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Abstract

We consider the application of pulsed THz imaging systems in biomedical diagnostics and mail/packaging inspection. The sub-millimetre

spectroscopic measurements obtained from T-ray systems contain a wealth of information about the sample under test. We demonstrate that

different types of tissue can be classified based on their terahertz response measured with the chirped probe pulse technique. We demonstrate

the performance of a quadratic classifier using linear filter models for feature extraction in the discrimination between different tissues.

Modern THz systems are hindered by the slow acquisition speed. The chirped probe pulse technique offers a significant improvement in

this context. We present the terahertz responses of biological samples measured using a chirped probe pulse, and discuss the problem of data

processing and extracting sample characteristics.

q 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Terahertz imaging is a relatively new addition to the

wide array of available imaging modalities. It utilises the

terahertz, or far-infrared, region of the electromagnetic

spectrum and is based upon the increasingly popular

technique of terahertz time-domain spectroscopy (THz-

TDS). The unique properties of THz radiation allow

terahertz imaging to fill niches that are unreachable using

other techniques. THz spectroscopy systems are seeing

application in semi-conductor characterisation [1], gas

sensing [2] and molecular probing [3]. Terahertz imaging

has been demonstrated for imaging flames [4], leaf moisture

content [5], skin burn severity [4], tooth cavities [6] and skin

cancer [7]. Several excellent reviews of THz-TDS [8] and

T-ray imaging [9,10] are available.

Electro-optic (EO) detection of a terahertz pulse using a

chirped probe pulse was first demonstrated by Jiang and

Zhang [11]. This novel technique allows the full terahertz

waveform to be measured simultaneously rather than

requiring a stepped motion stage to scan the temporal

profile. This provides a significant reduction in the

acquisition time and greatly extends the applicability of

terahertz systems in situations where the sample is dynamic

or moving. Indeed, single shot measurements have been

demonstrated for measuring the transmitted terahertz

response using a single femtosecond light pulse [12].

We have utilised the chirped probe pulse technique to

acquire images of in vitro tissue samples and this paper

presents classification results based on the spectroscopic

information obtained from these measurements. The

chirped pulse technique is not without its drawbacks, and

the reduction in temporal resolution has been noted by other

authors [13,14]. We present spectra obtained using the

chirped pulse method and discuss the limitations imposed in

the frequency domain.

Signal processing techniques for terahertz systems is a

relatively unexplored area, however, work has been

reported in determining optimal techniques for de-noising

[15,16], extracting material constants [17,18] and gas

mixture analysis [19]. This paper adds to this important

field by considering linear modelling as a means of feature

extraction with a goal of classifying samples based on their

terahertz responses. This has particular application in a

medical imaging setting where extracted diagnostic
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information is required to aid the medical practitioner in

assessing the patient.

This paper begins by summarising the field of T-ray

imaging. Section 2 reviews the available technologies for

performing T-ray imaging and Section 2.1 describes the

principles of THz imaging with a chirped probe beam and

details our experimental setup. We then introduce the signal

processing algorithms employed to process the data from

the chirped imaging system. Section 3 provides details on

the linear filter models and the classification scheme which

was developed. The results of this analysis are given in

Section 4. Finally Section 5 summaries the results and

suggests directions for future research.

2. THZ imaging

Terahertz imaging was first proposed by Hu and Nuss in

1995 [20]. They used optically gated photoconductive

antennas for the generation and detection of terahertz

pulses. They replaced the slow scanning delay line used in

THz-TDS systems with a rapid 20 Hz scanning delay line

and used a digital signal processor instead of a lock-in

amplifier (LIA) to acquire and digitise the signal. The

sample was then scanned in x and y dimensions to build up

an image. This system is shown in Fig. 1 and achieved an

acquisition rate of 12 pixels/s with a signal-to-noise ratio

greater than 100:1. This system was used to image leaves,

bacon and semi-conductor circuits [9].

Shortly afterwards a dramatic improvement in acqui-

sition speed was made using two-dimensional electro-optic

detection of the terahertz pulse [21]. In this technique, the

terahertz pulse acts as a transient bias on a k110l oriented

ZnTe crystal, inducing a polarisation in the crystal. A probe

laser pulse with a larger diameter than the THz beam is then

modulated by the polarisation-induced birefringence of the

ZnTe crystal via the Pockel’s effect. The two-dimensional

THz field distribution is then converted to a 2D intensity

modulation on the optical probe beam after it passes through

a crossed polariser (analyser). A digital charge coupled

device (CCD) camera is then used to record the optical

image. This system is shown in Fig. 2.

2.1. THz imaging with a chirped probe pulse

Terahertz measurement using a chirped probe pulse is an

innovative technique used to measure the full terahertz

waveform simultaneously without the need for a scanning

delay line. It is based on EO sampling [22], which is widely

used for terahertz detection because of its wide bandwidth

and sensitivity. In normal THz-TDS, the femtosecond laser

pulse is used to probe the terahertz field at a certain time

delay; the relative delay between the probe pulse and the

terahertz pulse is then adjusted and the measurement

repeated. In this way the full temporal profile of the

terahertz pulse is measured as shown in Fig. 1. This process

can be greatly accelerated by applying a linear chirp to the

probe pulse. This is done using a diffraction grating. The

different wavelength components of the incident pulse

traverse different path lengths due to the variation in first

order diffraction angle with wavelength, l. The output from

the grating is a pulse with an extended pulse duration and a

wavelength that varies linearly with time.

In EO detection this chirped probe pulse is modulated by

the THz pulse. In normal time scanning EO sampling a

100 fs optical pulse is modulated by a short temporal

window of the THz pulse. The chirped probe pulse can be

seen as a succession of short pulses each with a different

wavelength. Each of these wavelength components encodes

a different portion of the THz pulse simultaneously.

A spectrometer then spatially separates the different

wavelength components and thus reveals the temporal THz

pulse. The spatial signal output from the spectrometer is

Fig. 1. Hardware schematic for scanned THz imaging [20]. The image is

formed by scanning the mechanical motion stages in x, y and time

dimensions.

Fig. 2. Hardware schematic for all-optical 2D THz imaging [21]. The image

is formed by expanding the THz and probe beams and using the Pockel’s

effect and crossed polarisers to convert the THz field to an intensity

modulation which is measured using the CCD.
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then measured using a CCD. This technique derives from

real time picosecond optical oscilloscopes [23,24].

2.2. Hardware setup

The hardware schematic for the chirped probe T-ray

imaging system is shown in Fig. 3. A regeneratively

amplified Ti:sapphire laser (Spectra Physics Hurricane)

with an average output power of 700 mW, a pulse duration

of 130 fs and a repetition rate of 1 kHz was used. The centre

wavelength of the laser was 802 nm and the spectral

bandwidth was 4 nm. The laser output was attenuated and

split into pump and probe beams with powers of 30 mW and

20 mW, respectively. The terahertz emitter was a GaAs

photoconductive antenna. A bias of 1000 V was applied to

the emitter electrodes which were spaced 16 mm apart. The

average emitter current was 100 mA. This system generated

an average THz power of approximately 5 mW (5 nJ per

pulse). The THz beam was focused using parabolic mirrors

to a spot size of 1 mm at the sample. The transmitted THz

pulse was collected using parabolic mirrors and focused

onto the 4 mm thick k110l ZnTe EO detector crystal.

The optical probe pulse was linearly chirped using the

grating pair. The grating pair (grating constant 10 mm) was

setup to allow the grating separation to be varied which

enabled us to investigate the effect of variable pulse width

on the measurements. Nominally the grating separation was

4 mm and the angle of incidence was 518, giving a chirped

probe pulse width of 21 ps.

The chirped optical probe pulse and the terahertz pulse

co-propagate in the ZnTe crystal as the group velocity of

800 nm light is approximately equal to the phase velocity

of the THz field in ZnTe. During this time the polarisation of

the wavelength components of the optical pulse are

modulated differently, depending on the temporal profile

of the THz pulse. Crossed polarisers are used to convert this

polarization modulation to an amplitude modulation. The

crossed polarisers ensure that the detected signal is

approximately zero when no THz signal is present to

prevent saturation of the CCD detector. Note that the

background is not exactly zero due to laser scattering in

ZnTe, but this background is subtracted during processing

(see Eq. (3)).

The temporal THz pulse is recovered by detecting the

spectrum of the modulated pulse using a spectrometer

grating (SPEX 500M) and a digital CCD camera (PI

Pentamax) which has 384 £ 576 pixels and 12 bit encoder.

The CCD was air cooled to 230 8C. Using a CCD exposure

time of 100 ms the signal-to-noise ratio (SNR) for the

system was approximately 180. The exposure time could be

reduced down to 5 ms at the expense of SNR. The sample

was mounted on a X –Y translation stage and raster scanned

to acquire an image.

2.3. Mathematical model

Electro-optic detection with crossed polarisers imparts

an amplitude modulation on the probe pulse. For relatively

small modulation depths this modulation is linear and the

modulated signal, fmðtÞ; is given by

fmðtÞ ¼ fcðtÞ½1 þ kEðt 2 tÞ�; ð1Þ

where fcðtÞ is the chirped probe pulse, k is the modulation

constant, E(t ) is the terahertz electric field and t is the

relative time delay between the probe and THz pulse.

The spectrometer grating spatially disperses the different

spectral components of the input signal. The signal detected

at the CCD corresponding to a given frequency, Mðv1Þ; is

given by the convolution of the spectral response function of

the spectrometer grating, gðvÞ; with the square of the

Fourier transform of the input signal, fmðtÞ [13]

Mðv1Þ /
ð1

21
gðv1 2 vÞ

ð1

21
fmðtÞ expðivtÞdt

����
����
2

dv: ð2Þ

The normalised differential intensity is then defined as

Nðv1Þ ¼
Mðv1ÞlTHz on 2 Mðv1ÞlTHz off

Mðv1ÞlTHz off

: ð3Þ

Under certain assumptions Nðv1Þ can be shown to be linearly

proportional to the amplitude of the THz pulse, with the

variable v1 proportional to the time, t. However, in most

practical situations the THz signal is frequency band limited,

which corresponds to a broadening of the temporal pulse.

Fig. 4 shows the THz signal measured using normal

scanned electro-optic sampling and the chirped sampling

method with a chirped pulse width of 21 ps. It is obvious

that the THz pulse measured using the chirped probe pulse

technique is significantly broadened. This broadening

demonstrates the reduced temporal resolution and reduced

frequency bandwidth of the chirped measurement technique

compared with normal time scanned THz detection.

3. System identification

System identification refers to the problem of estimating a

system that best describes the measured data. The measured
Fig. 3. Simplified hardware schematic used for terahertz imaging with a

chirped probe pulse.
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data is assumed to consist of two sets, yðkÞ being the output

of the unknown system when excited by the input signal

xðkÞ: The signals considered here, f ðkÞ; k [ 0;…;N 2 1; are

real-valued, finite, discrete-time functions defined on the set

of real numbers, R: We consider the system S whose output

depends on the input signal and on a noise signal nðkÞ

y ¼ Sðx; nÞ: ð4Þ

The identification problem is to determine an estimator

ŷ ¼ Ŝðy; xÞ; ð5Þ

which minimises some measure of the error signal

eðkÞ ¼ yðkÞ2 ŷðkÞ: ð6Þ

A common method of solving this problem is to assume that

the predictor may be factored using a known transformation

F̂ and a finite-dimensional parameter u

Ŝðy; xÞ ¼ Ŝðy; x; uÞ; ð7Þ

which is then referred to as parametric system identification.

Three common models used in this context are the finite

impulse response (FIR) model

yðkÞ ¼ 2
XP

i¼0

cixðk 2 iÞ þ nðkÞ; ð8Þ

the autoregressive (AR) model

yðkÞ ¼ 2
XQ
j¼0

ajyðk 2 jÞ þ nðkÞ; ð9Þ

and the ARX model which is a general class combining the

two previous examples

yðkÞ ¼ 2
XQ
j¼0

ajyðk 2 jÞ2
XP

i¼0

cixðk 2 iÞ þ nðkÞ; ð10Þ

where P and Q are the model orders. These models are

easily understood as linear filters where the aj and ci

represent the tap weights [25].

A large number of methods have been proposed to

estimate the linear model coefficients [26]. In Section 4 we

use an iterative least squares approach to identify appro-

priate model coefficients as a method of feature extraction in

order to classify the sample under test. For a given model, of

order N, the model coefficients are used as the input to a

simple classifier. We show that different tissue samples can

be classified using this technique and evaluate the accuracy

of the derived models. For this purpose, the THz pulse

detected with no sample in place is considered to be the

input, xðkÞ; and the THz pulse detected after transmission

through the sample is taken as the system output, yðkÞ:

3.1. Classification

The ultimate goal in all terahertz systems is to extract

information about the sample under test. This information

may be the frequency dependent index of refraction for a

semi-conductor wafer or the resonant absorption frequen-

cies for gas sensing. For biological imaging applications we

desire to detect and differentiate between different samples

based on the terahertz response. We are interested in

investigating our ability to perform such classification given

an obtained image.

In this paper we use a simple classifier based on the

Mahalanobis distance [27]. This is one of a class of

minimum distance classifiers. It assumes that the data for

each class are normally distributed, thus the samples drawn

from each class will form a cluster in N dimensions, with a

centre given by the mean vector, m, and shape dependent on

the covariance matrix, S. We form estimates of these

parameters using the training vectors

m ¼ E½x�; ð11Þ

S ¼ E½ðx 2 mÞðx 2 mÞT�: ð12Þ

The Mahalanobis distance calculates the distance of a given

point from the mean value for a given class normalised by

the variance of the training vectors in that direction. For a

class, k, the distance is defined as

dkðxÞ ¼ ðx 2 mkÞ
TS21ðx 2 mkÞ

T
: ð13Þ

Classification is then performed by selecting the class for

which the Mahalanobis distance is minimised. This

classifier is optimal for normally distributed classes with

equal covariance matrices and equal a priori probabilities.

We are not claiming that the THz data conforms to these

statistical assumptions, merely that this classifier represents

Fig. 4. Comparison of THz pulses measured with scanned EO sampling and EO sampling with a chirped probe pulse. The chirped pulse duration was 21 ps.
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a useful starting point, as evidenced by the experimental

results presented in Section 4.

This classification scheme was chosen because it is

simple to implement and it provides reasonable results for a

variety of statistical properties. More complicated classifi-

cation algorithms abound and the appropriate choice for this

application is an open research area. Simple neural network

classifiers were also tested and found to yield similar results

to those reported in Section 4.

There are several other promising classification tech-

niques available. Supervised artificial neural networks

(ANN) and support vector machines both have promise in

the context of classifying THz wave data.

ANN are among the most popular classification archi-

tectures in use [28]. They derive their inspiration from the

operation of human and animal brains which are based on a

network of very simple building blocks called neurons. In a

similar manner ANNs consist of a network of simple

processing elements, which conventionally consist of a non-

linear activation function applied to the sum of the weighted

inputs. The weights of the neurons are adapted to the

training data to train the neural network and then the

classifier can be used to classify subsequent test vectors.

Support vector machines (SVMs) are a relatively recent

approach to pattern recognition which have attracted a

great deal of interest for a number of machine

learning applications. SVM theory was first introduced by

Vapnik [29] and is based on the principle of structural

risk minimisation. Intuitively, given the set of samples

belonging to two classes, SVMs learn the boundary between

these two classes by mapping the input samples to a

high dimensional space and then finding a hyperplane in this

high dimensional space that separates the samples of the

two classes. Computing the ideal hyperplane is posed as a

constrained optimisation problem and solved using

quadratic programming techniques.

4. Results

4.1. Imaging

A number of samples consisting of different biological

tissues were imaged using the system described in Section

2.1. An emphasis was placed on biological tissue because

biomedical imaging is an important potential application of

this technology.

A dried butterfly was imaged to demonstrate the

performance of the system. Fig. 5 shows an optical image

of the sample. The sample was scanned using the chirped

THz system with a scanning step size of 500 mm and a total

range of 7 cm £ 7 cm. At each point the terahertz response

was measured on the CCD using an exposure time of

100 ms. Thus the entire image was acquired in 32 min. To

demonstrate the richness of the data obtained using this

technique a number of images are shown in Fig. 6. In

Fig. 6(a) the peak amplitude of the THz pulse at each pixel

was mapped to the grey scale intensity, for Fig. 6(b) each of

the THz pulses were Fourier transformed to reveal the

frequency domain information and the intensity of the

spectra at a frequency of 0.2 THz was used as the grey scale

intensity. Fig. 6(c) shows the phase information in the

terahertz pulses by measuring the delay of the THz pulse at

each pixel and then mapping this delay to the image

intensity. Each of these three techniques yields different

information about the sample under test and the optimal

technique will depend on the desired application. These

three images can be combined, for example, by mapping

each to a different colour (red, green or blue) intensity to

Fig. 5. An optical image of the pressed butterfly sample used for chirped

THz imaging.

Fig. 6. Images of the pressed butterfly obtained using the chirped THz

imaging technique. The data was obtained by scanning the sample in x

(7 cm) and y (7 cm) dimensions with a resolution of 500 mm and measuring

the THz response at each point. Image (a) was produced using the peak

amplitude of the THz pulse at each pixel, image (b) was produced by taking

the Fourier transform of the THz response and using the amplitude at

0.2 THz for each pixel, image (c) was produced by measuring the phase of

the THz signal at each pixel and image (d) was produced by combining (a),

(b) and (c).
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produce a pseudo-colour image which may have biomedical

diagnostic value, and an example is shown in Fig. 6(d).

A number of animal tissue samples were imaged. A beef

sample was cut from a beef loin T-bone steak, parallel to the

normal steak cut with a thickness of 1.5 mm. The sample

was pressed and then dried in an oven for 12 h at 35 8C. For

THz imaging the sample was held in a sample holder

consisting of two 600 mm thick, high density polyethylene

sheets. Polyethylene has negligible absorption in the THz

band of interest and only marginal Fresnel loss due to its low

refractive index. Samples of chicken tissue and chicken

bone were obtained and imaged in a similar manner.

4.2. Linear modelling

Figs. 7 and 8 show the characteristic THz responses of

the beef and chicken samples considered in both the time

and frequency domain. The frequency limitation imposed

by the chirped technique is evident. Using normal time

scanned THz detection the THz bandwidth extends to

1.2 THz for the sample holder response.

Linear filter models of the sort discussed in Section 3

were employed for two reasons, firstly to attempt to infer

information about the physical properties of the samples and

secondly because the coefficients for an accurate model

provide an efficient feature extraction method for the

classification problem considered in Section 4.3.

An ensemble of 50 random responses for the chicken and

beef samples were chosen. The model coefficients for

various order AR and FIR models were then computed for

each response. For each model the average coefficients were

calculated and these used to calculate the percentage of the

average actual response predicted by the model. These

results are summarised in Table 1. Fig. 9 shows the second

order FIR and AR filter model responses with the actual

chicken response. It can be seen that the model quite

accurately represents the response of the sample.

4.3. Classification

The problem we considered was that of taking a random

THz response and classifying it into one of three different

classes: chicken, beef or empty sample holder. Training

vectors were chosen at random from among the available

responses. This example application is important for a

number of reasons. Firstly the classification can be

performed even if the samples are hidden in optically

opaque containers, and secondly it demonstrates the

potential of this technique for differentiating between

more important materials such as normal and diseased

tissue, or benign powders and bacterial spores.

Several different feature extraction methods were tested.

It was found that the model coefficients for the FIR model

proved to be very reliable features. The simple linear

Table 1

Prediction accuracy for different models

Model Order Prediction accuracy (%)

AR 2 30.0

AR 3 32.3

AR 4 35.5

AR 5 39.1

AR 6 42.9

FIR 2 43.4

FIR 3 51.0

FIR 4 53.1

FIR 5 56.5

FIR 6 59.4

ARX 2,2 44.8

ARX 3,3 59.8

ARX 4,4 64.6

Fig. 8. The amplitude of the Fourier transform of the responses shown in

Fig. 7. The frequency spectrum is limited to below 0.3 THz as discussed in

Section 2.3.

Fig. 7. The terahertz responses after transmission through the beef and

chicken samples and the sample holder response. These responses were

measured using the chirped measurement method with a CCD exposure of

100 ms.
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discriminant classifier described in Section 3.1 was trained

using 50 pixel responses for each of the three classes. Three

hundred random test responses were chosen and the

classifier was used to assign them each to one of the

classes. It was found that using the second order FIR

coefficients as features resulted in successful classification

of 297/300 while using the second order AR coefficients

gave an accuracy of 289/300. An intuitively obvious feature

extraction method involves simply using the amplitude of

the THz pulse and the time at which the maximum

amplitude occurred as features. These features give an

indication of both the absorption and the phase-change

induced by the sample under test. Using this feature

extraction method only 283 of the 300 test vectors were

accurately classified. The confusion matrices for these three

classifiers are given in Eq. (14). The element, ½i; j�; shows

the relative proportion of samples belonging to class i that

were recognised as class j:

XFIR ¼

1 0 0

0 0:98 0:02

0 0:01 0:99

2
664

3
775;

XAR ¼

1 0 0

0 0:92 0:08

0 0:03 0:97

2
664

3
775;

Xamp ¼

0:99 0:01 0

0 0:89 0:11

0 0:05 0:95

2
664

3
775:

ð14Þ

The classes were free air (1), beef (2) and chicken (3) pixels.

Figs. 10 and 11 demonstrate the benefits of the FIR

model based approach by plotting the distribution of the

Fig. 10. Scatter plot showing the discriminating power of the second order

FIR model coefficients. The optimal FIR model coefficients are found for

100 random samples and plotted. The two classes show a significant

difference in their coefficients.

Fig. 11. Scatter plot showing the distribution of the peak amplitude and the

timing of the peak of the THz pulses for beef and chicken samples. There is

an obvious difference between the two tissue types but the separation of

classes is not as strong as that shown in Fig. 10.

Fig. 9. Model output for second order FIR and AR filters and the actual

response of the chicken sample. The models are quite accurate accounting

for 43 and 32% of the actual response, respectively.

Fig. 12. A standard optical image of a sample of dried chicken tissue. The

bone is clearly visible in the lower right of the image.
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extracted features for a random set of beef and chicken

pixels. The separation of the classes using the FIR model

feature extraction method is visibly superior to the intuitive

method described above.

The following example further illustrates the ability of

the chirped probe pulse THz imaging technique to

distinguish between biological tissues. It also highlights

the ability of the algorithms described in this paper to assist

in information extraction. A slice of chicken leg was cut so

as to include a section of the bone. The sample was

approximately 1.5 mm thick. The sample was then prepared

and imaged as described in Section 4.1. An optical image of

the sample is shown in Fig. 12. The terahertz data was

analysed and it was found that the chicken and bone had

a comparable absorption for THz signals and were not

clearly distinguishable using standard intensity images. This

is shown in Fig. 13(b) which shows the amplitude image of

the chicken sample. To attempt to differentiate between the

bone and tissue pixels in the image we used the simple

Mahalanobis distance classifier and used fifth order FIR

coefficients as input features. We trained the classifier based

on 50 reference pixels for each class (bone, tissue and empty

holder). The reference pixels were chosen based on the

geometry of the sample. The classifier was then used to

classify all 10,000 pixels of the image into one of the three

classes. This classification was then used to colour code the

image shown in Fig. 13(a). The bone area (grey) can be seen

to accurately correspond to the bone in the optical image.

The computational complexity of the algorithms are a

vital concern as systems head towards real-time data

acquisition. The total time taken to classify the 10,000

responses in the image was less than 11 s on a Pentium IV PC

with 256 MB of RAM. This is an over an order of magnitude

less than the acquisition time for the same image and could be

improved further by optimising the software implementation.

5. Conclusion

Terahertz imaging using a chirped probe pulse represents

a recent addition to the available THz imaging techniques

and promises to allow terahertz imaging and spectroscopy to

extend to new applications in the monitoring of ultrafast

phenomena due to its capacity for single shot

measurements.

We have presented the first ever images of biological

tissue measured using this technique, and have demon-

strated the richness of the information content of the

obtained data. Simple feature extraction and classification

algorithms were presented that allow for the automated

analysis of these images and may one day facilitate

computerised diagnosis of medical conditions based on

the measured THz response. Beef and chicken samples

were classified using a Mahalanobis distance classifier.

The required computational complexity of the classifier

was reduced using linear filter models to extract features

from the measured responses. Different filter models

were compared and very simple second order FIR filters

were found to perform surprisingly well indicating that

this model may be an accurate approximation of the

underlying physical system. Further investigation of a

physical model for the interaction of THz radiation with

tissue is an important open question and it is likely to

yield vastly improved feature extraction and classification

algorithms.

The chirped imaging technique allows the full THz

response of a single pixel to be measured simultaneously.

This has advantages over all other THz imaging

techniques in that if the sample moves during a scan

the signature responses of the pixels are not corrupted,

only the pixel to pixel intensity may change. Thus

identification schemes such as those described in this

paper will still succeed in classifying each pixel.

However, the chirped imaging technique does suffer

from a number of disadvantages. The measured response

is not linearly dependent on the terahertz pulse as

indicated in Section 2.3 and the signal-to-noise ratio is

significantly higher than time-scanning techniques due to

the absence of the lock-in amplifier. A number of

solutions to the noise problem have been suggested

including a lock-in CCD [30] and this remains an

important focus of future research.

Fig. 13. Terahertz images of the chicken tissue shown in Fig. 12: (a) shows a pseudo-colour image generated by classifying each pixel of the image based on a

number of training pixels which were chosen using knowledge of the original sample geometry; (b) shows a THz image generated by mapping the maximum

amplitude of the THz pulse at each pixel to the grey scale intensity.
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