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Abstract This paper presents a mathematical model

of biological structures in relation to coronary

arteries with atherosclerosis. A set of equations has

been derived to compute blood flow through these

transport vessels with variable axial and radial

geometries. Three-dimensional reconstructions of

diseased arteries from cadavers have shown that

atherosclerotic lesions spiral through the artery. The

theoretical framework is able to explain the phe-

nomenon of lesion distribution in a helical pattern by

examining the structural parameters that affect the

flow resistance and wall shear stress. The study is

useful for connecting the relationship between the

arterial wall geometries and hemodynamics of blood.

It provides a simple, elegant and non-invasive

method to predict flow properties for geometrically

complex pathology at micro-scale levels and with low

computational cost.

Keywords Atherosclerosis � Axial and radial

asymmetry � Spiraling lesion � Resistance to flow ratio �
Wall shear stress

1 Introduction

Atherosclerosis is a major underlying cause of angina

and myocardial infarction [12]. In atherosclerotic

arteries, the lumen is typically narrowed and the wall is

stiffened by the build up of plaque with a lipid core and

a fibromuscular cap [11]. In some cases the arterial wall

can remodel itself by increasing its external diameter to

accommodate a plaque without narrowing the lumen,

producing angiographically silent plaques detectable

only by intravascular ultrasound [17]. In the majority of

cases where this does not occur the resulting stenosis

reduces blood flow to some degree. Atherosclerotic

stenoses are the main cause of stable angina [10].

Plaque rupture can lead to the formation of a thrombus

that blocks blood flow to the heart leading to unstable

angina or myocardial infarction [11]. Plaques with

large atheromatous cores, thin fibromuscular caps and

inflamed caps are particularly vulnerable [12] regard-

less of the degree of stenosis [23]. There is some

speculation that wall shear stress leads to luminal

thinning and promotes plaque rupture [5, 16, 45] al-

though there are also questions about whether high

hemodynamic shear alone would disrupt a stenotic

plaque [12, 15] as hemodynamic stresses are usually

much smaller than mechanical stresses imposed by

blood and pulse pressures [22]. Fast and accurate

estimation of the reduction in flow due to stenoses is

important in determining their effects on angina [20,

34] and accurate estimation of the increase in wall
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shear stress due to stenoses has implications for the

theory of plaque rupture [12]. In particular, discussions

in the presence of more realistic wall geometries are

needed [30].

The preferred surgical intervention for atheroscle-

rosis, balloon angioplasty, is quick and involves mini-

mal risk. A small catheter with an inflatable balloon is

inserted into the femoral artery and guided to the ste-

nosis by angiography. Inflation of the balloon crushes

the stenosis. Healing entails proliferation of smooth

muscle cells followed by the deposition of new collagen

[10] thus thickening the cap and reducing the risk of

thrombus formation, as well as pushing the plaque into

the wall thereby increasing blood flow. A Poiseuille

flow model [20, 34] is typically used by the radiographer

to aid the cardiologist in deciding whether to crush a

given stenosis. While Newtonian models, such as

Poiseuille flow, are appropriate for determining flow

after an intervention [4] they are inappropriate in

arteries narrower than 0.5 mm and are questionable in

those smaller than 0.8 mm [31] as blood displays a

marked shear-dependent viscosity [9] and a finite yield

stress may be necessary before the flow can commence

[2]. Although the major coronary arteries can be as

wide as 4 mm, clinically significant stenoses for angina

typically reduce the diameter of the artery by 85% or

more, and so stenosed coronary arteries are rarely

wider than 0.5 mm at their narrowest [28]. Power law

[31, 37], Bingham [29], Herschel-Bulkley [8] and Cas-

son [25, 30, 37] equations have been suggested as

models of this situation. While the Casson model is the

most realistic of these [3, 26], the power law model is

the simplest and requires the least number of numerical

integrations to achieve a solution [31]. The Casson

model predicts more reduction in flow than Newtonian

alternatives. The power law model consistently predicts

slightly more reduction in flow than the Casson model

[3] and thus errs, very slightly, on the side of caution.

For applications such as angiographic assessment of

stenoses, the power law model has the advantages of

speed and ease of solution.

High-resolution imaging techniques have been used

to document the geography of atherosclerosis within

the arterial tree. These imaging technologies include

intravascular ultrasound, multi-detector computerized

tomography and magnetic resonance imaging. The last

of these technologies, magnetic resonance imaging, is a

non-invasive technology that does not require radia-

tion, and affords the greatest intrinsic contrast between

soft tissue structures. In particular, it has been shown

to accurately document atherosclerotic plaque com-

position [41] and arterial wall remodeling [42].

Descriptions of geometric models using numerical

mesh constructed from magnetic resonance images

have been used to calculate wall shear stresses for

example [19, 38]. However, still limitations exist with

the spatial and temporal resolution of magnetic reso-

nance imaging in performing this analysis in human

coronary arteries [43]. Therefore, there is still much to

be gained from advanced mathematical modeling

algorithms assessing the atherosclerotic vessel wall.

Lack of solutions in the presence of realistic wall

geometries has reduced the applicability of non-CFD

based mathematical modeling techniques to blood flow

through stenosed arteries [1, 30]. Symmetry has been

assumed in past work [29] even though atherosclerotic

plaques in the coronary arteries are typically longitu-

dinally and radially asymmetric. Furthermore, helical

atherosclerotic plaques have been detected in human

left anterior descending coronary arteries [14] and such

helical plaques have been linked to hemodynamic

factors in the femoral arteries [39]. We extend previous

work modeling the circumferential and longitudinal

variation of lesions [40] to more accurately model the

wall geometry and to consider helical plaque struc-

tures. By varying the properties of the lesion, such as

the diseased height, axial and radial shape parameters,

as well as the degree of lesion spiral that develops onto

the inner wall of the atherosclerotic artery, the math-

ematical model is able to relate the subintimal helical

distribution of lesions to flow resistance and shear

stress on the arterial wall for straight arteries. The

requirement of straightness over such a length limits

the applicability of this work to the coronary arteries

but, more generally, the reduction in flow and the wall

shear stress ratios are found for blood flow modeled by

a power law fluid through a variety of complicated

stenosis geometries.

2 Definition of the arterial wall geometry

The development of a mathematical model of blood

flow in arterial vessels established an important

framework in the analytical solution of non-Newtonian

flow through stenosed vessels and aneurysms, elastic

and viscoelastic tubes [44]. Solution of the approximate

equations governing steady flow through stenosed

arteries has been presented [21]. Detailed treatment of

non-Newtonian models of blood flow through rigid and

elastic walled arteries have been examined using the

power law model [27, 31, 32].

Although the arterial wall profiles used in such

studies are considered to be rigid and highly simplified,

and do not reflect the true mechanical and geometrical

characteristics of the typical atherosclerotic artery, it
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does not hinder the ability of the model to predict the

response for flow resistance ratio under the influence of

an aneurysm or stenosis at different degrees of ath-

erosclerosis. A high resolution profile of a realistic

arterial segment will only add excessive shape param-

eters to the mathematical derivation of flow properties

in the examined arterial segment by incorporating

redundant geometrical features in its profile expres-

sion. The analytical shape that approximates a low

resolution of the experimentally determined profile

can be adopted effectively for analytical study of blood

flow in vitro as it is able to generate the variation

profile of the flow resistance ratio with respect to

arterial dimensional modifications.

The configuration of an arterial segment is an

important determinant in characterizing the nature of

blood flow through it. For a three-dimensional artery,

the wall geometry can be either symmetrical or asym-

metrical in the axial and radial directions. Axial sym-

metry implies that for a typical lesion distribution that

varies longitudinally, there exists a plane of symmetry

for the arterial surface such that it dissects the varying

wall profile along the examined segment from the

proximal to distal end of the artery, and through the

axis of the vessel. We define radial asymmetry to be

non-uniformity in the distribution along the circum-

ference of the artery. The geometry of the artery can be

presented using a series of sagittal and coronal planes.

2.1 Axial and radial symmetry

Figure 1 shows the longitudinal distribution of a seg-

ment for an idealized blood vessel structure. The axial

geometry is determined by the diseased wall height d,

shape parameter of diseased wall segment sz for an

atherosclerotic lesion of length l through an artery

originally of radius R0. Variation of sz forms the lesion

profile given by the solid, dash and dotted protrusion

outlines. Here, a is the distance from the origin to the

start of the diseased portion and b is the distance from

the origin to the end of it. The wall equations allow

both constriction (stenosis) and dilation (aneurysm) of

the lumen.

The axial geometry gz (z) of the diseased segment is

defined as

gzðzÞ ¼
df1ðzÞ for a � z � b

0 otherwise

�
; ð1Þ

and

f1ðzÞ ¼
1

lsz

sz

sz
sz�1

sz � 1
½lsz�1ðz� aÞ � ðz� aÞsz � for sz � 2:

ð2Þ

It can be observed that the geometrical wall height

variation is dependent on the axial segmental distance

z that is taken from a onwards, and is limited by a

length of b. The expression of f1(z) can be constructed

using the components (z–a) and ðz� aÞsz :These two

terms are normalized after dividing each of them by l

and lsz respectively. The difference of the two terms is

multiplied by a function of the shape parameter, sz.

Therefore f1(z) is dimensionless and represents the

normalized height of the diseased segment.

Given that the normalized diseased height with re-

spect to a healthy arterial radius is:

DðdÞ ¼ d
R0

for� R0 � d � R0; ð3Þ

the equation describing the geometry of the wall after

normalization is:

Rz

R0
¼ 1� DðdÞf1ðzÞ for a � z � b

1 otherwise

�
; ð4Þ

where sz is a parameter determining the shape of the

stenosis, and Rz is the general radius of the artery. The

lesion is asymmetrically profiled about the diseased

center for sz > 2.

2.2 Axial symmetry and radial asymmetry

The equations governing the wall profile for both

longitudinal and radial orientations give a better rep-

resentation of a realistic arterial segment. Useful

deductions on the flow properties through three-

dimensional varying wall profiles and arterial configu-

ration can be established. We examine the variation of

diseased wall height, shape of diseased wall segment

Fig. 1 Axial variation of arterial wall with lesion development in
the (r – z) plane. A single lesion segment is presented from the
proximal to the distal end for the case of stenosis. An aneurysm
can be constructed by negating the value of diseased wall height
d. An ideal artery is presented and variation of sz causes the
stenosis or aneurysm to be skewed asymmetrically along the z-
axis
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and number of diseased segments that are determined

by the parameters d, sh and kh respectively.

A circumferential profile f2(h) modifies arterial wall

in the radial plane. Increasing the shape parameter sh

will result in a higher variation for the circumferential

distribution of atherosclerotic lesion. Figure 2 illus-

trates three atherosclerotic profiles superimposed on

the same coronal plane, whereby kh = 2 and with shape

parameters such that sh
ð3Þ[sh

ð2Þ[sh
ð1Þ: The flow solu-

tion for this geometry is valid only if sh is non-zero. It

should be discrete and non-negative for kh > 1, but it

can be continuous when kh = 1. Given that

f2ðhÞ ¼ sin2sh
kh

2

� �
h where sh � 1 for kh � 1; ð5Þ

we see the diseased geometry varies asymmetrically

about the origin of the stenosis, and so dilation both

longitudinally and circumferentially is given by:

gz;hðz; hÞ ¼ gzðzÞf2ðhÞ for a � z � b; 0 � h � 2p:

ð6Þ

The general radius of the artery that varies along the z-

axis and (r – h) plane is denoted by Rz. This geometry

represents an artery that has uneven diseased segments

in the radial plane and asymmetrical axial geometry

about the center of the origin of the lesion. The

normalized wall height ratio equation that describes

the geometry of the vessel, by having this radial

dimension as a parameter, is now defined as

Rz;h

R0
¼ 1� DðdÞf1ðzÞf2ðhÞ for a � z � b

1 otherwise

�
: ð7Þ

2.3 Axial and radial asymmetry

A helical lesion can be modeled by introducing a var-

iable angular phase shift allowing the peak of the ste-

nosis to relocate along the circumference of the arterial

wall in the coronal plane. In order to simplify modeling

the maximum height, d, of the stenosis is kept constant

throughout the spiral. The angular phase shift, /, is

dependent on the axial dimension. The lesion profile is

non-uniform at every sagittal and coronal plane as seen

in Fig. 3.

The parameters that control the geometry of a single

lesion spiraling structure are the diseased height d, the

radial shape parameter sh, the degree of spiral w, the

length of wall it extends along l and radius of the

healthy artery R0. For constant radial variation, the

lesion geometry is given by:

gzðzÞ ¼
d for a � z � b
0 otherwise

�
: ð8Þ

The variable magnitude of spiral, w, that is quantified

in degrees, measures the number of helical coils for a

specific arterial length l. A spiraling lesion can be

defined by:

gz;hðz;hÞ ¼ gzðzÞf3ðh;zÞ for a� z� b; 0� h� 2p; ð9Þ

where

f3ðz;hÞ ¼ sin2sh
kh

2

� �
ðhþ/Þ for sh � 1;kh � 1; ð10Þ

and

/ ¼ w
z

l
for w � 0: ð11Þ

An artery with longitudinally uniform and radially

asymmetrical diseased segments is represented by:Rq

Rz

d

q

s(1)

s(2)

s(3)

q

1

q

Ventral

Dorsal

Lateral Medial
,q

Fig. 2 Radial variation of arterial wall due to presence of
localized lesions in the (r – h) plane. The shape and number of
localized lesions can be controlled by parameters d, sh and kh to
construct the idealized lumen that is similar to the real arterial
structure. Nevertheless, there will always be a limitation in the
complicated shape variation, which is controlled by these
designated parameters

Fig. 3 Mesh of diseased artery that is split into two halves
exposing the spiraling of a single lesion along the arterial wall.
The degree of spiral is an indicator for the number of turns along
an arterial length. Cases of such spiraling lesion are found in
diseased arteries of cadavers [39]
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Rz;h

R0
¼ 1� DðdÞf3ðz; hÞ for a � z � b

1 otherwise

�
: ð12Þ

3 Theoretical models of blood flow

In a fluid flow that is incompressible and under a

steady flow field, the shear rate of strain of a

material fluid element is defined as the rate of de-

crease of the angle formed by two mutually per-

pendicular lines on the element. As such, the shear

strain rate _c is defined as a function of s and is

proportional to the rate of decrease of axial velocity,

vz along the arterial radius:

_c ¼ f ðsÞ ¼ �dvz

dr
: ð13Þ

In general, the shear strain rate can be defined as a

function of s and the mechanical characteristics of the

flow can be described by the Poiseuille’s law model

[33], which defines a linear relationship between the

shear stress and strain components with the viscosity as

its gradient. The model can be expressed

mathematically as

s ¼ l _c: ð14Þ

The power law or Ostwald de-Waele model includes

the flow behavior index to introduce the non-

Newtonian effect to the fluid. In this regard, a

Newtonian fluid can be described by a Poiseuille flow

since it conforms to the Newton’s law of viscosity. It

defines the flow properties based on a type of time

independent non-Newtonian fluid [24] with shear

dependent viscosity. Given that s is the shear stress, _c
is the shear strain rate, m is the consistency and n is the

flow behavior index. The model can be expressed by

the constitutive equation:

s ¼ m _cn: ð15Þ

For pseudo plastic fluids such as blood, n < 1, the

apparent viscosity decreases as the shear strain rate

increases. The power law model reduces to its New-

tonian case when n = 1 and m = l, which is the vis-

cosity of the fluid.

Other versions of non-Newtonian fluids exist in

literature, such as the Herschel-Bulkey [18], Bingham

[6] and Casson [7] models, which introduce an

additional yield stress s0 at zero shear rate to the

power law or Poiseuille models, such that s ‡ s0 in

order for flow to take place. A Bingham fluid

resembles a Herschel-Bulkey model, but it estab-

lishes a linear relationship between shear stress and

shear strain rate. A Casson model takes the form of

the Bingham model, but it effects an exponential of 1
2

for every term in its equation. In summary, the fol-

lowing equations describe each of these fluids,

Bingham fluid:

s ¼ l _cþ s0 for s � s0; _c ¼ 0 for s � s0: ð16Þ

Herschel-Bulkey fluid:

s ¼ l _cn þ s0 for s � s0; _c ¼ 0 for s � s0: ð17Þ

Casson fluid:

s ¼ ðl1
2 _c

1
2 þ s

1
2

0Þ
2 for s � s0; _c ¼ 0 for s � s0: ð18Þ

The application of these fluid models for the study of

flow resistance in atherosclerotic arteries has been

examined thoroughly in the literature [27, 31, 32]. The

flow resistance ratio for each of these models vis-à-vis

variation of arterial geometry typically gives the same

direction of increment or response change, but at dif-

ferent magnitudes. Although the Casson model has

been shown to be the most appropriate physical

description of blood flow in vitro [26], it is more

complicated mathematically as compared to the power

law model. The assumption of a yield stress term and

the square root of each of the parameters in the

equation makes the solution difficult in any realistic

wall geometry [29]. The power law model consistently

predicts slightly greater reduction in flow than the

Casson model [3], which itself predicts greater reduc-

tion in flow than Newtonian alternatives. Therefore, it

is likely to slightly overestimate the flow resistance, but

is effective as a mathematical entity in the theory for

connecting the flow properties with the geometrical

characteristics of the arterial profile.

4 Mechanics of flow through an artery with axially

and radially varying wall geometry

Accurate estimation of the reduction in blood flow

caused by a stenosis is clinically important when

deciding whether to intervene [29] and careful

approximation of the increase in wall shear stress has

implications in the theory of plaque rupture and

thrombus formation [5, 16, 45]. The resistance to flow

ratio is the blood flux through the stenosed or dilated

artery with respect to that through a healthy artery.
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The wall shear stress ratio compares the maximum

shear stress on the wall of the plaque with that which

will be present on the wall of the artery if there is no

plaque. In both cases ratios are determined both be-

cause they give important information of the effect of

the stenosis and because they obviate the need for

exact calculations of difficult to calculate quantities

through cancellation.

4.1 Derivation of flow resistance

To work out the ratio of flux through a stenosed artery

to that through its healthy equivalent it is first neces-

sary to derive expressions for the flux in these two

cases. The flux, Q, through the artery [13, 24] is:

Q ¼
Z2p

0

ZRz;h

0

rvzdrdh: ð19Þ

Using integration by parts, Q ¼
RRz;h

0 rvzdr can be

expressed in terms of r and dvz

dr and by applying

no-slip boundary condition, vz = 0 when r = Rz,h:

Q ¼ 1

2

Z2p

0

ZRz;h

0

r2f ðsÞdrdh: ð20Þ

Now s is given by:

sðrÞ ¼ � r

2

dp

dz
; ð21Þ

where p is the pressure. Therefore, the value of s at r =

Rz,h is given by

sR ¼ sðRz;hÞ ¼ �
Rz;h

2

dp

dz
: ð22Þ

Re-expression of the integration in (20) and using

Eqs. 21 and 22 yields:

Q ¼ 1

2

Z2p

0

Rz;h
3 1

sR
3

ZsR

0

s2f ðsÞdsdh; ð23Þ

where the plasma layer is assumed to be negligible and

sR is the shear stress at the wall. Substitution of Eqs. 13

and 14 into 23, and integration by s gives

Q ¼ 1

m

� �1
n1

2

Z2p

0

Rz;h
3 1

sR
3

n

3nþ 1
s

3nþ1
n

� �sR

0

dh: ð24Þ

Rearranging,

Q ¼ 1

m

� �1
n n

2ð3nþ 1Þ

Z2p

0

Rz;h
3sR

1
ndh: ð25Þ

Further substitution of Eq. 22 into 25 gives

Q ¼ 1

m

� �1
n n

21þ1
nð3nþ 1Þ

�dp

dz

� �1
n
Z2p

0

Rz;h
3þ1

ndh: ð26Þ

Integration of Eq. 26 with respect to z such that the

pressure difference, DP = pi � p0;and setting the

conditions that p ¼ pi at z = 0 and p = p0 at z = l gives

DP ¼ 2nþ1ð3nþ 1ÞnmQn

nnR0
3nþ1

Z l

0

dz

R 2p
0

Rz;h

R0

� �3þ1
n

dh

� �n: ð27Þ

Flow resistance is given by:

k ¼ DP

Q
: ð28Þ

Division of flow resistance for an abnormal artery with

a normal one yields the flow resistance ratio for flow

through a longitudinal and radial varying artery in the

coronal and sagittal planes as shown:

kðz; hÞ ¼ 2pn

l

Z l

0

dz

R 2p
0

Rz;h

R0

� �3þ1
n

dh

� �n; ð29Þ

and for uniform radial distribution,

kðzÞ ¼ 1

l

Z l

0

dz

Rz

R0

� �3nþ1
: ð30Þ

For a normal artery, Rz;h ¼ R0 and this gives a flow

resistance ratio of one. For a fully occluded artery Rz,h

= 0 and the flow resistance is infinite.

4.2 Derivation for wall shear stress

From Eq. 24 it can be determined that the axial wall

shear stress on an axially and radially variable stenosis is:

sRðz; hÞ ¼ m
2ð3nþ 1Þ

n

� �n 1R 2p
0 Rz;h

3dh
h in: ð31Þ
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For a normal artery the axial wall shear stress is:

sN ¼
m

R0
3n

ð3nþ 1Þ
np

� �n

: ð32Þ

The wall shear stress ratio of an axial and radial

varying diseased artery to that of a normal one in the

axial direction is given by:

sðz; hÞ ¼ sRðz; hÞ
sN

¼ 2pR 2p
0

Rz;h

R0

� �3

dh

2
64

3
75

n

: ð33Þ

For a uniform radial distribution,

sðzÞ ¼ sRðzÞ
sN
¼ 1

Rz

R0

� �3n
: ð34Þ

5 Results

In this section, the degree and configuration of ath-

erosclerosis is varied to understand the relationship

between the arterial geometry and blood flow resis-

tance. Useful deductions on the geometrical variation

and its effect on the hemodynamics of blood are pre-

sented. The study examines, in particular, how the axial

and radial variability of arterial wall geometry can be

combined to affect the blood flow resistance in a single

isolated vessel. The model is able to predict the degree

of aggravation in occluded arteries vis-à-vis develop-

ment of atherosclerotic spiraling lesion.

5.1 Variation of axial and radial wall geometries

The arterial geometry with variable diseased height

and shape in the circumferential and longitudinal ori-

entations is determined by d, sh and kh in the radial

(r – h) plane and d and sz in the axial (r – z) plane.

Figure 4 describes lesions of various shapes that is

determined by sh from 1 to 8, and for two configura-

tions (kh = 1 and 2) in the radial plane. The plots

demonstrate that as the value of sh increases, the dis-

eased regions become more compact toward the origin

of the lesion. When sh is zero, the distribution of lesion

on the circumference of the artery is uniform.

Figure 5 shows the plots of lesions in the axial plane

that have shape parameter sz at 2, 5 and 15 for each

subfigure. The geometrical profile of the lesion changes

for a different value of sz. d is varied from – 0.1125 to

0.1125 mm at intervals of 0.0225 mm and the resulting

wall profiles are plotted in solid lines. The healthy

arterial wall is displayed using dotted lines. R0 and l are

standardized at 0.45 and 7.5 mm respectively.

We construct an axially and radially varying artery

(in Fig. 6) such that only one diseased segment is

considered. Here, a = 0, l = 7.5 mm, R0 = 0.45 mm.

The intermediate wall heights d vary from – 0.25 to

0.25 mm and are illustrated with dotted profiles. This

diagram presents an axial and radial asymmetrical ar-

tery whereby kh = 1. The radial shape parameter is

defined to be sh = 8. The axial profile is non-uniform

and set at sz = 2.

The surface curves for the resistance to flow ratio k
responding to effect of d, sz, sh and kh can be plotted

and analyzed. The flow is assumed to be Newtonian.

(i.e., n = 1). The integration with respect to h is eval-

uated analytically and then raised to the power of n.

The reciprocal of the resulting expression with respect

to z is integrated numerically to calculate the flow

resistance. The geometry of diseased segments in the

radial and axial orientation of the artery has been de-

fined and the variation of the parameters d, sz, sh and kh

are investigated for their effect on the flow resistance.

From Fig. 7a, the change of flow resistance ratio, k;
with respect to sh is smaller when the diseased wall

height is constant at D = – 0.5 (aneurysm) as compared

to when it is fixed at D = 0.5 (stenosis). When an

arterial dilation is present, k decreases with respect to

sh but with a much larger gradient in comparison.

There is no variation for k versus sh when D = 0. This is

theoretically correct as the shape parameter has no

effect on a healthy normal artery. At low values of sh,

the acceleration of k with respect to D is higher than

when sh is set at high values. The graph for flow

resistance is generated for grid of ½sh � sz� in Fig. 7b,

whereby sz is varied from 2 to 82 at intervals of 8. This

shows that the value of flow resistance ratio is higher

for smaller values of radial and axial shape parameters,

sh and sz, and that the deceleration of k is reduced

when flow is monitored in the range of high shape

parameters [sh · sz] variation.

A stenosis of the artery is characteristically followed

by dilation due to the sudden increase in pressure of

the blood immediately after flowing through the nar-

rowing of the vessel [35]. Equation 28 defines the flow

resistance ratio to be proportional to the pressure dif-

ference across the stenosis. We explain the formation

of vessel dilation immediately after a stenosis by

relating the sudden release of blood pressure build up

after passing through an occlusion. Since the pressure

is related to the momentum of fluid transport, a high

concentration of ‘formed’ elements suspended in the

plasma such as erythrocytes, leukocytes and platelets

123

Med Bio Eng Comput (2006) 44:971-982 977



will cause a larger force of expansion after the flow

enters the dilation. Aspirin or acetylsalicylic acid is a

drug in the family of salicylates that has an anticoag-

ulant (blood thinning) effect and is used in long-term

low-doses to prevent heart attacks. The reduction in

mass concentration of blood will lower the sudden

blood pressure release into the dilation and therefore

mitigate the extent of aneurysm. This reduction in

viscosity of blood corresponds to a drop in its flow

behavior index.

5.2 Effect of spiraling lesion on flow resistance

Equations 10–12 translate into a radial geometry that

can be shown in cross-sectional planes cutting along

the central axis of the artery. In Fig. 8, ten coronal

planes of the artery are sampled to illustrate the cir-

cumferential location of the lesion as it spirals along

the arterial wall length.

Figure 9 shows the surface curve of flow resistance

ratio responding to the effect of radial shape parameter

and degree of lesion spiraling. The shape parameter, sh

is varied from 0.5 to 10.5 at intervals of 1.0. The

number of lesions, kh = 1, and the degree of spiral w
along the wall of the artery varies from 90� to 360�.

The flow resistance ratio in the longitudinal flow

reduces as the magnitudes of w and sh increase. The

flow resistance ratios corresponding to flow behavior

indices n = 1, 1
2 and 1

3 are shown by the solid, dash and

dotted response surfaces respectively in Fig. 8. For the

same geometrical configuration, low values of n results
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Fig. 4 Plot of arterial profile in the radial plane that is
determined by diseased wall height d, shape of diseased wall
segment sh and number of localized lesion kh, by varying sh in the
range 1–8 at intervals of 1, and fixing D = [ – 0.25, +0.25] and kh =
[1, 2]. The variable control of the lumen geometry can be
achieved as such

(a)

(b)

(c)

Fig. 5 Plot of arterial profile in the axial plane that is determined
by diseased wall height d, shape of diseased wall segment sz and
the length of localized lesion l. The normalized diseased wall
height D is varied from – 0.25 to 0.25 at intervals of 0.05. The
ratio of normal wall height to arterial length is 0.06

Fig. 6 Schematic diagram of a single experimental arterial
segment in the (r – z) and (r – h) plane. The shape of the lesion
is constructed idealistically using the shape parameters kh, sh and
sz, and dimensional parameters d, R0 and l. The geometrical
shape may not reflect the real life structure exactly. Although
multiple abnormal segments can be constructed, and flow
through such a vessel can be solved, we considered only one
diseased segment to simplify the study of relationship between
flow resistance and lesion geometry
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in a smaller degree of spiraling. The spiraling of the

lesion reduces blood flow resistance and the pressure

build-up along the arterial wall and reduces the risk of

post-stenotic aneurysm. Nevertheless, the pathological

remodeling of an atherosclerotic vessel is limited by

the structural integrity of the diseased segment that is

dependent on the composition of the lesion and

properties of the media and adventitia [36]. At any

coronal cross-section and for a non-uniformly occluded

artery, the cross-sectional flow is always larger than

that with a uniform stenosis:

Z2p

0

Rz;h

R0

� �
dh[

Z2p

0

Rz

R0

� �
dh: ð35Þ

Raising the radial dimension to a higher order and

taking the reciprocal of the terms:

1R 2p
0

Rz;h

R0

� �3

dh
\

1R 2p
0

Rz

R0

� �3

dh
: ð36Þ

Integration and raising the order of solution to n yields:

sðz; hÞ\sðzÞ ð37Þ

The wall shear stress of a spiraling lesion at any point

along the arterial wall in the longitudinal direction is

smaller than that of an axial symmetrical or uniformly

stenotic artery. The helical lesion spreads the localized

wall shear stress along a spiral path and reduces flow
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Fig. 7 Variation of flow resistance ratio k for parameters D, sz

and sh. The axial shape parameter is standardized at sz = 2 as sh

and D vary, and the diseased height is fixed at D = 0.25 for the
variation of sh and sz. The response of k to the lesion geometrical
configuration can be determined mathematically. The surface
response curve is able to explain the relationship between flow
resistance and the geometry of the lesion clearly and effectively

Fig. 8 Geometrical profiles of lesion along the walls of a
diseased artery by a phase shift of / for w = 180� Cross-sectional
views that are sliced along ten equal divisions of the arterial
length from upstream to downstream of the blood flow shows the
helical profile from a different perspective. The localized lesion
viewed from these coronal planes is shown to rotate through an
angle of 180�
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Fig. 9 Flow resistance ratio of flow through diseased artery
response to sh = 0.5–10.5 and w = 90�–360�. We vary these two
parameters to show how their modifications can affect lesion
spiraling. The graph is effective in relating flow resistance
through a diseased vessel with localized lesion arranged helically,
to the degree of its spiraling. It serves as a simple mathematical
tool to link parameters of interest when analyzing the flow
properties, but at the expense of simplification of the model
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resistance in the axial direction. This reduces resistance

to flow and wall shear stress thus lowering the chance

of rupture and thrombosis compared to that in an

axially symmetric stenosis of similar height.

6 Discussion

The mathematical description of a longitudinally and

circumferentially varying occlusion due to the non-

uniformity of the lesion growth can be constructed

based on the separation of axial and angular expres-

sions along the z and h directions respectively. The

variation in the flow properties due to modifications in

arterial profile presented in the two orientations can be

represented by a three-dimensional response surface

map. Useful analysis can be based on the variation

profile of this surface map that determines the nature

of response of the flow resistance ratio to the geo-

metrical modifications of the artery, rather than exact

values of the examined flow property for a designated

arterial segment. The nature of response here refers to

the polarity of change in flow resistance ratio, and the

degree of response states the magnitude change in the

property that is measured.

The Casson model is a more accurate model of hu-

man blood in vivo than the power law model [26].

However, the differences are small and the power law

model predicts less flow than the Casson rather than

more flow as is the case with Newtonian alternatives

[3]. Use of the power law model has made it possible to

solve for resistance to flow ratio and wall shear stress

ratio through the complicated wall geometry intro-

duced to allow more realistic modeling of actual ste-

notic shapes.

The use of first order instead of second order shear

strain in the derivation of longitudinal flow resistance

through an atherosclerotic artery is considered in this

study to reduce the flow model from three-dimension

to one-dimension. This is the reason that vortex and

unsteady flow have not been considered. The dominant

shear strain is assumed to exist along the flow direction

as the only non-zero gradient component in a steady

state flow condition. Although such assumptions may

limit the accuracy of the flow resistance values that are

based on the parameter values pertaining to every

arterial configuration, the nature of the flow resistance

ratio surface will be affected minimally by the com-

ponents of the shear strain acting along the other

planes.

The main contribution of this paper is the introduc-

tion of a more realistic wall geometry that has previ-

ously been used with analytic mathematical modeling

methods. The assumption of a straight rigid arterial wall

rather than a curving viscoelastic one has been neces-

sary to simplify the problem, making it tractable.

Nuances can be added to the model and it should be

possible to add in curvature or even viscoelasticity if

required, although this would be challenging.

7 Conclusion

Clinical interest in quantifying the reduction in flow

through a coronary artery caused by a stenosis and

theoretical interest in quantifying the increase in wall

shear stress, brought about by the presence of a ste-

nosis, has been frustrated through mathematical mod-

eling traditionally focusing on very restricted stenotic

geometries. We have introduced wall-modeling tech-

niques allowing estimation of these quantities for

power law flow through a lesion with complicated axial

and radial variation. The mathematical model allows a

better fit to real wall geometries than was previously

possible through analytic techniques and uses a power

law model of blood flow. Analysis of the relationships

between the maximal stenotic height and the axial and

radial shape parameters have demonstrated that the

resistance to flow ratio is dependent on the variation of

arterial wall in both the coronal and sagittal planes.

The improvements in the modeling of wall geometry

have allowed consideration of spiraling stenoses in

straight arteries. To be clinically relevant in the coro-

nary arteries, this must be extended to helical stenoses

in curving arteries. As they stand, the results are of

interest for other arteries and are suggestive of what

may be found in more realistic curving models of the

coronary arteries. The introduction of a spiraling ste-

nosis spreads the post-stenotic increase in wall pressure

along the artery and should reduce the risk of post-

stenotic dilatation or aneurysm.

The proposed formulation of the wall geometry is

able to relate the structural profile of the transport

vessel with flow properties at low computational cost

and in a non-invasive manner. This has possible

applications in provision of reduction of flow estimates

in angiography equipment and in situations where

practical experimental measurement of flow is not

possible. There are some limitations in the relationship

between the different non-dimensional parameters due

to assumptions of idealistic blood flow behavior indices

and homogenous and irrotational flow. There may also

be minor accuracy problems because the arterial wall is

assumed to be rigid rather than viscoelastic but previ-

ous work [32] has shown the differences to be minor in

those cases that have been examined. No experimental
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validation of the results has been carried out but the

power law model is known to fit the behavior of blood

in small arteries almost as well as the Casson model.
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