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Abstract

A Brownian ratchet is a device that can rectify the random Brownian motion of particles to yield a directed steady-state flow. We can
imagine a thermofluid field of particles, which interact with the ratchet. The laws of thermodynamics imply that the ratchet must use energy

from some other source.

The dynamics of continuous-time Brownian ratchets are determined by a stochastic partial differential equation. We have used a simplified
discrete-time model of a Brownian ratchet called ‘Parrondo’s games’, which are governed by a difference equation. In their original form,
Parrondo’s games are a finite set of simple games of chance. An indefinite pure sequence of any single game is neutral or even losing. A
periodic or randomised sequence of mixed games can be winning. There is a steady state flow of probability in the preferred direction.

We have been able to design a feasible and consistent device, by mapping the conservation law of total probability onto the law of
conservation of charge. This device can absorb energy from a mechanical field to produce a directed flow of charge. The fundamental
architecture is based on a ‘bucket-brigade’ device. The capacitors are 2-port MEMS devices. We use CMOS transmission gates to connect

the capacitors in the required topology.

We present an analysis and simulation of the MEMS Brownian ratchet and suggest some possible applications. © 2002 Elsevier Science

Ltd. All rights reserved.
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1. Brownian ratchets

Brownian motion was first observed by the Scottish
botanist, Robert Brown, in the summer of 1827, following
his voyage to Australia in 1822. He noticed that grains of
pollen were subject to perpetual random agitated move-
ments when they were suspended in water. A typical sample
path is shown in Fig. 1. The phenomenon was studied
experimentally for the remainder of the 19th century and
was not completely understood until the work of Marian
Smoluchowski and Albert Einstein [1].

In 1871, James Clerk Maxwell published a thought
experiment [2] involving ‘a being whose faculties are so
sharpened that he can follow every molecule in its course.’
A slightly fanciful illustration of a Maxwell’s demon is
shown in Fig. 2. The Demon may appear to be hard at
work but, given access to suitable energy storage elements,
his net mechanical effort is zero. Maxwell came to the
shocking conclusion that such a being, now known as a
‘Maxwell’s demon,” might harness the microscopic move-
ments of molecules to perform useful macroscopic work in a
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way that would violate the second law of Thermodynamics.
Later works by Szilard, Brillouin, Landauer and Bennett
have shown that the decisions made by the ‘demon’ supply
information (or ‘negative-entropy’) to the system and that
this information cannot be supplied without continually re-
setting the mental state of the demon. This entails an energy
cost. Maxwell’s demon is therefore really a heat engine. It is
an unusual and exotic heat engine but it does not violate the
second law.

In 1912 Marian Smoluchowski [3] examined a similar
thought experiment where the molecules interacted with
the machinery through a paddle wheel and the selective
role of the demon was taken by ratchet and pawl mechan-
ism. A schematic diagram of the ratchet and pawl is shown
in Fig. 3. Smoluchowski’s ratchet appeared to harness the
random Brownian motion of the paddle wheel in order to
perform useful macroscopic work. Marian Smoluchowski,
and later Richard Feynman [4], concluded that such a
machine would work but that it would require a constant
input of energy in order to prevent the pawl from reaching
thermodynamic equilibrium with its surroundings. Smolu-
chowski’s ratchet is also seen to be an unusual heat engine,
which does not violate the second law. A machine based on
these principles is called a Brownian ratchet.

0026-2692/02/$ - see front matter © 2002 Elsevier Science Ltd. All rights reserved.
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Fig. 1. A sample path of a Brownian motion.

There is quite an extensive literature on Brownian
ratchets [5—13] and it is still a subject of active research.
The contemporary model for a Brownian ratchet does not
have the same physical appearance as the rotary ‘ratchet and
pawl’ machine of Smoluchowski. A more modern paradigm
is that of a ‘flashing ratchet’ where an asymmetrical field is
‘flashed’ on and off [9]. This is illustrated in Fig. 4(a)—(c).

In part (a), we see the asymmetrical form of a potential
field. Potential is considered to be energy per unit material
in the working substance. This could be Voltage (electrical
potential) or it could be any potential associated with a
conservative field. This potential is cycled ‘on’ and ‘off’
periodically. We imagine particles in the ratchet moving
in response to the field and to gradients of particle concen-
tration (or probability density).

In part (b), we see the steady-state distribution of particles
in the field. They are confined most strongly to the regions
of least potential, such as points near reference plane ‘y’.
We assume that the potential is strong enough to prevent
significant barrier penetration through planes ‘x’ and ‘z’.
The entire distribution of particles is divided into a number
of sub-distributions.

In part (c), we see the effect of removing the field. The
non-steady-sate, non-equilibrium diffusion of particles

Fig. 2. Maxwell’s demon ‘hard at work’.

D e

Fig. 3. The ratchet and pawl machine.

causes the sub-distribution at ‘y’ to spread out. The concen-
tration of particles at reference plane ‘y’ is reduced and there
are fluxes of particles, @ and @,, passing through reference
planes ‘7’ and ‘x’ respectively. The forward flux, @, is
larger than the reverse flux, @,, because most of the
particles were initially located closer to reference plane ‘z’
than to reference plane ‘x’ so @; > @,.

The effect over the entire ratchet is a superposition of the
effects from each of the local sub-distributions. The precise
rule for this combination is determined by a stochastic
partial differential equation called the Fokker-Planck
equation [14-16]:

p __dap) 10 (Bp)
ar dy * 2 ay? 1

where p(y, t/x, t) is the transition probability density, a(x, t)
is the infinitesimal first moment and B(x, ¢) is the infinitesi-
mal second moment. Eq. (1) is also known as the Kolmo-
gorov equation or the ‘master’ equation. The functions
a(x,t) and B(x,t) are related to the potential function and
to the laws of diffusion, such as Fick’s law. The result of this
ratchet process is that there is a net flow of particles to the
right. This flow is paid for by the energy cost of asserting the
field after diffusion has occurred.

When the field is re-asserted, particles that have crossed
reference plane ‘z’ are now pushed to the right and form part
of the next sub-distribution. Particles that have crossed
reference plane ‘x’ are pushed to the left and form part of
the previous sub-distribution. The ratchet then settles down
again towards the steady-state distribution shown in part (b).

Given the technical complexity of the Fokker—Planck
equation, it is expedient to use a simplified model that
captures the essential features of the original complex
system. We can aggregate the probability densities of the
various sub-distributions into single point probabilities, V,,
and we can aggregate the various fluxes between these sub-
distributions into transition probabilities, A;;. We can
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Fig. 4. A flashing ratchet.

aggregate each of the phases (b) and (c) in Fig. 4 into single
time ‘ticks’ of a discrete time system. The earliest known
model of this type was proposed by Juan Parrondo [17].

2. Parrondo’s discrete time ratchet

Discrete models contain just a few variables which can be
easily optimised. A discrete model can be converted into a
design for a ‘cell’. Large numbers of identical cells could
then be assembled to create an entire machine.

Parrondo’s games are a simplified discrete-time model of
a flashing ratchet [17-20]. They are formulated as a set of
state-dependent games of chance. We could think of them as
a generalised version of the Bernoulli trials where the coins
are possibly biased and the coin that will be tossed next is
determined by the present amount of capital, k. The process
for these games can be represented by a decision tree which
is shown in Fig. 5. The results of these decisions, and the
subsequent trials, affect the state of the player, k.

It is possible to define similar discrete-time games with
various spatial periods, other than three. If we use a periodic
potential of the type shown in Fig. 4 then the pattern of
rewards must be a function of the state, k. Given this
constraint, the smallest period that allows us to generate
the required transport effect is a period of three.

start

9o 66

Parrondo’s “game A” is intended to model pure diffusion:

op (1 82[)
FYee (5)'88—))2 (2

We can use the symbol D to denote the Fick’s law
constant D = 1/23 and replace the continuous probability
variable p with a discrete probability V. There are many
possible finite-element models for a diffusion operator.
Lapidus [21] describes how some of these can be derived.
If we locally approximate the solution the PDE with a finite-
order Taylor polynomial then we can estimate the partial
derivatives in terms of the function values at the sample
points. This converts a partial differential equation into a
partial difference equation. The simplest explicit formula
involves the use of three sample points:

Vk,t)=pV(k — 1,t — 1) + (1 — 2p)V(k,t — 1)

+pVk + 1,6 — 1) 3)

where p = DT//\Z, D is the Fick’s law constant, 7 is the
sampling time and A is the sampling distance. Courant et
al. [22] have shown that this method converges to the true
solution in the limit as the mesh size becomes very small
provided 0 < p = 1/2. At one extreme, p — 0, is an opera-
tor where nearly all particles remain in the same well. This

k=k-1 k=k+1 k=k-1

k=k+1 k=k-1 k=k+1

Fig. 5. Structure of a single trial of a Parrondo’s game.
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is very accurate but computationally intensive. The operator
used in Parrondo’s game A is at the other extreme, p = 1/2.
Every particle moves to a new state. This operator is known
in the finite difference literature as the Schmidt formula:

Vik,) =AR2)Vk - 1,t = D)+ A2)V(k+ 1,t —1). 4

This operator is not ideal for simulation of diffusion
because, in the short term, it entails less increase in entropy
per unit of real-time than the other operators. This is not
really consistent with the second law of thermodynamics. In

0 ao
(I —ayp) 0 aj
(I —ay) 0

[AiJ'] =

the longer term, the variance of the whole distribution of
V(k,t), for fixed t is o’ = 2,0)\2 = 2Dt, which is consistent
with the analytical solution to the diffusion equation, regard-
less of the choice of p.

The Parrondo process is equivalent to the operation of an
indefinitely large non-deterministic state machine. Part of
this machine is represented in Fig. 6. In Parrondo’s games,
the state-variable, the capital, k and the spatial ‘displace-
ment’ are considered to be equivalent. The asymmetrical
potential function is represented indirectly through the
state dependent probabilities [py, p1, p»]. Exact information
about potential and energy has been lost in the transforma-
tion to discrete time. The (Newtonian) law of conservation
of matter has been replaced by the law of total probability.
The probability functions shown in Fig. 4 are replaced by a
time dependent probability vector:

& =[..., Vz,—2a Vt,—l’ Vt,O? Vz,+la Vt,+27 -] 4)

It can be shown that the time evolution of Parrondo’s
games can be represented as a non-homogeneous Markov
chain. We can represent the time evolution of the system
using simple algebraic notation. For the effect of one trial of

\/\/_\4/_\/_\4

@@@@@

(l-p) (l-p,) (1 p) (1 D) (l-p,) (1 -p.)

Fig. 6. State transitions of a Parrondo’s game.

(1 = ap)

game A, we could write

Viry = VilAij] (6)
For a single play of “Game B”, we could also write

M = E[Bi,/] @)

It is understood that games A and B and possibly other
games could be included in the sequence. In general, the
sequence is mixed, with different games being played at
different times. The matrices all have the form:

a
0 ay
1 —ap) 0 a;
(I —a) 0 a
(1 —ap) 0 ay
1-a) O

®)

All of the elements which are not explicitly represented
are zero. The variation along the diagonals has a period of 3.
Parrondo’s original specification for the games was

99 99 99
Game A : [ao,al,az]—[%, %’ ﬁ]
. L[ 19 149 149
Game B” : [bo, b], b2] == [ 200 5 200 > 200 ]

Game A corresponds approximately to the process in Fig.
4(c) and game B corresponds approximately to the process
in Fig. 4(b).

The natural way to measure flow within Parrondo’s
games is to estimate asymptotic rates of increase in the
expected value of the capital, k as a function of time. Simu-
lations of Parrondo’s original games yield a rate of return
Y = +0.0166. That is, for every dollar that we invest we
expect to make a long term profit of $0.0166 per time tick.
The rate of flow is modest but positive, in contrast to the
pure sequences, which are negative.

The fact that Parrondo’s games use discrete-time means
that they could be implemented within a clocked architec-
ture using silicon, as long as we could find a rigorous way to
re-parameterise the equations.

3. Asymptotic rate of transport from Parrondo’s ratchet

If we were designing a ratchet, or a set of games, then we
might have some free choice of the conditional probabilities,
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[ag, ay,a,] and [by, by, b,], and we would need to know how
the rate of return, Y, depended on these conditional prob-
abilities. It is possible to apply the theory of Markov chains
with rewards [23] to this problem and it can be shown that

1-TI
Y:K)(m) )

where Y, = 3 and I’ is given by

1+ —apd—a)l —ay)
1 + (apa;a,)

F:

(10)

Eq. (9) only strictly applies to a homogeneous sequence
of games A but these formulae can be applied to the more
general mixed case by applying the formulae in the appro-
priate sequence. There must be a rule to specify the
sequence of games, {A, B, B, A, B,...}, and this must be
taken into account when calculating the asymptotic rate of
return.

4. Optimum form of the ratchet

Simulations reveal that periodic sequences yield the
greatest return. Further investigation by the authors, using
genetic algorithms, reveal that the most effective form of the
games is a set of three games that are played in a strict
periodic sequence {Gy, G;, G,, Gy, Gy, G,,...}. The transi-
tion probabilities are as follows:

Game Gy : [, (1 — w), (1 — w)]
Game G : [(1 — w), w, (1 — w)]

Game G, : [(1 — w), (1 — ), u]

where w is a very small probability, 0 < u < 1. We can
think of w as being a very small, ideally ‘microscopic’,
positive number. The games are most effective as w— 0
where the return is ¥ — 1. Each game has two conditional
probabilities that are close to 1.0 and are almost certainly
winning. Each game has one conditional probability that is
close to 0.0 and is almost certainly losing. The losing part of
the game represents a barrier. The reason for including the
parameter, u # 0, is that the ideal case, w = 0, is not feasi-
ble in practice. We must be content with an approximation.
The rate of return form any pure sequence of these games is
approximately

Y =~ (12)u (11)

which is very close to zero and yet the return from the cyclic
combination of these games is approximately

Y~1-3u (12)

which is very close to a certain win. We can engineer a
situation where we achieve an almost certain win every
time out of games that, on their own, deliver almost no
benefit at all. These games work better as a team than on
their own.

\Y

(:2 e—

i
i

Fig. 7. A transmission gate structure with charge sharing.

5. Re-parameterisation of equations for the ratchet

If we examine Fig. 6 or consider a single row from Eqgs.
(6) or (7), then we can write

Vieryn = Vei—1)p, (= mod 3y T Vet Dp, ot 1ymod 3y (13)

where p, ;. are the particular conditional transition probabil-
ities that apply at time ¢ + 1. The conserved quantity (prob-
ability) at time ¢ + 1 is a weighted sum of the neighbouring
conserved quantities at an earlier time ¢. If we wish to map
the law of conservation of charge onto the law of total
probability, then we need a discrete mechanism for creating
weighted sums of charge. One very simple mechanism for
achieving this is to use the (normally undesirable) effect of
charge sharing [24,25].

5.1. Probabilistic interpretation of charge sharing

In Fig. 7, we see two capacitors separated by a CMOS
transmission gate [26] which is driven by complementary
clock signals, @ and @. Suppose that @ is initially low and
C; and G, are at initial voltages V; and V,, respectively. The
stored charges in C; and C, are given by

o

o =CV,eV = C (14)
1

and

O =GV, eV, = % (15)
2

The transmission gate is now closed as @ goes high. We
assume that the time constant of the resulting circuit is small
compared with the period of the clock. Both capacitors now
move to an equilibrium distribution of charge and a new
voltage V3. Eqgs. (14) and (15) together with the conservation
of charge now imply that

c G )
Vo= ——— |V, +| ——— |V 16
} <C1+Cz) ' (C1+C2 g (16)
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The equations for charge sharing now become

r_ G
0= (e )e o a7
and

r_ G
0= (2 )@+ e (18)

where Q) and Q) are the new amounts of charge stored in
the capacitors. This is consistent with conservation of
charge and (Q} + Q%) = (Q, + Q,). If we think of the
charge as being like an ‘electron gas’ that occupies the
two capacitors then the fractions w = C,/(C; + C,) and
(1 — ) =Ci/(C; + C,) are the probabilities that any
given electron will be found in one or other of the two
capacitors. Probability and charge map linearly onto one
another. The scaling factor is simply the number of unit
electron charges in the system. We know, from Eqgs. (11)
and (12) that we would like w to be very close to 0, or
possibly to 1, but this is not completely feasible since C,
and C, must be finite positive numbers. The formal
expressions for p are

05 G )
== |=(—2— 19
a (Q+Q) (Q+C2 )
and
_ 0} _( G )
l—p= = 20
K (Q’1+Q’2) C, +C, 20)

5.2. MEMS variable capacitors

If the capacitors could not vary, then every cycle of this
machine would contribute to charge sharing in such a way
that all capacitors would tend towards the same potential.
This is shown in the simulation in Figs. 10 and 11. This is
analogous to Parrondo’s games where we toss a completely
fair coin, or to unconstrained diffusion. We cannot achieve
the ratcheting effect without the ability to vary the
conditional probabilities in Eq. (13) or the proportion of
charge sharing in Eqgs. (17) and (18). This means that we
must be able to vary C; and C, and every other capacitor in
the ratchet. This will requite mechanical work that must be
provided by an actuator. We propose the use of comb drive
actuators [27] as both variable capacitors and actuators.
These should be arranged in pairs and be connected
mechanically but remain electrically isolated. A schematic
diagram of a comb drive actuator is shown in Fig. 8. One
actuator can be driven to vary the capacitance of the other.
The pair of actuators can be regarded, from a mechatronic
point of view, as an electrical 2-port device. This lends itself
to analysis using the method of bond-graphs [28]. We can
think of a pair of ‘back to back’ comb drives as an energy-
storing transducers.

If we allow C; and C, to vary then we can think of the

Stationary electrodes
P
Leaf springs /
'-.__= \

S\

Moving electrodes

Fig. 8. Comb drive actuator.

ratio of change of u, i.e. up,/w,, as being like a compres-
sion ratio in mechanics. It is very difficult to make this large
because of leakage in the storage elements or breakdown of
the switching elements.

6. A four stroke sequence of operation

In Fig. 4, we consider the ratchet to have two phases or
‘strokes’. We can use the word ‘stroke’ in reference to
classical thermodynamic cycles such as the Carnot, Diesel,
Otto and Stirling cycles. The word ‘phase’ is a reference to
non-overlapping clock phases in a clocked digital circuit. In
the MEMS ratchet, the concepts of ‘stroke’ and ‘phase’
converge.

The laws of Parrondo’s games require that the probability
of remaining in the same state for two successive time ticks
is zero. This is clear from the graphical definitions in Figs. 5
and 6. The problem is that if we use the charge sharing
method, described in Egs. (17) and (18), then we cannot
entirely exclude all charge from a capacitor, no matter
how forceful our actuator may be. The easiest way around
this is to simply switch the capacitor electronically to some
other location. When we perform our accountancy to check
for conservation of charge we will not find any charge at that
location. Some of the charge can then be switched back to
the original location in the next part of the cycle. We can
avoid the use of a large amount of complicated controlling
circuitry if we settle for two asymmetrical cycles of two
phases rather than one symmetrical cycle of two phases.
This is indicated in Fig. 9. The sequence in time is a cyclic
repetition of {(a), (b), (c), (d)}. Phases (a) and (c) are
diffusion phases where the carriers spread out to an equili-
brium distribution. These are analogous to the process in
Fig. 4(c). Phases (b) and (d) are compression phases
where the capacitors are changed in value because they
are driven by the comb actuators. Charge is actively
‘compressed’ into one or other of the capacitors in accor-
dance with Eqgs. (17) and (18). These compression phases
are analogous to the process in Fig. 4(b).

The aim is always to move as much charge as possible to
the right, in the ‘positive’ direction. This means that in
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Fig. 9. A four stroke plan for swapping charge between capacitors.

Fig. 9(b) we need to increase C, and C, and decrease C; and
C;. In Fig. 9(d) we need to decrease C, and C, and increase
C; and C;. These should be done using the maximum possi-
ble compression ratio. It should be noted that the voltages V;
to V, vary with time.

7. Simulation of the electrical circuit

We tested the electrical part of the system using P-SPICE.
The results are shown in Figs. 10 and 11. We have used a
split power supply to allow signals of either sign. This is not
a necessary feature for a MEMS ratchet. The source Vj is
connected to capacitor C; through a diode. This is to allow
the initial charge of C;. No further charge is injected onto
the system after this. The simulation shows the effect of
charge sharing. The charge from C; gradually propa-
gates down the ratchet, as the transmission gates are

switched. This is quite analogous to the diffusion of charge
in a conductive dielectric, which is governed by Poisson’s
equation.

As charge is shared, all the capacitors acquire the same
voltage. In order to investigate the charge pumping effect of
the ratchet, we would have to write our own simulator in a
mathematical language, such as MATLAB. This is clearly the
next stage of the work.

8. Analogies to other machines

Machines that use mechanical energy to change the value
of a capacitive system to generate large potentials are not
new. The classical examples are Volta’s Electrophorus and
the Wimshurst machine. The idea of using MEMS technol-
ogy to implement ratchets has already been proposed by
Abbott et al.[29]. A MEMS electrostatic ratchet could be
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Fig. 10. SPICE model for the transmission gates.
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Fig. 11. Result from SPICE simulation, showing charge sharing.

a method of generating large potentials in a small space on a
chip.

In their optimal form, the action of Parrondo’s games is
very much like a peristaltic pump or a stepper motor. The
system is driven in a tightly controlled manner from one
state to the next. The emphasis is on accurate control or
measure. The peristaltic pump can deliver an accurate
amount of a substance at a required moment in time. The
stepper motor can produce an accurate rotation or transla-
tion. The MEMS ratchet could be used to accurately deliver
a known amount of charge at a specified time. This could
have application in instrumentation.

9. Summary

We have indicated how Parrondo’s games could be re-
parameterised in a form that could be constructed using
MEMS technology. The main aim of this work is to carry
out a ‘thought experiment’ to bring physical principles, such

as energy, back into the study of discrete time ratchets.
There are also some possible applications

¢ to induce large electrical potentials
e to deliver controlled amounts of charge

although more detailed and qualitative analyses are
required. The authors agree that the key issue to be resolved
is the efficiency of the proposed ratchet.
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