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Abstract

Recent advances in semiconductor technology have greatly increased the performance and range of application of switched mode circuits.
Periodic switching can give rise to acoustic noise [Y.-S. Lai, Random switching techniques for inverter control, Electronics Letters 33 (9)
(1977) 747–749] or undesirable electromagnetic radiation. These problems can be reduced through the use of random switching policies
[S.Y.R. Hui, S. Sathiakumar, K.-K. Sung, Novel random pwm schemes with weighted switching decision, IEEE Transactions on Power
Electronics 12(0885-8993) (1997) 945–951], but it is not always clear how this could be done without affecting other performance measures,
such as RMS ripple or stability.

We use the buck/boost regulator as an example for analysis and determine some simple techniques for choosing appropriate component
values. The circuit is simulated and it is shown that strict adherence to the formal limits of stability, suggested by control theory, does not
always guarantee a satisfactory output.

We demonstrate that if switching is performed quickly enough then a state-space averaged model may be used for the buck/boost
controller. This model is stable within wide bounds. It is possible to use some of this freedom to optimise EMC performance through the
use of a control law which is random within certain limits.

In the popular mind, the idea of “randomness” seems to be completely opposed to the idea of “control.” We show that not necessarily the
case. Some randomness can beneficial, from the point of view of minimising the maximum power spectral density of the noise waveforms in
the output current. This can be done without compromising the stability of the system.q 2000 Elsevier Science Ltd. All rights reserved.
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1. The buck/boost regulator as an example for analysis

In this paper we use a state variable approach to systems,
which is very general. Rather than discussing all systems
purely in the abstract, we illustrate the important points
using an example system. We have selected the buck/
boost regulator for the following reasons:

• It is very commonly used. Applications are found with
the data sheets of many of the commercially available
integrated circuits, such as the LM78S40.

• Simple analysis can readily be found in the literature
[1,2].

• Since this regulator can “boost” voltages, it has inter-
esting stability properties. It can appear to be unstable
if an inappropriate control rule is used.

• This regulator is composed from linear elements and can
be readily formulated and analysed in state space.

The buck/boost regulator is basically a switched inductor
circuit. The topology is in Fig. 1. The regulator has two

modes. In mode 1, called the “on” time, S1 is closed and
S2 is open. In mode 2, called the “off” time, S1 is open and
S2 is closed. We can denote the “on” time byDT1 and the
“off” time by DT2. The use of the symbol “D” implies that
the switching times are small compared with all of the time
constants in the regulator.

This switched-mode system only has two modes and only
a very simple control rule is needed, or even possible. The
system can be viewed as a finite state machine and the
control law can be represented using a state transition
diagram, shown in Fig. 2. The “modes” of operation of
the buck/boost regulator are shown as “states” of the state
transition diagram.

In practice, S1 is often a bipolar transistor and S2 is a
diode [1,2]. The buck/boost circuit is an inverting regulator.
The average DC values ofVs andVc are opposite in sign.

2. Normal operating conditions and a simple approach to
design

The natural state variables to use for this type of circuit
are the capacitor voltages and the inductor currents.
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Together they characterise the total stored energy of the
system. These variables are also preserved across switching
boundaries.

If DT1 andDT2 are “small” then simulations show that the
responses have a small triangular wave, or “ripple”, super-
imposed on top of them. The rise and fall times of this
superimposed wave are tied to the switching times,DT1

andDT2. If we consider the quiescent or DC case (after all
transients have been attenuated), then we expect to get
regular triangular waveforms, as shown in Fig. 3. We can
develop a piecewise linear model.

The symbolVc is used here to denote the median value of
the capacitor voltage andDVc denotes the ripple voltage
across the capacitor. The capacitor voltage is also equal to
the output voltage, delivered to the load,Rl. Similarly, the
symbolI l is used to denote the median value of the inductor
current andDI l denotes the ripple current through the
inductor. During the “on” time, the inductor current is
also equal to the input source current. During the “off”
time, the input source current is zero.

The simple application of nodal and mesh equations to
the system, in both modes, leads to the following formu-
lation: during the “on” time:
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We can eliminate terms involvingDVc andDI l and write the
equations in matrix form:
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where d is the time averaged duty cycle,�DT1=�DT1 1
DT2��:

We can solve the equations algebraically and derive an
expression forVc in terms of the source voltage,Vs, the ratio
of the switching times,�DT1=DT2� and the ratio of the source
and load impedances,�Rs=Rl� :

Vc � �2Vs�
1=�DT1=DT2�1

Rs

Rl

� �
DT1

DT2

� �
1 1

� � : �6�

It is usually the case that�Rs=Rl� is very small so we can
write

Vc < �2Vs� DT1

DT2

� �
�7�

and can readily control the median output voltage by
controlling the duty cycle of the switching control rule.

After the component values have been fixed, we can still
control the behaviour of the output by making changes to
the control rule, shown in Eq. (2). We can vary the amount
of ripple by controllingTs � DT1 1 DT2 and also vary the
median output voltage by controlling�DT1=DT2�; as
suggested by Eq. (7).
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Fig. 1. A schematic circuit for the buck/boost regulator.

Fig. 2. A simple control rule for the buck/boost controller.

Fig. 3. A piecewise linear model for the buck/boost regulator.



If the source impedanceRs is appreciable, thenVc has an
upper bound. This occurs when

DT1

DT2

� �
� 1�������

Rs=Rl
p

and we get

maxuVcu � �2Vs�
2
������������Rs�=�Rl�
p

1 �Rs=Rl�
:

If �Rs=Rl� is small, then we can write

maxuVcu <
1
2

Vs����������Rs=Rl�
p :

We can still controlVc within this range by altering the duty
cycle.

We can readily calculate the amount of ripple,DVc

DVc � �2Vc� DT1

RlC
: �8�

The designer must make some decision about the amount of
ripple that can be tolerated. Eqs. (6) and (8) can be used to
estimate appropriate values forC and the initial design value
of �DT1=DT2�:

We can also solve for the current,I l and the ripple current
DI l

I l � Vs

Rl =�DT1=DT2���DT1=DT2�1 1�1 Rs
: �9�
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L
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DT2
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Eqs. (9) and (10) can be used to select the inductance and the
current rating of the inductor.

It was assumed that the regulator would be supplied by a
source with the nominal parameters ofRs � 0 V andVs �
110 V: A modest and very feasible switching time of 25ms
was chosen. Using the simple approach, a system was
designed to guarantee thatVc � 210:0 V and DVc �
10 mV: The percentage ripple inI l was designed to be
about the same at the percentage ripple inVc. The selected
values were:C � 1500mF andL � 68 mH: It is reassuring
that these component values are not extreme. The actual
numerical values are less important than the procedure
used in the design, which is quite general.

The simple, piecewise linear, model does allow some
estimates of currents in the inductor and in the load and
their rates of change. The main sources of EMI, in switch
mode supplies, are the square switching waveforms, the
charging current at the input and the current at the load
[3,4]. If we are to estimate these quantities more accurately,
then we need a more realistic dynamical model. We also
need to have a more accurate model to study the transient
behaviour and the stability of these circuits. The most
widely accepted and general approach to this problem is
to use state variable techniques [5–7].

3. A state variable formulation of a switched mode
circuit

If we apply infinitesimal differentials to the analysis of
the buck/boost regulator, rather than finite differences, then
Eqs. (1)–(4) can be rewritten using matrix notation.

For the “on” mode, we get:
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For the “off” mode, we get:

_Vc

_I l

" #
�
�21=RlC� �21=C�
�1=L� 0

" #
Vc

I l

" #
1

0

0

" #
: �12�

For the “on” mode, we get:_X � A1X 1 U: For the “off”
mode, we get:_X � A2X 1 0: The column vectorX contains
the state variables. There are two different transition
matrices,A1 and A2. The column vector,U represents the
input from the source.

The state variables have been deliberately chosen in
such a way that they are preserved across the switching
boundaries. At these switching moments, the state transition
matricesA1 andA2 are substituted for a single matrix.

4. Stability of the circuit in each mode

The system is linear in either mode and the stability can
be readily analysed by examining the eigenvalues of the
transition matrices. If we invoke the theory of the Laplace
transform then these eigenvalues can be identified with the
poles of the system in thes domain. The eigenvalues ofA1

are: �21=RlC� and �2Rs=L�: The eigenvalues ofA2 are:
2s 1 jvd and2s 2 jvd; where

z � 1
2

1
�����
L=C
p
Rl

; v0 � 1

1
����
LC
p ;

s � 1v0z and vd � v0�1
���������
1 2 z 2

p
�: The variable,z is

called the damping factor andvd the damped frequency
of oscillation, in radians per second. All of these eigen-
values have negative real parts and so the system is stable
in either mode.

5. Some simulation results

The state-space equations can be solved exactly using the
theory of the Laplace transform [8]. The general solution is
of the form:

x�t� � exp�At�x�0�1
Zt

0
exp�A�t 2 t��u�t�dt: �13�

The exp( ) function refers to the matrix power series

exp�At� �
X∞
k�0

�At�k
k!

;
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Fig. 4. State-space simulation of the almost quiescent case.

Fig. 5. State-space simulation of a transient response to a step change in the load.



and the second term follows from the convolution property
of the Laplace transform. If we perform the integration
directly and apply Eq. (13) to two adjacent time intervals
DT1 andDT2, shown in Fig. 2, then we get an equation that
describes the evolution of the system in the time domain:

X�t 1 DT1 1 DT2� � �exp�A2DT2�exp�A1DT1��X�t�

1 �DT1�exp�A2DT2��A1DT1�21

� �exp�A1DT1�2 I �U �14�
It is possible to simulate Eq. (14) directly and quite accu-
rately on a digital computer using mathematical software,
such as Matlab. The almost quiescent case was described by
the piecewise linear model. It is important to check that the
state-space model is consistent with this model. The simu-
lation is shown in Fig. 4. This is consistent with what we
expect from the simple model.

We wish to examine the way in which the system might
respond to a sudden change in load, in the absence of any
other changes. This was simulated and is shown in Fig. 5.

Clearly this response is stable. This gives us some confi-
dence that even very simple control laws, such as fixed duty
cycle, may be useful. We would hope that the duty cycle and
frequency could be altered by the control law at a rate which
is slow in comparison with the switching operation.

Eqs. (6) and (7) suggest that we could makeVc arbitrarily

large by changing the duty cycle. This suggests the follow-
ing very simple control law: At each switching momentDT2

is preserved andDT1 is increased:DT1 ← �1 1 e�DT1: We
chose e � 0:0003: The result is shown in Fig. 6. The
apparent thickness of the lines in Fig. 6 is not an artefact
of the numerical method. It is due to “zig-zag” ripple wave-
forms, similar to those shown in Fig. 4. It is a fundamental
part of the dynamical behaviour of the circuit.

The response shown in Fig. 6 appears to be unstable. A
more detailed analysis shows that the eigenvalues of
(exp(A2DT2) exp(A1DT1)) have absolute values of less than
1 so that this response is not “unstable” in the technical
sense. The response should be bounded.

There are two fairly clear lessons to be drawn from this
peculiar transient response.

1. Strict reliance on proofs of stability is often found in the
literature [8,9]. These theorems are very formal and are
ultimately true but they may not always be useful in
practice. The response may become completely unsatis-
factory long before it becomes “unstable” in the technical
sense.

2. We need a very simple criterion to help us to stay out of
danger. Eqs. (8) and (10) suggest that the switching times
should be small compared with the time constants, (RlC)
and (L/Rl). The definition of “small” should come from a
specification of quality of the state variables. The
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Fig. 6. State-space simulation of very large, almost unstable, transient response.



requirement that the output ripple voltage be small is a
much more stringent condition than the requirement that
the output be stable.

6. The state-space averaged model

The simulations in this paper were all achieved using a
direct evaluation of the switched state-space model. If we
imagine a Boolean switching function,q�t� [ {0 ;1} ; then
we could write a single dynamical equation:

_X � �A1q�t�1 A2�1 2 q�t���X 1 BVs �15�
From a pure mathematical point of view, the switching
function, q(t), could be arbitrarily complicated. It could
have infinite bandwidth. In practice, the fine structure of
q(t) does not matter very much since it is averaged by the
plant. We can imagine a time averaged switching function:

d�t� � 1
Ts

Zt

t 2 t
q�t� dt:

In general,d(t) would be a real function on the interval [0,1].
We could then write:

_X � �A1d�t�1 A2�1 2 d�t���X 1 BVs � A3X 1 BVs

This is called the state-space averaged model [10]. It is a
valid approximation as long as we choose an appropriate

time frame,Ts. Strictly speaking, the averaging should occur
in the time domain. We should average the matrix (exp(A2D
T2) exp(A1DT1)) and compare this with an equivalent matrix
exp(A3(DT1 1 DT2)). The result is the same as averaging in
state space as long asDT2 and DT1 are small. We could
chooseTs to represent the last switching cycle, in which
case we getd�t� � DT1=�DT1 1 DT2�; which is the duty
cycle. We need to chooseTs to be small compared with
the time constants of the plant but this still leaves us with
considerable free choice forTs andd(t).

The stability of the switched system can be established by
examining the eigenvalues of the time averaged transition
matrix, A3 � �A1d�t�1 A2�1 2 d�t���: For the buck/boost
regulator, the real parts of the eigenvalues are:

2
1
2

1
RlC

1
Rs

L
d�t�

� �
which are always negative so the switched system is always
stable as long as we switch quickly enough for the time
averaged state-space model to be valid.

7. Some simulations using random variables in the
control rule

For the buck/boost regulator, we have a very simple
stability result. The system is stable as long as the switching

A. Allison, D. Abbott / Microelectronics Journal 31 (2000) 515–522520

Fig. 7. Variation of quality performance measures in response to a random factor,r .



frequency is high enough. We would like to use this
freedom to improve the performance of the regulator.

We know that periodic switching can give rise to
undesirable electromagnetic radiation and that the EMC
standards refer to maximum power spectral density [4].
Hui [11] has shown that the use of random switching func-
tions can improve the spectral characteristics of power
inverters. We propose an extremely simple random switch-
ing rule for the variation of the switching frequency. We

chooseTs � �rj 1 �1 2 r�� p T0: The parameterr is a real
number in the range 0, r , 1: It represents a degree of
randomness or random factor but is not a random variable.
The parameterT0 is the maximum value that the switching
time, Ts, may take. The variablej is a uniform random
variable in the range 0, j , 1: This scheme guarantees
that the switching frequency always lies in the interval
�1=T0� , Fs , �1=��1 2 r� p T0��: We can chooseT0 in
order to satisfy the quality requirement for ripple voltage.
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This will also guarantee stability. We study the way in
which RMS noise ripple voltage and maximum power
spectral density, vary in response to changes inr . The
results are shown in Fig. 7.

The EMC performance shows a qualitative similarity to
stochastic resonance [12]. The EMC performance improves
as we increase the random factor,r , up to a value of about
0.5. It is possible to get a 5–10 dB improvement in per-
formance. This is paid for by a small but steady increase
in the RMS ripple voltage. Eventually, the output becomes
overwhelmed by noise and the EMC performance degrades.

The performance of this control law withr � 0:5 is
shown in Fig. 8. We should note that this is still basically
the same control law, shown in Fig. 2. The only difference is
that we allowTs � DT1 1 DT2 to vary within limits while
controlling the value ofd � DT1=DT2:

8. Summary and conclusions

The simple piecewise linear approach to design was
found to be adequate and agreed quite well with the results
from the more complex state-space model. The switching
times must be small in relation to the time constants of the
system. If this condition is ever violated then the transient
responses can be very large, even though the system is
stable. The use of fast switching times allows the use of
the time averaged state-space model.

If we use fast switching times then we have some free
choice of the switching frequency. We can use this freedom
to improve EMC performance of the system by using some

randomness in the control law. This can be done without
compromising stability. The use of “too much” randomness
eventually degrades the output of the regulator. Provided
that it is used within limits, some randomness can be
beneficial.
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