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Abstract

Heart sounds can be utilised more efficiently by medical doctors when they are displayed visually, rather than through a conventional
stethoscope. A system whereby a digital stethoscope interfaces directly to a PC will be described along with signal processing algorithms
adopted. The sensor is based on a noise cancellation microphone, with a 450 Hz bandwidth and is sampled at 2250 samples per second with
12-bit resolution. Further to this, we discuss for comparison a piezo-based sensor with a 1 kHz bandwidth. A major problem is that the
recording of the heart sound into these devices is subject to unwanted background noise, which can override the heart sound and results in a
poor visual representation. This noise originates from various sources such as skin contact with the stethoscope diaphragm, lung sounds
(patient breathing), and other surrounding sounds such as speech. Furthermore we demonstrate a solution using ‘wavelet denoising.’ The
wavelet transform is used because of the similarity between the shape of wavelets and the time-domain shape of a heartbeat sound. Thus
coding of the waveform into the wavelet domain is achieved with relatively few wavelet coefficients, in contrast to the many Fourier
components that would result from conventional decomposition. We show that the background noise can be dramatically reduced by a
thresholding operation in the wavelet domain. The principle is that the background noise codes into many small broadband wavelet
coefficients that can be removed without significant degradation of the signal of interest. Also explored is the use of a phase space
representation of the heart sound to exploit different properties of the signal.q 2000 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The analysis of biological sounds within the human body,
or auscultation, as it is sometimes called, by the use of a
stethoscope is a common practice of medical practitioners
all over the world. Although this may appear to be a quite
sufficient method of diagnosing heart defects, problems can
easily go undetected due to limitations of the human ear in
being able to distinguish defects from within the sound of a
heartbeat [3]. There are far more effective methods such as
the examination of a phonocardiogram (PCG), which is a
visual display of heart sounds, or an electrocardiogram
(ECG), which displays the electrical characteristics of the
heart. These techniques are both non-invasive (i.e. they do
not require surgery) but have their own share of issues and
problems.

An ECG is not normally used unless a problem has been
detected initially by auscultation. This is because an ECG
requires a great deal of setting up and is therefore not prac-

tical for a general practitioner to use as a standard test.
Phonocardiograms obtained from transducers positioned
on the skin can easily be swamped by noise from surround-
ing sources such as the lungs, frictional skin contact, or
speech and therefore are generally useless if conditions
around the patient are not perfect.

The limitations of a PCG described above could be
dramatically reduced by the development of a system that
removes the unwanted noise but leaves important informa-
tion about the characteristics of the heart being examined.
This short paper is concerned with the study of a relatively
new signal processing technique called wavelet analysis to
achieve this goal.

Heart sounds, as heard through a normal stethoscope are
produced by a biological membrane in the heart when an
event such as the opening or closing of a valve, vibration of
the cardiac structure, or acceleration or deceleration of
blood occurs [2]. This sound generally comprises of two
parts, a first heart sound and a second heart sound, but some-
times aberrations and murmurs caused by valve imperfec-
tions and other obstructions to blood flow are also present in
the sound. A ‘click’ sound also may be present if a patient
has an artificial heart valve. It is important that the noise
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removal technique does not dispose of such information so
as to become an ineffective analysis tool.

A digital stethoscope is used to transduce the heart sounds
into an electrical signal. The heart sound data may then be
manipulated with various signal processing tools available
in matlab, as an attempt to break down the signal into
wavelet coefficients, thus allowing the removal of unwanted
sounds by thresholding. It is intended that this paper intro-
duce the reader to basic wavelet theory as it applies to the
denoising of heart sounds, and briefly demonstrate some
preliminary results that may inspire the reader to pursue
this field further.

2. Sensor equipment

2.1. The analyst

The Analyst is a digital stethoscope developed by Heart-
Soundsw in the USA. It comprises of a normal stethoscope
diaphragm linked to a ‘noise cancellation’ microphone
sampled at 2250 samples per second with 12-bit resolution
and 450 Hz bandwidth. Hardware such as amplifiers and
memory are included internally within the system. The
system links into a PC through the serial port and commu-
nicates with the Sound Management Software (SMS)
installed on the PC. The Analyst has the ability to record
and store up to three separate heart sounds on board, they
then must be transferred to the PC for viewing on SMS. A
later model of the Analyst, the ICON (Analyst XT), will be
released later this year and will have improved noise cancel-
lation, a higher sampling rate, and better digital resolution.
The SMS software proved to be unreliable on a Windows
NT system, therefore new software was written to dispose
with unwanted effects experienced with using this system.

2.2. Piezoelectric sensor system

The equipment used to compare the output from the
Analyst system described above comprises a piezoelectric
sensor linked to amplification and filtering circuits (to give
sufficient signal gain and eliminate aliasing) and then to an
analogue to digital converter card in a PC. The piezo sensor
used is the Hewlett Packard HP 21050A, composed of crys-
talline material arranged in slabs and exhibits the piezoelec-
tric effect by creating a changing electrical polarisation
when it is deformed. The displacement of the crystal, caused
by vibrations from the sound waves entering the system,
cause a voltage to be developed across its output terminals
proportional to the sound. The piezo crystal displays sensi-
tivity of 10 mV/dyne force and 40 mV/micron displace-
ment, capacitance of 20 nF, and frequency response
between 0.02 and 2 kHz. The amplification and filtering
circuit is a second order butterworth filter with cut-off at
1 kHz and provides 40 dB of gain to the signal. The analo-
gue to digital converter card is a WIN-30D from which the
sampled analogue signal can be retrieved and processed by

matlab. Features of the WIN-30D include 12 bit resolution,
16 single ended inputs, nonlinearity of less than^1 least
significant bit (LSB), throughput rate of 1 MHz, and full
scale input ranges of 0 to1 5 V (for Unipolar range) and
25 to 1 5 V (for Bipolar range). This system provides
accurate, high-resolution signals accompanying a higher
bandwidth that can be compared to the lower resolution
signals recorded from the Analyst.

3. Background of wavelet analysis

Wavelet analysis has evolved through years of research
dating back to the work of Joseph Fourier, but it is still a
relatively new concept with most formal research on the
topic being conducted in the past 10 years. In the following,
we provide a brief background of the history behind several
important signal processing techniques to give the reader a
sufficient understanding of wavelet theory.

3.1. Fourier analysis

In 1822, J. Fourier, a famous French Mathematician,
discovered that any periodic function could be expressed
as an infinite sum of periodic complex exponential functions
[1]. This property of periodic functions was later general-
ized to non-periodic functions and then to (both periodic and
non-periodic) discrete time functions. The process of
converting a signal to the frequency domain from the time
domain is achieved with the Fourier Transform (FT). The
Fourier Transform is still frequently used today (mainly in
the form of the Fast Fourier Transform algorithm with the
aid of computers) and is mathematically described below as

X� f � �
Z∞

2 ∞
x�t� e2j2pft dt: �1�

Here, the time domain signalx(t) is multiplied by a complex
exponential at some certain frequencyf, and then integrated
overall time. The results of this calculation are the Fourier
CoefficientsX( f ), which are large when the signal contains
a frequency component close to or equal tof. These large
coefficients correspond to the peaks at various frequencies
exhibited on a plot of the Fourier Transform of a signal.

Using the Fourier Transform has one main disadvantage
in that it does not provide enough information when used on
non-stationary signals (i.e. signals whose frequency is time
varying). The Fourier Transform only determines the
frequency components of a signal, but not their location in
time. Since most signals of practical interest to engineers
(such as heart sound signals) are of a non-stationary nature,
the Fourier Transform is not particularly suited to their
analysis.

3.2. The short time Fourier transform

The problem with the Fourier Transform arises from the
fact that the signal is integrated overall time as in Eq. (1),
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therefore no matter where in time the component with
frequencyf appears, it will affect the result of the integration
equally as well, hence giving an accurate representation of
the frequencies present in the signal, but no information
about the instant of time at which the specific frequency
occurs.

In 1946, Denis Gabor [4] realised the need to exhibit
signals in the time-frequency domain. He developed a tech-
nique involving ‘windowing’ the signal which maps the
signal into a two dimensional space of time and frequency.
This technique is known as the Short Time Fourier Trans-
form (STFT), and the mathematical theory behind this tech-
nique is best described by

STFT�w�X �t 0; x� �
Z

t
�x�t�wp�t 2 t 0�� e2j2pft dt: �2�

The windowing technique involves translating (denoted in
Eq. (2) by the translation parametert 0) the complex conju-
gate of the window functionw(t) along the length of the
signal x(t), and multiplying the two functionsx(t) and
wp(t) at the different instants of time. The exponential part
converts the result of each multiplication to the frequency
domain at that instant as done in the ordinary Fourier Trans-
form.

3.3. The wavelet transform

To overcome resolution problems that make it impossible

to analyse the signal simultaneously in both the time and
frequency domain, the wavelet transform (WT) was devel-
oped. The first recorded mention of the term ‘wavelet’ was
in 1909, in a thesis by Alfred Haar [4], but over the last 10
years a sharply increasing amount of research has been
conducted into its possible applications.

The main difference between the STFT and the WT is that
the WT uses a variable sized window region (or wavelet) to
examine the signal which helps to reduce resolution
problems significantly. A wavelet is essentially a waveform
of limited duration that has an average value of zero. Some
examples of commonly used wavelets used in signal proces-
sing are shown in Fig. 1.

The theory behind this approach is that being able to
dilate (stretch) or compress the wavelet, different features
of the signal will be extracted. For example a narrow wave-
let will show up higher frequency components, while a
stretched wavelet will show up lower frequency components
of the signal. A comparison between the constant window
regions used in STFT analysis and the variable window
regions used in WT analysis is exhibited in Fig. 2.

The mathematical equation describing the continuous
wavelet transform (CWT) is

CWTc
x �t; s� � Cc

x �t; x� � 1���
usu

p Z
x�t�c p t 2 t

s

� �
dt �3�

The quantitys is referred to as the ‘scale’ of the wavelet,
which can be thought of as the inverse of frequency. The
wavelet is compressed if the scale is low and stretched if the
scale is high, which is also evident in Fig. 2. Therefore, plots
of the WT of a signal represent scale against time rather than
frequency against time. The process involved in creating the
CWT is very much the same as that involved with the STFT,
except that the wavelet traverses the signal many times (as
indicated by the translation parametert ), with each traver-
sal computed with a different scale.

The CWT is extremely good at displaying information
about the signal in great detail, but due to limited computa-
tional power available with computer systems, the discrete
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wavelet transform (DWT) is usually used. The DWT
computes the wavelet coefficients at discrete intervals of
time and scale, compared to the CWT that shifts the wavelet
and changes the scale in a continuous nature in order to
calculate the WT coefficients. The DWT is used to make
the process more efficient without a significant loss of detail.
It turns out that if scales and translations based on powers of
2 are used, there is virtually no detail lost in the analysis and
the signal may be perfectly reconstructed. This power of 2
transformation is precisely the method used when a DWT of
a signal is computed.

4. Denoising with wavelets

4.1. Signal decomposition and reconstruction

Thematlab Wavelet Toolbox provides standard routines
for using the DWT to decompose a signal into wavelet
coefficients and then reconstruct it with the inverse discrete
wavelet transform (IDWT). A diverse selection of wavelets

such as the ‘Morlet’ and ‘Mexican Hat’ wavelets shown in
Fig. 1 are available in this package. The procedure used by
matlab to achieve this decomposition and recomposition of
a signal involves the process of applying numerous highpass
and lowpass filters in succession. This scheme was devel-
oped by Mallat [6] in 1988, and is actually a widely used
signal processing tool known as a two-channel subband
coder. The process actually breaks the signal successively
into ‘approximations’ and ‘details’, whereby approxima-
tions represent the slowly changing (low frequency) features
of a signal, and conversely the details represent the rapidly
changing (high frequency) features of the signal. A detailed
description of this process is provided in theWavelet Tool-
box Users Guide[4] and also inIntroduction to Wavelets
and Wavelet Transforms: A Primer[5].

4.2. Noise removal by thresholding

The Wavelet Toolbox provides the facility to view and
zoom in on the signal’s decomposed wavelet coefficients.
One important feature of wavelet analysis is that it is
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capable of exposing sharp discontinuities in a signal, which
other signal processing techniques such as Fourier analysis
miss. This operation can be more efficient with certain types
of wavelets than with others, and is a property that has been
exploited in our analysis. Various discontinuities show up in
the wavelet decomposition, therefore the introduction of
noise is readily revealed and hence can be removed by
thresholding certain components of the wavelet decomposi-
tion. Another technique, which can be exploited with the
Wavelet Toolbox, is the comparison a noise free heart sound
with the same heart sound combined with unwanted noise
(such as that from the lungs). The wavelet decompositions
of both signals can then be compared to determine which
coefficients correspond to the noise source and therefore can
be removed effectively.

The thresholding operation involves removing coeffi-
cients of the DWT which lie below a specified value, and
then reconstructing the signal with the IDWT. This is a very
powerful concept because signals with energy concentrated
in a small number of wavelet dimensions will have coeffi-
cients that are relatively large compared to any other signal
present that has its energy concentrated over a larger
number of wavelet dimensions. Therefore applying the
thresholding operation to the DWT will effectively remove
any unwanted signal or noise, even if the instantaneous
frequency spectra of the two signals overlap. The only
problem left is to determine the most suitable wavelet
basis function or ‘mother wavelet’ to apply to the signal
to achieve this result.

4.3. Testing of wavelet’s and level of decomposition

Selection of wavelet and the level of decomposition were
done on two criteria. The first test was automatically denois-
ing a clean heart signal. The denoised clean heart sound is
then tested against the original signal to get a signal to noise

ratio that represents the information lost due to denoising.
The second test we carried out was designed to determine
how effectively white noise could be removed from a heart
sound; 10 dB of white noise is added to the clean heart
sound and then the result is automatically denoised using
rigorous thresholding. In this way we get two values, one
representing the information lost and the other representing
the noise removed.

The results are shown in Fig. 3. From these results we can
see db10 at a decomposition level of 5 performs very well. It
can be seen that the advantages of increasing the level of
decomposition above 5 are very limited. In practice db6 or
db7 prove to be just as effective as db10. Provided the
decomposition is above 5, all of the aforementioned wave-
lets perform quiet well.

4.4. Phase space representation

Apart from time-scale and wavelet analysis, the use of
another representation in the form of a phase space diagram
is also explored. The concept of a phase space representa-
tion of a signal is presented inUse of the Nonlinear Dyna-
mical System Theory to Study Cycle to Cycle Variations
from Spark Ignition Engine Pressure Data[7]. Theoreti-
cally, the phase space diagram of a signal is a plot of the
rate of change (time derivative) of the signal against the
original signal. If a pure sinusoid were to be plotted in
this fashion, a circular shape would result with the size of
the circle proportional to the amplitude of the sinusoid. The
plot may be thought of as a superposition of larger circular
shapes and lower amplitude impulsive shapes correspond-
ing to higher frequency signals within the heart sound. The
impulsive components are rapidly changing (hence a large
value of d/dt) compared to a small amplitude component.
This should therefore produce large vertical movements on
the plot compared to smaller horizontal movements for this
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type of noisy signal. The plot should follow itself when
plotting a clean periodically repeatable waveform.

4.5. Experimental data

Consider the 6-second heart sound recording taken from a
healthy patient with the Analyst shown in Fig. 4.

You will notice that this recording contains a significant
amount of background noise, despite the fact that it was
taken in a controlled, relatively noise free environment.

As a first demonstration, we will now show this signal
broken down into its discrete wavelet coefficients by apply-
ing wavelets from the ‘Daubechies’ family of order 5 (db5)
to the signal. Trial and error with various wavelet families
has revealed this wavelet to be most suitable for analysing
the healthy heart sound shown above. This is due to heart
beat signal having most of its energy distributed over a
small number of db5 wavelet dimensions (or scales), and
therefore the coefficients corresponding to the heart beat
signal will be large compared to any other noisy signal
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present. Information about the db5 wavelet used, including
the filters used bymatlab to perform deconstruction and
reconstruction of the signal is shown in Fig. 5.

The discrete wavelet coefficients of the signal are shown
in Fig. 6. Note that the transform has been taken over seven
levels of decomposition (or scale).

It is now useful to present how the coefficients have been

thresholded at the various levels of decomposition. It would
be unwise to threshold each coefficient in the wavelet
domain since it would be impossible to determine which
coefficients belong to a certain signal. To overcome this
problem, the Wavelet Toolbox provides a useful feature
allowing the user to be able to threshold the signal in
the time domain. Actually, it is the ‘approximations’ of
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the signal at the highest level, and the ‘details’ of all
levels of the signal that are thresholded. The thresholding
levels applied to the signal ‘details’ are shown in Fig. 7
below.

In detail level d7, a low threshold is applied to retain the
general shape of the signal whilst removing any unwanted
low amplitude noise components. The detail levels d6

through d4 are thresholded just above the point where the
heartbeat signal appears to protrude through the noise. It is
at these detail levels (or scale) that the shape of the applied
wavelet corresponds very closely with the shape of the
heartbeat signal, and therefore it is quite easy to distinguish
between the heart sound and the noise. Detail level d3 shows
up some low amplitude correlation of the wavelet with the
heart sound, but it is quite difficult to distinguish between
the heart sound and the noise at this level, and therefore the

entire detail level is thresholded out. Detail levels d2 and d1
correspond closely to the noise component, and are thre-
sholded accordingly. In practice the thresholding of coeffi-
cients is done automatically using fixed form soft
thresholding.

Finally, the denoised heart sound in the time domain
is shown in Fig. 8 along with the thresholded wavelet
coefficients of the signal. We notice in this figure that
the ‘clean’ denoised heart sound (darker colour) is
superimposed on top of the original ‘noisy’ heart
sound (lighter colour) to emphasise the effectiveness
of this noise removal operation.

We now turn our attention to another noisy heart sound
recorded with the Analyst which contains a heart defect
known as a Presystolic Murmur ending in the first
accentuated heart sound. The denoised heart sound is
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shown in Fig. 9 superimposed over the original noisy heart
sound.

As can be seen in these examples, the difference in the
phase space diagram, before and after denoising, is obvious.
The circles representing the individual beats become
substantially smoother and much closer together. This is
particularly obvious when observing the second heart
murmur. The original phase space diagram is completely
indistinguishable. After denoising, the individual circles
are very obvious. Denoising also has another substantial
advantage. In extremely quiet recordings the difference
between the maximum and minimum may be as small as
thirty samples. After denoising, these recordings become
much clearer due to the increase in resolution. This is
shown very clearly in Figs. 8 and 9.

The above heart sound was denoised over seven scales
using the technique previously discussed, but in this
instance, the optimal wavelet bases was found to be the
‘Daubechies order 9 (db9)’ wavelet. A murmur is basically
the effect of a heart valve allowing blood to rush through it
producing a relatively high frequency sound compared to
the normal heart beat. In this instance, the rushing of blood
occurs before the heart contraction (or first heart sound), and
this is shown clearly in Fig. 10.

Finally, let us consider a normal heart sound corrupted
with noise from the lungs of a heavily breathing patient.
Performing the same wavelet analysis again yields the
results shown in Fig. 11. This time a ‘Daubechies order 7
(db7)’ wavelet over 7 scales was used for the denoising of
the signal. Again, note that Fig. 10 shows the denoised heart
sound superimposed over the original noisy signal. We can
see from this figure that the noise removal is not perfect, but
it is evident that the heart sound has been separated from the
lung sound quite adequately.

5. Conclusions

We have provided a brief introduction to the fundamental
concepts of Wavelet Analysis and how they apply to the
removal of noise from heart sound recordings. The charac-
teristics the equipment used to acquire these recordings has
been provided, along with the discussion of another system
from which the recordings will be compared to. Several
examples of wavelet denoising of various types heart sounds
have been achieved with the use ofmatlab‘s Wavelet Tool-
box. This has been provided as a demonstration of the
results one can expect with this type of analysis.

L.T. Hall et al. / Microelectronics Journal 31 (2000) 583–592 591

Fig. 11. Denoised healthy heart sound originally corrupted with sound from the lungs.



Acknowledgements

We would like to thank Nariman Habili (Department of
Electrical and Electronic Engineering, University of
Adelaide) for referring us to Dr Homer Nazeran (Depart-
ment of Biomedical Engineering, Flinders University),
who took the time to provide some useful information
regarding this research area. We would also like to take
the time to thank Jeffrey Werner (Heartsounds USA Inc.
Wayzata, Minnesota, USA) and Ed Goss (Product
Manager, Heartsounds Inc. Toronto, Ontario Canada) for
providing technical information on the Analyst stetho-
scope. Finally, we would like to mention Sam Mickan
(Department of Electrical and Electronic Engineering,
The University of Adelaide) for his ongoing interest in
our research, and Mohammad Ali Tinati (Department of
Electrical and Electronic Engineering, The University of
Adelaide) for allowing us to make use of his heart sound
recording equipment.

References

[1] Wavelet tutorial: www2.iastate.edu/~rpolikar/WAVELETS/waveletin-
dex.html.

[2] M.A. Tinati, Time-frequency and time-scale analysis of phonocardio-
grams with coronary artery disease before and after angioplasty. PhD
thesis, Department of Electrical and Electronic Engineering, The
University of Adelaide, SA, 1998.

[3] M. Akay, Time Frequency and Wavelets in Biomedical Signal Proces-
sing, Series in Biomedical Engineering, IEEE Press, New York, 1997
pp. 271–301..

[4] Mathworks Inc., Wavelet Toolbox user’s guide, Chapter 1. Wavelets: a
new tool for signal analysis, March 1996.

[5] S. Burrus, R.A. Gopinath, H. Guo, Introduction to Wavelets and Wave-
let Transforms: a Primer, Prentice Hall, Englewood Cliffs, NJ, 1998.

[6] S. Mallat, A theory for multiresolution signal decomposition: the wave-
let representation, IEEE Pattern Anal. Machine Intell. 11 (7) (1989)
674–693.

[7] C. Letellier, S. Meunier-Guttin-Cluzel, G. Gouesbet, F. Neveu, T.
Duverger, B. Cousyn, Use of the nonlinear dynamical system theory
to study cycle to cycle variations from spark ignition engine pressure
data, SAE Technical Paper Series, 971640, 1997, pp. 36–46.

L.T. Hall et al. / Microelectronics Journal 31 (2000) 583–592592


