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Abstract
We introduce a multi-coin discrete quantum walk where the amplitude for a
coin flip depends upon previous tosses. Although the corresponding classical
random walk is unbiased, a bias can be introduced into the quantum walk by
varying the history dependence. By mixing the biased walk with an unbiased
one, the direction of the bias can be reversed leading to a new quantum version
of Parrondo’s paradox.

PACS numbers: 03.67.−a, 05.40.Fb, 02.50.Le

1. Introduction

Random walks have long been a powerful tool in mathematics, have a number of applications in
theoretical computer science [1, 2] and form the basis for much computational physics, such as
Monte Carlo simulations. The recent flourish of interest in quantum computation and quantum
information [3, 4] has lead to a number of studies of quantum walks both in continuous [5, 6]
and in discrete time [7–11]. Meyer has shown that a discrete time, discrete space, quantum
walk requires an additional degree of freedom [8], or quantum ‘coin’, and can be modelled by
a quantum lattice gas automaton [12]. Quantum walks reveal a number of startling differences
to their classical counterparts. In particular, diffusion on a line is quadratically faster [13, 14].
Quantum walks show promise as a means of implementing quantum algorithms. Childs et al
[15] prove that a continuous-time quantum walk can find its way across some types of graphs
exponentially faster than any classical random walk, while a discrete-time, coined quantum
walk is able to find a specific item in an unsorted database with a quadratic speedup over the
best classical algorithm [16], a performance equal to Grover’s algorithm. Several methods for
implementing quantum walks have been proposed, including in an ion trap computer [14], on
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an optical lattice [17], and using cavity quantum electrodynamics [18]. A simple continuous-
time quantum walk has been experimentally demonstrated in a nuclear magnetic resonance
machine [19]. A recent overview of quantum walks is given by Kempe [20].

Parrondo’s paradox arises where a combination of two losing games result in a winning
game [21–23]. Such an effect can occur when one game has a form of feedback, for example,
through a dependence on the game state [24], through the outcomes of previous games
[25], or through the states of neighbours [26], that leads to a negative bias. When this
feedback is disrupted by mixing the play with a second losing game that acts as a source of
noise, a net positive bias may result. The recent attention attracted by classical versions of
Parrondo’s games is motivated by their relation to physical systems such as flashing ratchets
or Brownian motors [27–30], or systems of interacting spins [31]. Applications in fields as
diverse as population genetics [23], biogenesis [32], economics and biochemistry [33] have
been suggested. Quantum equivalents to Parrondo’s games with a pay-off dependence [12] or
a history dependence [34, 35] have been demonstrated. A link between quantum Parrondo’s
games and quantum algorithms has been discussed [36, 37]. Recent reviews of classical and
quantum Parrondo’s games can be found in [38] and [39], respectively. In this paper we
develop a model of a quantum walk with history dependence and detail its main features. We
show that this can lead to a new quantum version of Parrondo’s paradox.

The paper is organized as follows. Section 2 gives a brief summary of the classical
Parrondo’s games and their quantum analogues, section 3 sets out the mathematical formalism
of our scheme, section 4 gives some results for the random walk of a single particle on a line
with this scheme, while section 5 demonstrates a new quantum Parrondo effect.

2. Parrondo’s games

The original Parrondo’s games were cast in the form of a pair of gambling games: game A
the toss of a simple biased coin with winning probability p = 1

2 − ε, and game B consisting
of two biased coins, the selection of which depends upon the state of the game. Coin B1, with
winning probability p1, is selected when the capital is a multiple of 3, while coin B2, with
winning probability p2, is chosen otherwise. Each coin toss results in the gain or loss of one
unit of capital. With, for example,

p1 = 1/10 − ε p2 = 3/4 − ε ε > 0 (1)

game B is losing since the ‘bad’ coin B1 is played more often than the one-third of the time
that one would naively expect. By interspersing plays of games A and B, the probability of
selecting B1 approaches 1

3 , and that game produces a net positive result that can more than
offset the small loss from game A, when ε is small. The combination of the two losing games
to form a winning one is the essence of the apparent paradox first described by Parrondo [21].

Meyer and Blumer [12] were the first to present a quantum version of this effect. In their
model, the quantum analogue of the capital is the discretization of the position of a particle
undergoing Brownian motion in one dimension. Each play of the game changes the particle
position by ±1 unit in the x direction. The biases of game A and B are achieved by the
application of potentials

VA(x) = αx α > 0
(2)

VB(x) = VA(x) + β
(
1 − 1

2 (x mod 3)
)

β > 0

respectively. By adjusting the parameters of the potentials, the quantum games A and B can be
made to yield similar negative biases to their classical counterparts. When switching between
the potentials is introduced, the bias can be reversed for certain mixtures of A and B. For the
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Figure 1. Mean position 〈x〉 as a function of time (in number of coin tosses) for (dashed lines)
the classical games A, B and the repeated sequence AABB with ε = 0.005 in equation (1), and
(solid lines) the quantum games A, B and the repeated sequence AAAAB with α = π/2500 and
β = π/3 in equation (2). In the classical case, x is the player’s capital with $1 awarded for each
winning coin toss and −$1 for each losing toss. Here, x is the particle position and we assume
full coherence is maintained in the quantum case. The difference in payoffs between the classical
and quantum examples is due to the particular parameters chosen. However, interference in the
quantum case produces a greater turn around in x than is obtainable in the classical situation.

results of previous two games

lost, lost

B1

1 − p1 p1

lose win

lost, won

B2

1 − p2 p2

lose win

won, lost

B3

1 − p3 p3

lose win

won, won

B4

1 − p4 p4

lose win

Figure 2. In the classical history-dependent Parrondo’s game B, the selection of coins B1 to B4
depends upon the results of the last two plays, as shown. The probabilities of winning (increasing
the player’s capital by 1) are p1 to p4 and of losing (decreasing the player’s capital by 1) are 1−p1
to 1 − p4. The overall payoff for a series of games is the player’s final capital.

classical and quantum versions, comparisons of the expectations for the individual games and
an example of a winning combination are given in figure 1. For details of the classical case
see Harmer and Abbott [24] and for the quantum case Meyer and Blumer [12].

A history-dependent game can be substituted for the above game B to produce a variant
of Parrondo’s games. Game B consists of four coins whose choice is determined by the results
of the previous two games, as indicated in figure 2. An analysis of this game for

p1 = 7/10 − ε p2 = p3 = 1/4 − ε p4 = 9/10 − ε (3)

indicates that the game is losing for ε > 0 [25]. Mixing this with game A or a different
history-dependent game B [40] can yield an overall winning result. A direct quantization
of this scheme is given by Flitney et al [35]. The quantum effects in this model depend
upon the selection of a suitable superposition as an initial state. Interference can then arise
since there may be more than one way of obtaining a particular state. Without interference,
this scheme gives the same results as the classical history-dependent Parrondo’s game. The
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Figure 3. The distribution of probability density P(x) = |ψ(x)|2 at toss t = 100 for an unbiased,
single coin quantum walk with |ψ0〉 = 1√

2
(|0, L〉 − |0, R〉). Only even positions are plotted since

ψ(x) is zero for odd x at t = 100. The total area under the graph is equal to 1.

method presented in this paper uses an alternative approach, a discrete quantum walk or
quantum lattice gas automaton.

3. Scheme formalism

A direct translation of a classical discrete random walk into the quantum domain is not possible.
If a quantum particle moving along a line is updated at each step, in superposition, to the left
and right, the global process is necessarily non-unitary. However, the addition of a second
degree of freedom, the chirality, taking values L and R, allows interesting quantum walks to
be constructed. Consider a particle whose position is discretized in one dimension. Let HP be
the Hilbert space of particle positions, spanned by the basis {|x〉 : x ∈ Z}. In each time-step
the particle will move either to the left or right depending on its chirality. Let HC be the
Hilbert space of chirality, or ‘coin’ states, spanned by the orthonormal basis {|L〉, |R〉}. A
simple quantum walk in the Hilbert space HP ⊗ HC consists of a quantum mechanical ‘coin
toss’, a unitary operation Û on the coin state, followed by the updating of the position to the
left or right:

Ê = (Ŝ ⊗ P̂ R + Ŝ−1 ⊗ P̂ L)(Î P ⊗ Û ) (4)

where Ŝ is the shift operator in position space, Ŝ|x〉 = |x + 1〉, Î P is the identity operator in
position space, and P̂ R and P̂ L are projection operators on the coin space with P̂ R + P̂ L = Î C ,
the coin identity operator. For example, a walk controlled by an unbiased quantum coin is
carried out by the transformations

|x, L〉 → 1√
2
(|x − 1, L〉 + i|x + 1, R〉)

|x,R〉 → 1√
2
(i|x − 1, L〉 + |x + 1, R〉) .

(5)

Figure 3 shows the distribution of probability density after 100 steps of equation (5) with the
initial state |ψ0〉 = (|0, L〉 − |0, R〉)/√2.3 This initial state is chosen so that a symmetrical
distribution results. In fact the states |0, R〉 and |0, L〉 evolve independently. We can see this

3 This scheme is equivalent to the Hadamard quantum walk with initial state 1√
2
(|0, L〉 + i|0, R〉).
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since any flip |R〉 ↔ |L〉 involves multiplication by a factor of i. Thus, any |x, L〉 state that
started from |0, R〉 will be multiplied by an odd power of i and is orthogonal to any |x, L〉
state that originated from |0, L〉 (and similarly for the |x,R〉 states).

To construct a quantum walk with history dependence requires an extension of the Hilbert
space by additional coin states. Where we have a dependence on the last M − 1 results, the
total system Hilbert space is a direct product between the particle position in one dimension
and M coin states:

H = HP ⊗ (HC
⊗M). (6)

The M coins represent the results of tosses at times t − 1, t − 2, . . . , t − M . A single step in
the walk consists of tossing the Mth coin, updating the position depending on the result of the
toss, and then re-ordering the coins so that the newly tossed coin is in the first (most recent)
position. In general, the unitary coin operator Û can be specified, up to an overall phase that
is not observable, by three parameters, two of which are phases. In the single coin case the
effect of the phases can be completely mimicked by changes to |ψ0〉 [11]. This does not carry
over to our multi-coin history-dependent scheme. However, for the sake of simplicity we shall
omit the phases and simply write

Û (ρ) =
( √

ρ i
√

1 − ρ

i
√

1 − ρ
√

ρ

)
(7)

where 1 − ρ is the classical probability that the coin changes state, with ρ = 1
2 being an

unbiased coin. To allow for history dependence, ρ will depend upon the results of the last
M − 1 coin tosses, so that a single toss is effected by the operator

Ê = (
Ŝ ⊗ ÎC

⊗(M−1) ⊗ P̂ R + Ŝ−1 ⊗ ÎC
⊗(M−1) ⊗ P̂ L

)

×

Î P ⊗

∑
j1,...,jM−1∈{L,R}

P̂ ∗
j1...jM−1

⊗ Û
(
ρj1...jM−1

)

 (8)

where P̂ j , j ∈ {L,R} is the projection operator of the Mth coin onto the state |j 〉 and
P̂ ∗

j1...jM−1
, jk ∈ {L,R} is the projection operator of the first M − 1 coins onto the state

|j1 . . . jM−1〉. The second parenthesized term in (8) flips the Mth coin with a parameter ρ

that depends upon the state of the first M − 1 coins, while the first term updates the particle
position depending on the result of the flip. Re-ordering of the coins is then achieved by

Ô = Î P ⊗
∑

j1,...,jM∈{L,R}
|jMj1 . . . jM−1〉〈j1 . . . jM−1jM |. (9)

This scheme is distinguished from Brun et al’s work on quantum walks with multiple
coins [41] where the walk is carried out by cycling through a given sequence of M coins,
Û (ρ1), . . . , Û (ρM). In Brun’s scheme, a coin toss is performed by

Ê = (
Ŝ ⊗ ÎC

⊗(M−1) ⊗ P̂ R + Ŝ−1 ⊗ ÎC
⊗(M−1) ⊗ P̂ L

)(
Î P ⊗ ÎC

⊗(M−1) ⊗ Û (ρk)
)

(10)

where k = (t mod M), and the step is completed by the Ô operator as before. The scheme
has memory but not the dependence on history of the current method. The two schemes are
only equivalent when all the ρk and ρj1...jM−1 are equal, for example, when all the coins are
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Figure 4. The probability density distributions P(x) = |ψ(x)|2 at toss t = 100, for the 2- (——),
3- (– – –) and 4- (- - - -) coin unbiased, symmetrical, quantum walks. Only even positions are
plotted since ψ(x) is zero for odd x at t = 100. The area under each curve is equal to 1.

unbiased. This amounts to asserting that the scheme of Brun et al does not display Parrondian
behaviour.

4. Results

The probability density distributions for unbiased 2, 3, and 4 coin history-dependent
quantum walks, with initial states that are an equal superposition of the possible coin states
antisymmetric as L ↔ R4 are shown in figure 4. These distributions are essentially symmetric
versions of the graphs of Brun et al [41] that result from an initial state |ψ0〉 = |R〉⊗M .

For arbitrary M we have, as for the M = 1 case, two parts of the initial state that evolve
without interacting. Thus, for M = 2 for example, states arising from |0, LL〉 and |0, RR〉
will interfere, as will states arising from |0, LR〉 and |0, RL〉, but the two groups evolve into
states that are orthogonal, for any given x. For the M coin quantum walk there are M + 1
peaks with even values of M having a central peak, the others necessarily being symmetrically
placed around x = 0 by our choice of initial state. The outermost pair of peaks are in the
same position as the peaks for M = 1 (figure 3) at x(t) ≈ 0.68t . All the peaks are interference
phenomenon, the central one being the easiest to understand. It arises since there are states
centred on x = 0 that cycle back to themselves (i.e. that are stationary states over a certain
time period). With M = 2, the simplest cycle over t = 2 is proportional to

|0, LR〉 − |0, RL〉 → 1√
2
(|+1, RL〉 + i|−1, LL〉 − |−1, LR〉 − i|+1, RR〉)

→ |0, LR〉 − |0, RL〉. (11)

At the second step, complete destructive interference occurs for the states with x = ±2, so that
there is no probability flux leaving the central three x values. In practice, the central region

4 For example, with M = 2, the initial state is |ψ0〉 = (|0, LL〉 − |0, LR〉 − |0, RL〉 + |0, LL〉)/2. For the purposes
of this paper we could equally well have chosen an initial state that was symmetrical as L ↔ R. However, the
antisymmetric starting state is the one that gives the correct behaviour in the presence of a potential. The state |ψ0〉
is the quantum equivalent of the average over past histories that is taken in the classical history-dependent Parrondo
game.
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Figure 5. For the M = 3 quantum history-dependent walk, 〈x〉 and σx at time-step t = 100 as a
function of ρRR (solid line) or ρRL (dashed line) while the other ρij are kept constant at 1

2 . Varying
ρLL has the opposite effect on 〈x〉 and the same on σx as varying ρRR. Similarly for ρLR compared
to ρRL.

asymptotically approaches a more complex stationary cycle than (11), such as the t = 2 cycle

|ψcentre〉 ∝ (ai − b)(|−2, LL〉 + |+2, RR〉) + (1 − a − i + bi)(|−2, LR〉 + |+2, RL〉)
+ (i − 1)(|−2, RL〉 + |+2, LR〉) + (b − ai)(|0, LL〉 + |0, RR〉)
+ (a + bi)(|0, LR〉 + |0, RL〉) (12)

where a and b are real.
Adjusting the values of the various ρ can introduce a bias into the walk. To create a

quantum walk analogous to the history-dependent game B of section 2, requires M = 3,
giving four parameters, ρRR, ρRL, ρLR and ρLL. Figure 5 shows the effect of individual
variations in these parameters on the expectation value and standard deviation of the position
after 100 time-steps.

5. Quantum Parrondo effect

It is useful to consider the classical limit to our quantum scheme. That is, the random walk
that would result if the scattering amplitudes were replaced by classical probabilities. As an
example consider the M = 2 case, with winning probabilities 1−ρL and 1−ρR. The analysis
below follows that of Harmer and Abbott [38]. Markov chain methods cannot be used directly
because of the history dependence of the scheme. If, however, we form the vector

y(t) = [x(t − 1) − x(t − 2), x(t) − x(t − 1)] (13)

where x(t) is the position at time t, then y(t) forms a discrete time Markov chain between the
states [−1,−1], [−1, +1], [+1,−1] and [+1, +1] with a transition matrix

T =




ρL 1 − ρL 0 0
0 0 ρR 1 − ρR

1 − ρL ρL 0 0
0 0 1 − ρR ρR


 . (14)

Define πij (t) to be the probability of y(t) = [i, j ], i, j ∈ {−1, +1}. A state is now transformed
by T π at each time-step. Having represented the history-dependent game as a discrete time
Markov chain, the standard Markov techniques can be applied. The equilibrium distribution
is found by solving T πs = πs. This yields πs = [1, 1, 1, 1]/4, giving a process with no net
bias to the left or right irrespective of the values of ρL and ρR. The same analysis holds for
M > 2. However, interference in the quantum case presents an entirely different picture.
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Figure 6. (Colour online) An example of a Parrondo effect for the M = 3 history-dependent
quantum walk where game B has (a) ρRR = 0.55 or (b) ρLR = 0.6, with the other ρij = 0.5, i, j ∈
{L,R}. Game A has all ρij = 0.5 (unbiased). The letters next to each curve represent the sequence
of games played repeatedly. For example, AB means apply Â and then B̂ to the state, repeating
this sequence 50 times to get to t = 100.

(This figure is in colour only in the electronic version)

The comparison with the classical history-dependent Parrondo game requires M = 3.
For game A, select the unbiased game, ρLL = ρLR = ρRL = ρRR = 1/2. For game B, choose,
for example, ρRR = 0.55 or ρLR = 0.6 to produce a suitable bias (see figure 5). The operators
associated with A and B are applied repeatedly, in some fixed sequence, to the state |ψ〉. For
example, the results of the game sequence AABB after t time-steps is

|ψ(t)〉 = (B̂B̂ÂÂ)t/4|ψ(0)〉. (15)

Figure 6 displays 〈x〉 for various sequences. Of sequences up to length 4, with game B biased
by ρRR > 0.5 only AABB and AAB give a positive expectation, while when game B is biased
by ρLR > 0.5 only AAAB is positive. These results hold for ρ up to approximately 0.6, above
which there are no positive sequences of length less than or equal to 4.

The sequences AABB and BBAA can be considered the same but with different initial
states. That is, if instead of |ψ0〉, we start with |ψ ′

0〉 = ÂÂ|ψ0〉, BBAA gives the same results
(displaced by two time-steps) as AABB does with the original starting state. In the classical
case, altering the order of the sequence results in the same trend but with a small offset, as
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one might expect. However, as figure 6 indicates, the change of order in the quantum case can
produce radically different results. This feature also appears in Meyer and Blumer’s quantum
Parrondo model—recall their model is based on a payoff-dependent scheme rather than a
history-dependent one as in the present case.

6. Conclusion

A scheme for a discrete quantum walk with history dependence has been presented. Our
system involves the use of multiple quantum coins. By suitable selection of the amplitudes for
coin flips dependent on certain histories, the walk can be biased to give positive or negative 〈x〉.
In common with many other properties of quantum walks, the bias results from interference,
since the classical equivalent of our walks are unbiased. With a starting state averaged over
possible histories, the average spread of probability density in our multi-coin scheme is slower
than in the single coin case, with the appearance of multiple peaks in the distribution. For even
numbers of coins there is a substantial probability of x ≈ 0. However, the positions of the
outermost peaks are the same as those of a single coin quantum walk. As the memory effect
increases, the dispersion of the quantum walk decreases. One may speculate that this feature
may be relevant to an understanding of decoherence, here considered as loss of coherence
within the central portion of the graph around x ≈ 0. In particular, the dispersion in the
wavefunction decreases as we move from a first-order Markov system to a non-first-order
Markov system, that is, one with memory. This is consistent with the idea that the Markovian
approximations tend to over-estimate the decoherence of the system. A recent study has
indicated that the form of a classical distribution is quickly approached as the quantum coins
decohere [42].

Our scheme is the quantum analogue of the history-dependent game in a form of
Parrondo’s paradox. The quantum history-dependent walk also exhibits a Parrondo effect,
where the disruption of the history dependence in a biased walk by mixing with a second,
unbiased walk can reverse the bias. In distinction to the classical case, the effect seen here
is very sensitive to the exact sequence of operations, a quality it shares with other forms of
quantum Parrondo’s games. This sensitivity is consistent with the idea that the effect relies on
full coherence over space and in time.

We have only considered a quantum walk on a line. The effect of memory driven quantum
walks on networks with different topologies and whether the memory structure can be chosen
to optimize the path in such networks are open questions.
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