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Abstract. The Allison mixture is a random process formed by stochastically 
switching between two random and uncorrelated input processes. Unintuitively, 
these samples—independent prior to being drawn—can acquire dependence as 
a result of the sampling process. It has previously been shown that correlation 
can occur subject to certain conditions, however in general dependence does 
not imply correlation. In this paper we provide an initial information-theoretic 
analysis of the Allison mixture, and derive the autoinformation function of its 
sampling process as the first step towards a fuller information-theoretic analysis 
of its output.
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I. Introduction

The Allison mixture [1, 2], its name coined by Epstein in [3], is a stochastic process 
formed by random sampling of two parent processes, having applications in such diverse 
fields as natural language processing [1] and physics [2]. It was originally introduced as a 
model for word repetition intervals [1], the distance between consecutive uses of a word. 
Concretely, it models the phenomenon by which word frequency changes throughout a 
text according to the focus of the narrative. That is to say, if a character or object is pres-
ent in a scene then it will be mentioned quite often, and thus its name will have a short 
repetition interval. At other times the name may be only rarely referred to, and thus its 
repetition interval will be large. This was modelled in [1] by a time-dependent Poisson 
process, whose rate parameter varies randomly according to a two-state Markov chain.

The Allison mixture is of interest in thermodynamics because of its connection to 
Brownian ratchets and the Parrondo paradox [4, 5], in which losing games played in 
combination provide a net gain. Viewing the mixing process from a thermodynamic 
perspective, one sees that the irreversible nature of the mixing process causes a loss of 
information and ultimately redundancy in the output process.

This unintuitive feature of the Allison mixture results in the appearance of autocor-
relation, despite all of its values being drawn from uncorrelated processes. However, 
this correlation vanishes [2] if the parent processes are of equal mean, suggesting the 
use of autoinformation [6, 7] as an alternative to correlation, providing a canonical 
measure of the strength of the memory of the Allison mixture. We apply this measure 
to the Allison mixture, producing analytic expressions for the k-step autoinformation 
of its sampling process.

II. The Allison mixture

The Allison mixture [2] is a process whose samples are drawn from one of two distribu-
tions, the choice determined by the state of a Markov chain [8], shown in figure 1. The 
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marginal distribution of this process is a mixture of the two source distributions, the 
mixing constant determined by the stationary distribution of the Markov chain.

Definition II.1 (Allison mixture [2]). An Allison mixture Xt of two processes Ut 
and Vt is given by

( )= + −X S U S V1t t t t t (1)

where the sampling process St is a Markov chain, shown in figure 1, having states  
{0, 1} and transition probabilities α0 and α1 when in states 0 and 1 respectively.
The stationary distribution of St is given by [2]
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Knowing the means of the input processes Ut and Vt, the single-step autocovariance 
is given by the following theorem, given by [2] and which we restate without proof:

Theorem II.1. The Allison mixture Xt associated with a fully mixed sampling pro-
cess St as in figure 1 has a lag-one autocovariance of

α α
α α

α α= −
+

− −R E U E V1 1 .XX
2 1 2

1 2
2 1 2( ) ( [ ] [ ])

( )
( ) (3)

In order to extend this to the case of arbitrary lags, we require the n-step transition 
probabilities α k0,  and α k1, ; we use a spectral decomposition of the transition matrix P 
in order to compute the k-step probability matrix Pk from which we can read the trans-
ition probabilities on the minor diagonal.

Theorem II.2. The sampling process St has k-step transition probabilities

[ ( ) ]α π α α= − − −1 1k
k

0, 1 0 1 (4)

[ ( ) ]α π α α= − − −1 1 .k
k

1, 0 0 1 (5)

Proof. St has transition matrix
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⎤
⎦⎥

α α
α α

=
−

−
1

1
0 1

0 1
P (6)

Figure 1. The Markov chain defining the sampling process St of the Allison 
mixture. It is parametrised by the probabilities α0 and α1 of leaving states 0 and 
1 respectively.
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with spectral decomposition
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We therefore find that
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and read off the stated transition probabilities from the minor diagonal.  □

Knowing this, we may now calculate the autocorrelation function of the process at 
arbitrary time-lags.

Theorem II.3. The Allison mixture Xt has k-step autocovariance

[ ] [ ]( )α α= − − −R k R 1 1 .k
XX XX 0 1

1 (11)

Proof. We begin by noting that as a decimated Markov chain—that is to say, one 
where all but every k-th step is discarded—is still a Markov chain, and that therefore 
a decimated Allison mixture is also an Allison mixture. We may therefore simply cal-
culate arbitrary two-point statistics by simply substituting the k-step transition prob-
abilities from theorem II.2 for α0 and α1.

Let ( )γ α α= − −1 0 1 . Then, performing the substitution as described,

α α
α α

α α= −
+

− −R k E U E V 1
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k k
k kXX

2 0, 1,

0, 1,
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[ ]( )α α= − − −R 1 1 k
XX 0 1

1 (15)

as originally stated. □
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III. Autoinformation of the Allison mixture sampling process

Whereas the autocovariance function considers the covariance between samples from 
a process, the autoinformation function considers their mutual information. This is 
advantageous for our purposes, as a lack of correlation does not in general result in a 
lack of dependence.

The autoinformation function is thus an alternative to the autocovariance func-
tion as a measure of dependence—though not causality, which is to be the subject of a 
future paper—and is defined as follows:

Definition III.1 (Autoinformation function [7]). The autoinformation function 
of a stochastic process St is the mutual information [9]

[ ] ( )= −I t k I S S, ,t t kSS (16)

( ) ( ) ( )= + −− −H S H S H S S, .t t k t t k (17)

If St is stationary, then we may omit t as a parameter, leaving us with

[ ] ( )= −I k I S S,t t kSS (18)

( ) ( )= − −H S H S S2 , .t t t k (19)

The autoinformation improves on the autocovariance function by providing a condi-
tion both sucient and necessary—whereas a lack of correlation does not necessarily 
indicate independence, two variables will have zero mutual information if and only if 
they are statistically independent; this is vital when the processes Ut and Vt of the sys-
tem being modelled have identical means but diering variances or skew, such as would 
occur when sampling particle velocities in statistical mechanics.

Substituting the stationary and transition probabilities into the entropy, we find 
the single-step autoinformation, stated without further detail in the following lemma.

Lemma III.1. Let St be a binary-valued random process with transition probabilities 
and a stationary distribution equal to that of the Markov chain in definition II.1. Then, 
in the fully-mixed regime—that is to say, when the state probability distribution is equal 
to the stationary distribution of the Markov chain—the single-step autoinformation [ ]I 1SS  
is given by
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(20)

where both α0 and α1 are nonzero, zero if exactly one of α0 and α1 is equal to zero, and 
undefined if both are equal to zero.
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Thus the autoinformation [ ]I 1SS  is equal to zero when either α = 00 , α = 01 , or 
α α+ = 10 1 , and so these three previously-described [2] conditions for decorrelation of 
the sampling process imply zero mutual information and therefore genuine independence.

Importantly, we have not assumed the Markov property of St, instead directly 
demanding that the formulae for the stationary probabilities hold. This weakening is 
intended to allow us later to generalise to the Allison mixture proper.

The mutual information [ ]I 1SS  as a function of ( )α α,0 1  is shown in figure 2. As 
one would expect, we see a peak near ( ) ( )α α =, 0, 00 1 , where consecutive states are 
highly dependent. Similarly, we see a large autoinformation [ ]I 1SS  near (1, 1), where 
the strong anticorrelation makes consecutive states highly predictable. Between these 
two extremes lies a valley, its nadir falling along the line α α+ = 10 1 ; along this line, 
consecutive states of the sampling process are completely independent.

Importantly, these results can be generalised to allow calculation of the autoinfor-
mation at arbitrary time-lags, shown in theorem III.1 by substituting the k-step prob-
abilities of the Allison mixture sampling process.

Theorem III.1. The k-step autoinformation of a fully mixed two-state Markov chain 
with exit probabilities α0 and α1, as in figure 1, is given by lemma III.1 under the 
substitution

⟶ [ ( ) ]α π α α− − −1 1 k
0 1 0 1 (21)

⟶ [ ( ) ]α π α α− − −1 1 .k
1 0 0 1 (22)

Proof. By substituting the k-step transition probabilities, calculated in equations (4) 
and (5), in place of the single-step probabilities α0 and α1, equation (20) yields the k-step  
autoinformation [ ]I kSS  rather than the single-step autoinformation [ ]I 1SS . □

Figure 2. Single-step autoinformation [ ]I 1SS  of the Allison mixture sampling process 
St as a function of the transition probabilities α0 and α1, calculated according to 
equation (20). Note the lines of zero autoinformation along α = 00 , α = 01 , and 
α α+ = 10 1 .
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Towards an information-theoretic model of the Allison mixture stochastic process

7doi:10.1088/1742-5468/2016/05/054041

J. S
tat. M

ech. (2016) 054041

We show the autoinformation [ ]I kSS  in figure 3 as a function of the lag k; it can be 
seen to decay at a roughly exponential rate.

IV. Open questions

The theorems that we have presented allow computation of the autoinformation func-
tion of the Allison mixture sampling process St, and can be readily extended to binary-
valued Allison mixtures, that is to say those for which Xt takes only two values; the 
input processes Ut and Vt might each take a single distinct value, or perhaps a common 
pair of values. However, many physical systems are described by continuous-valued 
processes, and their autoinformation cannot be calculated by lemma III.1 due to the 
infinite number of values that they may take. It remains to be seen whether the auto-
information [ ]I kXX  of the Allison mixture Xt can be computed by transformation of the 
sampling process autoinformation [ ]I kSS  in a similar fashion to that of the autocovari-
ance function [2], potentially yielding a more practically-manipulated alternative to 
the rather cumbersome formulae that can be derived by manual calculation of mixture 
transition probabilities to be substituted into equation (20). There exists also the pos-
sibility that simpifying approximations will be possible in the large-k regime to allow 
further comparison of its properties with those of the autocorrelation [ ]R kXX .

Furthermore, the information-theoretic approach that we have presented provides 
the starting point for an investigation of the transfer entropy [10] between the sampling 
process and the Allison mixture; previous works on transfer entropy have focussed on 
complex systems, leaving room for the analysis of simpler and analytically tractable 
models in order to better probe its properties.

Figure 3. The exponentially-decaying autoinformation [ ]I kSS  and autocovariance 
[ ]R kSS  of an Allison mixture sampling process with α α= =0.1, 0.10 1 . The slope of 

the autoinformation line is approximately double that of the autocorrelation line; 
the results of [7] hint that this may be exactly so asymptotically.
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