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Abstract
A protocol for considering decoherence in quantum games is presented. Results
for two-player, two-strategy quantum games subject to decoherence are derived
and some specific examples are given. Decoherence in other types of quantum
games is also considered. As expected, the advantage that a quantum player
achieves over a player restricted to classical strategies is diminished for
increasing decoherence but only vanishes in the limit of maximum decoherence.

PACS numbers: 03.67.−a, 05.40.Fb, 02.50.Le

1. Introduction

Game theory has long been commonly used in economics, the social sciences and biology
to model decision-making situations where the outcomes are contingent upon the interacting
strategies of two or more agents with conflicting or, at best, self-interested motives. There
is now increasing interest in applying game-theoretic techniques in physics [1]. With the
enthusiasm for quantum computation, there has been a surge of interest in the discipline of
quantum information [2] that has led to the creation of a new field combining game theory
and quantum mechanics: quantum game theory [3]. By replacing classical probabilities with
quantum amplitudes and allowing the players to employ superposition, entanglement and
interference, quantum game theory produces new ideas from classical two-player [4–9] and
multi-player settings [10–13]. Quantum prisoners’ dilemma has been realized on a two-qubit
nuclear magnetic resonance machine [14]. A review of quantum games is given by Flitney
and Abbott [15].

Decoherence can be defined as non-unitary dynamics resulting from the coupling of
the system with the environment. In any realistic quantum computer, interaction with
the environment cannot be entirely eliminated. Such interaction can destroy the special
features of quantum computation. A recent review of the standard mechanisms of quantum
decoherence can be found in [16]. Quantum computing in the presence of noise is possible
with the use of quantum error correction [17] or decoherence free subspaces [18]. These
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techniques work by encoding the logical qubits in a number of physical qubits. Quantum
error correction is successful, provided the error rate is low enough, while decoherence free
subspaces control certain types of decoherence. Both have the disadvantage of expanding the
number of qubits required for a calculation. Without such measures, the theory of quantum
control in the presence of noise and decoherence is little studied. This motivates the study
of quantum games, which can be viewed as a game-theoretic approach to quantum control—
game-theoretic methods in classical control theory [19] are well established and translating
them to the quantum realm is a promising area of study. Johnson has considered a quantum
game corrupted by noisy input [20]. Above a certain level of noise, it was found that the
quantum effects impede the players to such a degree that they were better off playing the
classical game. Chen et al have discussed decoherence in quantum prisoners’ dilemma [21].
Decoherence was found to have no effect on the Nash equilibrium in this model. The current
work considers general quantum games in the presence of decoherence. The paper is organized
as follows. Section 2 outlines our model for introducing decoherence into quantum games,
section 3 presents some specific results from this model for two-player, two-strategy quantum
games, section 4 gives an example of decoherence in another quantum game and section 5
presents concluding remarks.

2. Quantum games with decoherence

The process of quantizing a game with two pure strategies proceeds as follows. In the classical
game, the possible actions of a player can be encoded by a bit. This is replaced by a qubit
in the quantum case. The computational basis states |0〉 and |1〉 represent the classical pure
strategies, with the players’ qubits initially prepared in the |0〉 state. The players’ moves are
unitary operators or, more generally, completely positive, trace-preserving maps, drawn from
a set of strategies S, acting on their qubits. Interaction between the players’ qubits is necessary
for the quantum game to give something new. Eisert et al produced interesting new features
by introducing entanglement [4]. The final state of an N-player quantum game in this model
is computed by

|ψf 〉 = Ĵ †(M̂1 ⊗ M̂2 ⊗ · · · ⊗ M̂N)Ĵ |ψ0〉, (1)

where |ψ0〉 = |00 . . . 0〉 represents the initial state of the N qubits, Ĵ (Ĵ †) is an operator that
entangles (dis-entangles) the players’ qubits and M̂k, k = 1, . . . , N , represents the move of
player k. A measurement over the computational basis is taken on |ψf 〉 and the payoffs are
subsequently determined using the payoff matrix of the classical game. The two classical pure
strategies are the identity and the bit flip operator. The classical game is made a subset of
the quantum one by requiring that Ĵ commute with the direct product of N classical moves.
Games with more than two classical pure strategies are catered for by replacing the qubits by
qunits (n level quantum systems) or, equivalently, by associating with each player a number
of qubits. For a discussion of the formalism of quantum games, see [22].

It is most convenient to use the density matrix notation for the state of the system and
the operator sum representation for the quantum operators. Decoherence can take many
forms including dephasing, which randomizes the relative phases of the quantum states, and
dissipation that modifies the populations of the quantum states. Pure dephasing of a qubit can
be expressed as

a|0〉 + b|1〉 → a|0〉 + b eiφ|1〉. (2)
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If we assume that the phase kick φ is a random variable with a Gaussian distribution of mean
zero and variance 2λ, then the density matrix obtained after averaging over all values of φ

is [2] (
|a|2 ab̄

āb |b|2
)

→
(

|a|2 ab̄ e−λ

āb e−λ |b|2
)

. (3)

Over time, the random phase kicks cause an exponential decay of the off-diagonal elements
of the density matrix.

In this work, we shall use the quantum operator formalism to model decoherence. This
method is well known to have its limitations [23]. For a good description of the quantum
operator formalism and an example of its limitations the reader is referred to chapter 8 of
[2]. Other methods for calculating decoherence include using Lagrangian field theory, path
integrals, master equations, quantum Langevin equations, short-time perturbation expansions,
Monte Carlo methods, semiclassical methods and phenomenological methods [24].

In the operator sum representation, the act of making a measurement with probability p
in the {|0〉, |1〉} basis on a qubit ρ is

ρ →
2∑

j=0

Ej ρE†
j , (4)

where E0 = √
p|0〉〈0|, E1 = √

p|1〉〈1| and E2 = √
1 − pÎ . An extension to N qubits is

achieved by applying the measurement to each qubit in turn, resulting in

ρ →
2∑

j1,...,jN =0

Ej1 ⊗ · · · ⊗ EjN
ρE†

jN
⊗ · · · ⊗ E†

j1
, (5)

where ρ is the density matrix of the N qubit system. This process also leads to the decay of
the off-diagonal elements of ρ. By identifying 1 − p = e−λ, the measurement process has the
same results as pure dephasing.

Independently of the particular model used, a quantum game with decoherence can be
described in the following manner:

ρi ≡ ρ0 = |ψ0〉〈ψ0| (initial state)

ρ1 = Ĵ ρ0Ĵ
† (entanglement)

ρ2 = D(ρ1, p1) (partial decoherence)

ρ3 = (⊗N
k=1 M̂k

)
ρ2

(⊗N
k=1 M̂k

)†
(players’ moves)

ρ4 = D(ρ3, p2) (partial decoherence)

ρ5 = Ĵ †ρ4Ĵ (dis-entanglement),

(6)

to produce the final state ρf ≡ ρ5 upon which a measurement is taken. The function D(ρ, p)

is a completely positive map that applies some form of decoherence to the state ρ controlled
by the probability p. The scheme is shown in figure 1. The expectation value of the payoff for
the kth player is

〈$k〉 =
∑

α

P̂ αρf P̂ †
α$k

α, (7)

where Pα = |α〉〈α| is the projector onto the state |α〉, $k
α is the payoff to the kth player when

the final state is |α〉, and the summation is taken over α = j1j2 · · · jN, ji = 0, 1.
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Figure 1. The flow of information in an N-person quantum game with decoherence, where Mk is
the move of the kth player and Ĵ (Ĵ †) is an entangling (dis-entangling) gate. The central horizontal
lines are the players’ qubits and the top and bottom lines are classical random bits with a probability
p1 or p2, respectively, of being 1. Here, D is some form of decoherence controlled by the classical
bits.

3. Results for 2 × 2 quantum games

Let S = {Û (θ, α, β) : 0 � θ � π,−π � α, β � π} be the set of pure quantum strategies,
where

Û (θ, α, β) =
(

eiα cos(θ/2) i eiβ sin(θ/2)

i e−iβ sin(θ/2) e−iα cos(θ/2)

)
(8)

is an SU(2) operator. The move of the kth player is Û (θk, αk, βk). The classical moves are
Î ≡ Û (0, 0, 0) and F̂ ≡ Û (π, 0, 0). Entanglement is achieved by [10]

Ĵ = 1√
2

(
Î⊗N + iσ⊗N

x

)
. (9)

Operators from the set Scl = {Û (θ, 0, 0) : 0 � θ � π} are equivalent to classical mixed
strategies since, when all players use these strategies, the quantum game reduces to the
classical one. There is some arbitrariness about the representation of the operators. Different
representations will only lead to a different overall phase in the final state and this has no
physical significance.

After choosing equation (5) to represent the function D in (6), we are now in a position
to write the results of decoherence in a 2 × 2 quantum game. Using the subscripts A and B
to indicate the parameters of the two traditional protagonists Alice and Bob, respectively, and
writing ck ≡ cos(θk/2) and sk ≡ sin(θk/2) for k = A,B, the expectation value of a player’s
payoff is

〈$〉 = 1
2

(
c2

Ac2
B + s2

As2
B

)
($00 + $11) + 1

2

(
c2

As2
B + s2

Ac2
B

)
($01 + $10)

+ 1
2 (1 − p1)

2(1 − p2)
2
{[

c2
Ac2

B cos(2αA + 2αB) − s2
As2

B cos(2βA + 2βB)
]

× ($00 − $11) +
[
c2

As2
B cos(2αA − 2βB) − s2

Ac2
B cos(2αB − 2βA)

]
($01 − $10)

}
+ 1

4 sin θA sin θB[(1 − p1)
2 sin(αA + αB − βA − βB)(−$00 + $01 + $10 − $11)

+ (1 − p2)
2 sin(αA + αB + βA + βB)($00 − $11)

+ (1 − p2)
2 sin(αA − αB + βA − βB)($10 − $01)], (10)
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where $ij is the payoff to the player for the final state |ij 〉. Setting p1 = p2 = 0 gives
the quantum games of the Eisert et al model [4] studied in the literature. If in addition,
αk = βk = 0, k = A,B, a 2×2 classical game results with the mixing between the two classical
pure strategies Î and F̂ being determined by θA and θB for Alice and Bob, respectively.
Maximum decoherence with p1 = p2 = 1 gives a result where the quantum phases αk and βk

are not relevant:

〈$〉 = x

2
($00 + $11) +

1 − x

2
($01 + $10), (11)

where x = c2
Ac2

B + s2
As2

B. In a symmetric game the payoff to both players is the same and the
game is not equivalent to the original classical game. Extrema for the payoffs occur when
both θs are 0 or π .

One way of measuring the ‘quantum-ness’ of the game is to consider the known advantage
of a player having access to the full set of quantum strategies S over a player who is limited to
the classical set Scl [4, 25]. If we restrict Alice to αA = βA = 0, then,

〈$〉 = x

2
($00 + $11) +

1 − x

2
($01 + $10)

+
1

2
(1 − p1)

2(1 − p2)
2
{
c2

B cos 2αB
[
c2

A($00 − $11) + s2
A($10 − $01)

]
− s2

B cos 2βB
[
c2

A($10 − $01) + s2
A($00 − $11)

]}
+

1

4
sin θA sin θB[(1 − p1)

2 sin(αB − βB)(−$00 + $01 + $10 − $11)

+ (1 − p2)
2 sin(αB + βB)($00 + $01 − $10 − $11)]. (12)

For prisoners’ dilemma, the standard payoff matrix is

prisoners’ Bob :
dilemma cooperation (C) defection (D)

Alice : C (3, 3) (0, 5)

D (5, 0) (1, 1)

, (13)

where the numbers in parentheses represent payoffs to Alice and Bob, respectively. The
classical pure strategies are cooperation (C) and defection (D). Defecting gives a better
payoff regardless of the other player’s strategy, so it is a dominant strategy, and mutual
defection is the Nash equilibrium. The well-known dilemma arises from the fact that both
players would be better off with mutual cooperation, if this could be engineered. With the
payoffs of equation (13), the best Bob can do from equation (12) is to select αB = π/2 and
βB = 0. Bob’s choice of θB will depend on Alice’s choice of θA. He can do no better than
θB = π/2 if he is ignorant of Alice’s strategy1. Figure 2 shows Alice and Bob’s payoffs as
a function of decoherence probability p ≡ p1 = p2 and Alice’s strategy θ ≡ θA when Bob
selects this optimal strategy.

The standard payoff matrix for the game of chicken is

Bob :
chicken cooperation (C) defection (D)

Alice : C (3, 3) (1, 4)

D (4, 1) (0, 0)

. (14)

1 See Flitney and Abbott [25] for details of quantum versus classical players.
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Figure 2. Payoffs for (a) Alice and (b) Bob in quantum prisoners’ dilemma as a function
of decoherence probability p and Alice’s strategy θ (being a measure of the mixing between
cooperation (C) and defection (D) with θ = 0 giving C and θ = π giving D), when Bob plays
the optimum quantum strategy and Alice is restricted to classical strategies. The decoherence goes
from the unperturbed quantum game at p = 0 to maximum decoherence at p = 1.
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Figure 3. Payoffs for (a) Alice and (b) Bob in quantum chicken as a function of decoherence
probability p and Alice’s strategy θ , when Bob plays the optimum quantum strategy and Alice is
restricted to a classical mixed strategy.

There is no dominant strategy. Both CD and DC are Nash equilibria, with the former
preferred by Bob and the latter by Alice. Again there is a dilemma since the Pareto optimal
result CC is different from both Nash equilibria. As above, Bob’s payoff is optimized by
αB = π/2, βB = 0 and θB = π/2. Figure 3 shows the payoffs as a function of decoherence
probability p and Alice’s strategy θ .

One form of the payoff matrix for the battle of the sexes is

battle Bob :
of the sexes opera (O) television (T )

Alice : O (2, 1) (0, 0)

T (0, 0) (1, 2)

. (15)

Here the two protagonists must decide on an evening’s entertainment. Alice prefers opera (O)
and Bob television (T ), but their primary concern is that they do an activity together. In the
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Figure 4. Payoffs for (a) Alice and (b) Bob in quantum battle of the sexes as a function of
decoherence probability p and Alice’s strategy θ , when Bob plays the optimum quantum strategy
and Alice is restricted to a classical mixed strategy.
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Figure 5. Payoffs as a function of decoherence probability p, going from fully decohered on the left
(p = 1) to fully coherent on the right (p = 0), for (a) Alice and (b) Bob for the quantum games
prisoners’ dilemma (PD), chicken (Ch) and battle of the sexes (BoS). Bob plays the optimum
quantum strategy and Alice her best classical counter strategy. As expected, the payoff to the
quantum player, Bob, increases with increasing coherence while Alice performs worse except in
the case of battle of the sexes. This game is a coordination game—both players do better if they
select the same move—and Bob can increasingly engineer coordination as coherence improves,
helping Alice as well as himself.

absence of communication there is a coordination problem. A quantum Bob maximizes his
payoff in a competition with a classical Alice by choosing αB = −π/2, βB = 0 and θB = π/2.
Figure 4 shows the resulting payoffs for Alice and Bob as a function of decoherence probability
p and Alice’s strategy θ .

The optimal strategy for Alice in the three games considered is θ = π (or 0) for prisoners’
dilemma, or θ = π/2 for chicken and battle of the sexes. Figure 5 shows the expectation
value of the payoffs to Alice and Bob as a function of the decoherence probability p for
each of the games when Alice chooses her optimal classical strategy. In all cases considered,
Bob outscores Alice and performs better than his classical Nash equilibrium result provided
p < 1.2 The advantage of having access to quantum strategies decreases as p increases,
being minimal above p ≈ 0.5, but is still present for all levels of decoherence up to the
maximum. At maximum decoherence (p = 1), with the selected strategies, the game result

2 Or the poorer of his two Nash equilibria in the case of chicken or the battle of the sexes.



456 A P Flitney and D Abbott

is randomized and the expectation of the payoffs is simply the average over the four possible
results. The results presented in figures 2–4 are comparable to the results for different levels
of entanglement [25]. They are also consistent with the results of Chen and co-workers [21]
who show that with increasing decoherence, the payoffs to both players approach the average
of the four payoffs in a quantum prisoners’ dilemma.

4. Decoherence in other quantum games

A simple effect of decoherence can be seen in Meyer’s quantum penny-flip [3] between P,
who is restricted to classical strategies, and Q, who has access to quantum operations. In the
classical game, P places a coin heads up in a box. First Q, then P, then Q again, have the
option of (secretly) flipping the coin or leaving it unaltered, after which the state of the coin
is revealed. If the coin shows heads, Q is victorious. Since the players’ moves are carried out
in secret they do not know the intermediate states of the coin and hence the classical game is
balanced.

In the quantum version, the coin is replaced by a qubit prepared in the |0〉 (‘heads’)
state. Having access to quantum operations, Q applies the Hadamard operator to produce the
superposition (|0〉 + |1〉)/√2. This state is invariant under the transformation |0〉 ↔ |1〉 so P’s
action has no effect. On his second move Q again applies the Hadamard operator to return the
qubit to |0〉. Thus, Q wins with certainty against any classical strategy by P.

Decoherence can be added to this model by applying a measurement with probability p
after Q’s first move. Applying the same operation after P’s move has the same effect since
his move is either the identity or a bit-flip. If the initial state of the coin is represented by the
density matrix ρ0 = |0〉〈0|, the final state can be calculated by

ρf = Ĥ P̂ D̂Ĥρ0Ĥ
†D̂†P̂ †Ĥ †

= 1

4

(
4 − 2p 0

0 2p

)
,

(16)

where Ĥ is the Hadamard operator, P̂ is P’s move (Î or σx) and D̂ = √
1 − pÎ +

√
p(|0〉〈0| +

|1〉〈1|) is a measurement in the computational basis with probability p. Again, the final state
is independent of P’s move. The expectation of Q winning decreases linearly from one to 1

2
as p goes from zero to one. Maximum decoherence produces a fair game.

As an example of the effect of decoherence on another quantum game consider a game
analogous to a three-player duel, or truel, between Alice, Bob and Charles [13]. The classical
version can be described as follows. Each player has a bit, starting in the one state. The
players move in sequence in alphabetic order. A move consists of either doing nothing or
attempting to flip an opponent’s bit with a known probability of failure of a, b or c, for Alice,
Bob and Charles, respectively. A player can do nothing if their bit is zero. The payoffs at the
completion of the game are 1/(number of bits in the one state) to a player whose bit is one,
or zero otherwise. (The connection with a truel is made by considering one to correspond to
‘alive’ and zero to ‘dead’. A move is an attempt to shoot an opponent.) In some situations, the
optimal strategy is counter-intuitive. It may be beneficial for a player to do nothing rather than
attempt to flip an opponent’s bit from one to zero, since if they are successful they become the
target for the third player.

The game is quantized by replacing the players’ bits by qubits and by replacing the flip
operation by an SU(2) operator of the form of equation (8) operating on the chosen qubit.
Maintaining coherence throughout the game removes the dynamic aspect since the players
can get no information on the success of previous moves. Noise can be added to the quantum
game by giving a probability p of a measurement being made after each move, and in the case
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Figure 6. In a one-round quantum truel with c = 0 and with decoherence, the boundaries for
different values of the decoherence probability p below which Alice maximizes her expected payoff
by doing nothing and above which by targeting Charles. There is a smooth transition from the
fully quantum case (p = 0) to the classical one (p = 1). From Flitney and Abbott [13].

of a measurement, allowing the players to choose their strategy depending on the result of
previous rounds, which are now known. Figure 6 shows the regions of the parameter space
(a, b) corresponding to Alice’s preferred strategy in a one-round truel when c = 0 (i.e., when
Charles is always successful). The boundary between Alice maximizing her expected payoff
by doing nothing and by targeting Charles depends on the decoherence probability p. We
see a smooth transition from the quantum case to the classical as p goes from zero to one.
Note that the boundary in the parameter space changes from linear in the classical case to
convex in the quantum case. This is of interest since convexity is being intensely studied as
the basis for Parrondo’s paradox [26, 27] and the current example may provide an opportunity
for generating a quantum Parrondo’s paradox [28–30].

5. Conclusion

A method of introducing decoherence into quantum games has been presented. One measure
of the ‘quantum-ness’ of a quantum game subject to decoherence is the advantage a quantum
player has over a player restricted to classical strategies. As expected, increasing the amount of
decoherence degrades the advantage of the quantum player. However, in the model considered,
this advantage does not entirely disappear until the decoherence is a maximum. When this
occurs in a 2 × 2 symmetric game, the results of the players are equal. The classical game
is not reproduced. The loss of advantage to the quantum player is very similar to that which
occurs when the level of entanglement between the players’ qubits is reduced.

In the example of a one-round quantum truel, increasing the level of decoherence altered
the regions of parameter space corresponding to different preferred strategies smoothly towards
the classical regions. In this quantum game, maximum decoherence produces a situation
identical to the classical game.

In multi-player quantum games it is known that new Nash equilibria can arise [10]. The
effect of decoherence on the existence of the new equilibria is an interesting open question.
There has been some work on continuous-variable quantum games [31] involving an infinite-
dimensional Hilbert space. The study of decoherence in infinite-dimensional Hilbert space
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quantum games would need to go beyond the simple quantum operator method presented in
this paper and is yet to be considered.

This paper has focused on static quantum games and so future work on game-theoretic
methods for dynamic quantum systems with different types of decohering noise will be of
great interest. A particular open question will be to compare the behaviour of such quantum
games for (a) the non-Markovian case, where the quantum system is coupled to a dissipative
environment with memory, with (b) the Markovian (memoryless) limit where the correlation
times, in the decohering environment, are small compared to the characteristic time scale of
the quantum system.
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