−iβ sin(θ/2)|11〉] 〈10|

+ |00〉〈00| + |01〉〈01|, (6)
1 For example, there are three quite different quantizations of the game show
situation known as the Monty Hall problem [19–21] where a contestant has to
guess behind which of three doors a prize lies.
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Figure 1. Diagram representing the operation of Alice ‘firing’ at
Bob in a quantum truel. The solid lines indicate the flow of
information (qubits) and ⊗ is a logical NOT operation that is only
applied if the control qubit (filled circle) is |1〉.

where θ ∈ [0, π] is fixed and α, β ∈ [−π, π] are arbitrary
phase factors. The last two terms of (6) result from the fact
that Alice can do nothing if her qubit is in the |0〉 state. The
operator for Bob ‘firing’ at Alice, B̂A, is obtained by reversing
the roles of the first and second qubits in (6). For a truel,
similar expressions can be obtained with the third qubit being
a spectator. For example,

ÂB =
∑

j

{[
e−iα cos(θ/2)|11 j 〉 + ieiβ sin(θ/2)|10 j 〉]〈11 j |

+
[
eiα cos(θ/2)|10 j 〉 + ie−iβ sin(θ/2)|11 j 〉]〈10 j |}

+
∑

jk

|0 j k〉〈0 j k| (7)

is the operation of Alice ‘firing’ at Bob. That is, Alice carries
out a control-rotation of Bob’s qubit with her qubit being
the control (see figure 1). Firing into the air is represented
by the identity operator. For α, β and θ we shall use the
subscripts 1, 2 and 3 to refer to Alice, Bob and Charles,
respectively. The operators given flip between the basis states
|0〉 and |1〉 but do not invert a general superposition. A general
complementing operation in quantum mechanics cannot be
achieved unitarily [22–24]. The truel shall be of a fixed number
of rounds with the coherence of the state being maintained until
a measurement is taken on the final state. Partial decoherence
at each step, where the players obtain some information about
the state of the system, is a possible extension of our scheme.
Expectation values for the payoffs to Alice, Bob and Charles
are, respectively,

〈$A〉 = |〈100|ψ f 〉|2 + u2(|〈110|ψ f 〉|2

+ |〈101|ψ f 〉|2) + u3|〈111|ψ f 〉|2,
〈$B〉 = |〈010|ψ f 〉|2 + u2(|〈110|ψ f 〉|2

+ |〈011|ψ f 〉|2) + u3|〈111|ψ f 〉|2,
〈$C〉 = |〈001|ψ f 〉|2 + u2(|〈101|ψ f 〉|2

+ |〈011|ψ f 〉|2) + u3|〈111|ψ f 〉|2.

(8)

In what follows, we shall take the utility of surviving in a pair
to be u2 = 1/2 and the utility of surviving in a trio to be
u3 = 1/3, so that the combined payoff of any outcome is one.
We shall talk of a player being eliminated after a certain number
of rounds if there is a probability of one of their qubits being
in the |0〉 state. As distinct from the classical case, however,
the qubit may subsequently be flipped back to |1〉, so in fact
the player has not been removed from the game. To play a
quantum duel or truel, the players list the operators they are
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Figure 2. The expectation value of Alice’s payoff in a two-shot
quantum duel with Bob, as a function of α1 and α2, when the
probability of Alice and Bob missing are a = 2/3 and b = 1/2,
respectively. The values of β1 and β2 have no effect. The αi and βi

are the phase factors from the operator in (6) with the subscript 1
referring to Alice and 2 to Bob.

going to use in each round before the game begins. In the
classical case we made the assumption that the players have
no information about the others’ strategies except to know who
has been hit. In the quantum case, since a measurement is not
taken until the completion of the final round, the players do
not even have this information. Thus deciding on the set of
operators to use at the start of the game is no loss of generality.

3.2. Quantum duels

Consider a quantum duel between Alice and Bob. After m
rounds the state of the system will be

|ψm〉 = (B̂A ÂB)
m |11〉. (9)

After a single round it is easy to see that a measurement taken at
this stage will not give results any different from the classical
duel with a = cos2(θ1/2) and b = cos2(θ2/2). After two
rounds we can begin to see some interference effects:

|〈01|ψ2〉|2 = (1 − b)
[
ab(1 + a) + (1 − a)2

+ 2ab
√

a cos(α1 + 2α2)− 2a(1 − a)
√

b cos(2α1 + α2)

− 2(1 − a)
√

ab cos(α1 − α2)
]
,

|〈10|ψ2〉|2 = a(1 − a)(1 + b + 2
√

b cos(2α1 + α2)),

|〈11|ψ2〉|2 = 1 − |〈01|ψ2〉|2 − |〈10|ψ2〉|2.

(10)

The last line is a result of the fact that there is no possibility of
the |00〉 state. The expectation value for Alice’s payoff can be
written as

〈$A〉 = 1
2 (1 + |〈10|ψ2〉|2 − |〈01|ψ2〉|2), (11)

with Bob receiving 1 − 〈$A〉. The value of a and b will
determine which of the cosine terms Alice (or Bob) wishes
to maximize. For example, with a = 2/3 and b = 1/2
Alice’s payoff is maximized for α1 = ±π/3, α2 = ∓2π/3
or α1 = ±π, α2 = 0 while Bob’s is maximized for α1 =
0, α2 = ±π or α1 = ±2π/3, α2 = ∓π/3 (see figure 2).
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Figure 3. The curve shows the expectation value of Alice’s payoff
in a repeated quantum duel with a = 2/3, b = 1/2 and αi = βi = 0.
The vertical lines indicate the range of possible payoffs over all
values of α1 and α2. The values of β1 and β2 have no effect. For
comparison, a classical duel with the same marksmanship gives
Alice and Bob equal chances (i.e., Alice’s payoff is 1/2).

If the players have discretion over the phase factors, a maximin
strategy for the two round duel is for the players to select
α1 = α2 = ±π/3 in which case the game is balanced. The
situation for longer duels is more complex. A classical duel
with a = 2/3 and b = 1/2 gives each player a one third
chance of eliminating their opponent in the first round, with
a one-third chance of mutual survival from which the process
repeats itself. Hence the duel is fair, irrespective of the number
of rounds, Alice’s opportunity to fire first compensating for her
poorer marksmanship. Figure 3 indicates Alice’s payoff for the
quantum case as a function of the number of rounds. The result
is affected by the values of α1 and α2 but not by β1 and β2.

The fact that a measurement is not taken until the
completion of the game and that the operators are unitary
(hence reversible) means that a |0〉 state can be unwittingly
flipped back to a |1〉. Thus it may be advantageous for one or
other player not to target their opponent. Consider the situation
where Alice fires in the air on her second shot:

|ψ ′
2〉 = B̂A B̂A ÂB|11〉. (12)

Then
|〈01|ψ ′

2〉|2 = 2ab(1 − b)(1 + sin(2α2)),

|〈10|ψ ′
2〉|2 = 1 − a.

(13)

If a is sufficiently small (i.e., Alice has a high probability
of flipping Bob’s qubit) then she would prefer this result. A
similar effect holds for Bob if b is small. Paradoxically, if Alice
is a poor shot (approximately a > 4/5) and Bob is intermediate
(b ≈ 1/2) Alice should refrain from taking a second shot at
Bob (see figure 4).

3.3. Quantum truels

In contrast to the classical case, players’ decisions are not
contingent on the success or otherwise of previous shots. Since
coherence of the system is maintained until the completion of
the final round, decisions can only be based on the amplitudes
of the various states that the players are able to compute
under different assumptions as to the others’ strategies. The
strategies of the other players may be inferred by reasoning

0
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Figure 4. In a two-shot quantum duel, the improvement in Alice’s
expected payoff as a function of a and b (with α1 = α2 = 0) if she
chooses to fire in the air on her second shot. When the value is
positive Alice does better by adopting this strategy.

that all players are acting in their self-interest. This idea will
guide the following arguments.

In a quantum truel, interference effects may arise in the
first round if two players choose the same target. To make the
calculations tractable we shall set αi = βi = 0; i = 1, 2, 3 and
consider only the case a > b > c. Bob and Charles reason as
in the classical case and target each other. Knowing this, what
should Alice do? If she targets Charles the resulting state after
one round is

|ψ1〉 = (c1c2 − s1s2)(c3|111〉 + s3|101〉) + (c1s2 + c2s1)|110〉,
(14)

where ci ≡ cos(θi/2) and si ≡ sin(θi/2). The probability
that Charles survives the combined attentions of Alice and
Bob is (c1c2 − s1s2)

2, compared to the classical case where
the probability would be ab = (c1c2)

2. There is much
less incentive for Alice to fire in the air since, unlike the
classical case, Bob does not change his strategy (to target Alice)
depending on the results of Alice’s operation. If θ1 and θ2 are
around π/2 then c1c2 ≈ s1s2 and both Alice and Bob will like
the result of (14) since Charles has a high probability of being
eliminated.

For example, consider the case mentioned in section 2
where a = (c1)

2 = 2/3, b = (c2)
2 = 1/3 and c = (c3)

2 = 0.
If both Alice and Bob target Charles, he is eliminated with
certainty in the first round and consequently his strategy is
irrelevant! If there are sufficient rounds, Alice would appear
to be in difficulties in the resulting duel since her marksmanship
is half that of Bob’s. In a repeated quantum duel where
both players continue firing this is indeed the case. However,
quantum effects come to her rescue if Alice fires in the air on
her third shot. The expectation value of her payoff after three
rounds is then improved from 0.448 to 0.761. Indeed, Bob’s
survival chances are diminished to such an extent that he is
advised to fire in the air on the second and subsequent rounds.
We then reach an equilibrium where it is to the disadvantage of
both players to target the other. Alice emerges with the slightly
better prospects (〈$A〉 = 0.554) since she has had two shots to
Bob’s one.
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Now, compare this to the option of Alice firing in the air in
the first round. With Bob and Charles targeting each other and
Charles being a perfect shot, after the first round the amplitude
of states where both survive is zero. Since Bob fired first and
has better then 50% chance of success, the |110〉 state will have
a larger amplitude than the |101〉 state so Alice reasons that it
is better for her to target Bob in the second round. Since only
one of Bob and Charles can have survived the first round they
both target Alice in the second. After two rounds the resulting
state is

|ψ2〉 = 1√
27

(−√
6|001〉 − √

8|010〉 − √
6|100〉

− i|011〉 + i
√

4|110〉 +
√

2|111〉). (15)

Alice calculates (at the beginning of the game) that if she
survives the first two rounds there is a 50% chance she is
the sole survivor. If she now targets one of the others in the
third round she is more likely to flip a |0〉 state to a |1〉 than
the reverse, hence she fires in the air. The argument for Bob
and Charles to do likewise for the same reason is even more
compelling. Hence, even with a large number of rounds, all
players choose to fire in the air after the second round. The
resulting payoffs are 〈$A〉 = 52/162, 〈$B〉 = 67/162 and
〈$C〉 = 43/162. Alice clearly prefers to fire at Charles in
the first round over this strategy. It is rare in a quantum truel
that Alice will opt to fire in the air in the first round. This
is in contrast to the classical situation where this is often the
weakest player’s best strategy.

In situations where one player is not eliminated with
certainty, an equilibrium where all three players prefer to fire
in the air will generally arise. Each player reasons that their
operation would increase the amplitude of the |1〉 state of their
target.

3.4. One- and two-shot truel

To clarify some of the differences between the classical and
quantum truels consider the simple cases of one- and two-
shot truel where Charles is a perfect shot. Where Charles is
indifferent as to the choice of targets he uses a fair coin to
decide on the target. In the quantum case, Charles will use this
method to select his desired operator before any operations are
carried out on |ψi〉. For tractability, αi = βi = 0 is assumed.

In the one-shot case, Charles is Bob’s only threat so Bob
will fire at Charles. Alice may be targeted by Charles so may
wish to help Bob, particularly if he is a poor shot. Because of
interference, this strategy is more likely to be preferred in the
quantum case. The regions of the parameter space (a, b)where
Alice should select one strategy over the other are indicated in
figure 5. The figure is of interest because it illustrates a case
where going from a classical to a quantum regime changes
a linear boundary in the probability parameter space into a
convex one, and such convexity is being intensely studied as it
is the basis of Parrondo’s paradox [25].

The situation is more complex in the two-shot case. When
a > b, in the first round Bob and Charles again target each
other while Alice either fires in the air or at Charles. Since
only one of Bob and Charles survive the first round they both
(if alive) target Alice in the second. In the classical game,
Alice’s target in the second round is determined since she

0.2 0.4 0.6 0.8 1
a

0.2

0.4

0.6

0.8

1

b

classical boundary

quantum
boundary

Figure 5. In a one-shot truel with c = 0, Alice’s preferred strategy
depending on the values of a and b. Alice fires in the air if (a, b) is
below the line (solid curve for the quantum case, dashed line for the
classical case) and at Charles, if above. The curve is the lower half
of a = (1 − 2b)2.
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I
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Figure 6. In a two-shot truel with a > b > c = 0, Alice’s preferred
strategy depending on the values of a and b. Classical: I and II, fire
into the air and then at the survivor of round one; III and IV, fire at
Charles and then at the survivor of round one. Quantum: I, fire into
the air and then at Bob; II, fire at Charles both times; III, fire at
Charles and then at Bob; IV, fire into the air and then at Charles.
The boundary between regions I and III or II and IV is the curved
line in the classical case and the dashed line in the quantum case.

knows whom of Bob or Charles remains. However, in the
quantum case this is unknown and Alice can only base her
decision on maximizing the expectation value of her payoff.
The regions of the parameter space (a, b) where Alice prefers
the different strategies are given in figure 6.

If b > a, Charles will target Alice in the first round since
she is his most dangerous opponent. Likewise, Bob targets
Charles. In the second round, reasoning as above, both Alice
and Charles (if alive) will target Bob. In the classical case
the only strategic choice is whether Alice fires at Charles or
into the air in the first round. In the quantum case Bob has a
decision to make in the second round since he does not know
for certain who was hit in the first. Figure 7 shows the regions
of parameter space corresponding to Alice’s and Bob’s optimal
choices.
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Figure 7. In a two-shot truel with b > a > c = 0, Alice’s and Bob’s
preferred strategies depending on the values of a and b. Classical:
in the first round, Alice fires in the air if b < 1/2 or at Charles if
b > 1/2. Quantum: V, Alice fires into the air in round one and Bob
fires at Charles in round two; VI and VII, Alice fires at Charles in
round one and Bob fires at Alice (VI) or Charles (VII) in round two.

A classical truel where the players do not know which
others have been eliminated may be a fairer comparison to the
quantum situation. This alters the regions corresponding to the
players’ optimal strategies, but there are still differences with
the quantum truel as a result of interference in the latter case.

3.5. Quantum n-uels

A quantum n-uel can be obtained by adding qubits to the state
|ψ〉 in (5):

|ψ〉 = |q1〉 ⊗ |q2〉 ⊗ · · · ⊗ |qn〉, (16)

where |q j 〉 is the qubit of player j . The players’ operators are
the same as (7) except with additional spectator qubits. For
example, the first player firing at the second is carried out by

ÂB =
∑

j3,..., jn

{[
e−iα cos(θ/2)|11 j3 · · · jn〉

+ ieiβ sin(θ/2)|10 j3 · · · jn〉
]〈11 j3 · · · jn|

+
[
eiα cos(θ/2)|10 j3 · · · jn〉

+ ie−iβ sin(θ/2)|11 j3 · · · jn〉
]〈10 j3 · · · jn|

}
+

∑
j2,..., jn

|0 j2 · · · jn〉〈0 j2 · · · jn|, (17)

where the ji take the values 0 or 1.
The features of the quantum n-uel are the same as those of

the quantum truel. Positive and negative interference arising
from multiple players choosing a common target is more likely,
and equilibria where it is to the advantage of all (surviving)
players to shoot into the air still arise.

3.6. Classical-quantum correspondence

In the classical case, players are removed from the game once
hit. Maintaining coherence throughout the quantum game
weakens the analogy with classical truel since players can be
brought back to ‘life’, that is, have their qubit flipped from |0〉
to |1〉. However, there is still a correspondence. During the
game, a player can only fire if their qubit is in the |1〉 state, and

0.2 0.4 0.6 0.8 1
a

0.2

0.4

0.6

0.8

1

b

p=0

p=1/4

p=1/2

p=3/4

p=1

Figure 8. In a one-shot quantum truel with c = 0 and with
decoherence, the boundaries for different values of the decoherence
probability p below which Alice maximizes her expected payoff by
firing into the air and above which by targeting Charles. There is a
smooth transition from the fully quantum case (p = 0) to the
classical one (p = 1).

they receive a zero payoff at the end of the game if their qubit is
in the |0〉 state. The classical-quantum correspondence can be
enhanced by introducing partial decoherence after each move
and allowing the players to choose their strategy dynamically
depending on the result of previous rounds. In this case, the
classical situation is reproduced in the limit of full decoher-
ence. If ρ = |ψ〉〈ψ | is the density operator of the system in
state |ψ〉, one way of effecting partial decoherence is by

ρ → (1 − p)ρ + p diag(ρ), (18)

where 0 � p � 1. This is equivalent to measuring the state of
the system with probability p. When ρ is diagonal, the next
player can select their target based on the measurement results.
Figure 8 shows the regions of the parameter space (a, b) corre-
sponding to Alice’s preferred strategy in a one-shot truel when
Charles is a perfect shot (the situation of figure 5). The bound-
ary between Alice maximizing her expected payoff by firing
into the air and targeting Charles depends on the decoherence
probability p. We then see a smooth transition from quantum
case to the classical one as p goes from zero to one. Deco-
herence in quantum games has been considered in a recent
publication by Chen et al [26].

4. Conclusion

A one-round quantum duel is equivalent to the classical game,
but in longer quantum duels the appearance of phase terms
in the operators can greatly affect the expected payoff to the
players. If players have discretion over the value of their
phase factors a maximin choice can in principle be calculated
provided the number of rounds is fixed. If one player has a
restricted choice the other has a large advantage. The unitary
nature of the operators means that the probability of flipping
a ‘dead’ state to an ‘alive’ state is the same as that for the
reverse, so it can be advantageous for a player to fire in the air
rather than target the opponent, something that is never true in
a classical duel. Indeed, an equilibrium can be reached where
both players forgo targeting their opponent even if there are
further rounds to play.
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In a quantum truel, strategies are not contingent on earlier
results. The players’ entire strategy (the list of players to target
in different rounds) can be mapped out in advance based on
the expected amplitudes of the various states resulting from
different strategic choices by the players. Interference effects
arise where a player is targeted by the other two, and can have
dramatic consequences, either enhancing or diminishing the
probability of survival of the targeted player compared to the
classical case. As with the case of the quantum duel, equilibria
arise where it is to the disadvantage of each player to target one
of the others. Such equilibria arise only in special cases in a
classical truel.

Introducing decoherence after each move changes the
quantum game. As the decoherence probability is increased
from zero to one (full measurement) there is a smooth transition
from the fully quantum game to the classical one.
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