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Abstract

In certain dynamical systems, the addition of noise can assist the detection of a signal and not degrade it as normally expected. This is
possible via a phenomenon termed stochastic resonance (SR), where the response of a nonlinear system to a subthreshold periodic input
signal is optimal for some non-zero value of noise intensity. We investigate the SR phenomenon in several circuits and systems. Although SR
occurs in many disciplines, the sinusoidal signal by itself is not information bearing. To greatly enhance the practicality of SR, an (aperiodic)
broadband signal is preferable. Hence, we employ aperiodic stochastic resonance (ASR) where noise can enhance the response of a nonlinear
system to a weak aperiodic signal. We can characterize ASR by the use of cross-correlation-based measures. Using this measure, the ASR in
a simple threshold system and in a FitzHugh–Nagumo neuronal model are compared using numerical simulations. Using both weak periodic
and aperiodic signals, we show that the response of a nonlinear system is enhanced, regardless of the signal.q 2000 Elsevier Science Ltd. All
rights reserved.
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1. Introduction

Noise is usually considered a nuisance in communication
and signal processing systems, but via a phenomenon
known as stochastic resonance (SR) noise, can assist the
detection of a signal. Using the signal-to-noise ratio
(SNR) as a measure of the coherence of the output signal,
the signature of SR is a sharp increase in the SNR followed
by a gradual decrease as the noise is increased. The three
main ingredients usually required to observe SR are noise
(with correlation time much lower than that of the system),
subthreshold periodic signal and a nonlinear system. The
nonlinear system is essential since the output would be
defined by linear response theory for a linear system, thus
the SNR would be proportional at the input and output of
such a system. The simplest way to provide a nonlinear
system is by introducing a threshold element.

Since its emergence as an explanation for the periodic
recurrences on the Earth’s climate [1–4] where the term
SR was first coined, SR has traversed many disciplines.
These range from electronic systems [5,6], sensing neurons
[7,8], visual perception [9–12], bidirectional ring lasers [13]

and super conducting quantum loops (SQUIDS) [14] to
name a few. For further background, Gammaitoni et al.
have written an extensive review [15]. More recently, SR
is believed to assist with hearing systems in the auditory
nerve [16–18] while adaptive systems can learn to add the
optimal amount of noise to some nonlinear feedback
systems [19].

As an example of SR, we will consider the work by
Simonotto et al. [9], which deals with the human visual
system. This is closely related to the dithering effect [10].
Consider a system that is capable of transmitting single bits
of information, each of which marks a threshold crossing. A
visual realization of this is shown in Fig. 1 that was gener-
ated following the procedure in Ref. [9]. The original gray
scale image shown in Fig. 1a is depressed beneath a thresh-
old, white noise added to the gray value in each pixel, and
the result compared to the threshold. Thus, the noise is
incoherent with that in all other pixels. Pixels with a value
above the threshold are made black and the others below are
made white. Every pixel contains one bit of information,
whether or not the threshold has been crossed. Fig. 1b–d
shows the result of adding noise of three intensities, increas-
ing from left to right. There is an optimal noise intensity in
(b) that maximizes the information content. Additional
improvement in perceived picture quality can be gained
by varying the noise temporally [9]. The images in Fig. 1
have been averaged over five ensembles.
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A limitation of SR is that it only considers periodic
signals; this shortcoming has lead to the development of a
method for characterizing SR with aperiodic stimuli [20],
where the term aperiodic stochastic resonance (ASR) was
coined. Most of the literature regarding ASR to date has
considered neuronal models [20–27].

In this paper, we first describe the types of nonlinear
systems and noise that are used. This is followed by algo-
rithms used for numerical simulations. The next two
sections replicate SR and ASR, which includes applying
ASR to the simplest nonlinear system.

2. Nonlinear systems and noise

We used noise given by the Ornstein–Uhlenbeck (OU)
stochastic process of the form

_z �t� � lz�t�1 lj�t�; �1�
wherej(t) is the white Gaussian noise with meankj�t�l � 0
and autocorrelationkj�t�j�s�l � 2Dd�t 2 s�: The angled
bracketsk·l denote an ensemble average. The correlation
time of the OU process istc � l21 and the autocorrelation
is given by

kz�t�z�s�l � D
tc

exp
2ut 2 su

tc

� �
; �2�

with a variance ofD=tc: The OU process provides control
over both noise intensityD, and correlation timet c.

In biological systems, SR has shown to be observed in
sensory neurons, hence we use a neuron model as a basis for
our nonlinear system. The dynamics of the FitzHugh–
Nagumo (FHN) neuronal model provide a simple represen-
tation of the firing dynamics of sensory neurons [7,29]. We
consider the FHN model given by the following system that
is subjected to a subthreshold signalS(t), and noise given by
Eq. (1) [7,30]

e _v� v�v 2 a��1 2 v�2 w 1 A 1 S�t�1 z�t�; �3�

_w� v 2 w 2 b; �4�
wherev(t) is a fast (membrane potential voltage) variable
andw(t) is a slow (recovery) variable. The parameters are

chosen from Refs. [20,31], namely,A� 0:04; e � 0:005;
a� 0:5; b� 0:15:

The characteristics of the neuron model are shown in Fig.
2, the left half is noiseless with a suprathreshold signal while
the second half is purely noisy. When the sum of the time
varying inputs exceeds a threshold that is determined by
parameters in the FHN model, the fast membrane potential
quickly increases to an excited state. Once the neuron
“fires”, it resets itself after a short refractory period. When
this firing crosses an arbitrary threshold (set to 0.5 from
Refs. [7,31], ad -function spike is produced. These are
shown in Fig. 2 by the vertical lines above the firing periods.
Hence, the output of the FHN neuronal model is a train of
action potentials.

Although the FHN is only a simple neuron model, it
involves stochastic differential equations (SDEs), which
require care when numerically simulating. A simpler alter-
native is to use a threshold system as a crude approximation
of a neuron model. This not only simplifies the simulations
but also the implementation when realizing a system in
hardware. Some of the different threshold systems are as
follows.

A simple level crossing circuit (LCC) was simulated,
based on a single operational amplifier (op amp) with an
appropriate threshold voltage applied at the inverting term-
inal. Whenever the signal exceeds the threshold, a high is
given at the output, correspondingly, a subthreshold signal
generates a low output. Essentially, we have a comparator,
where the output consists of a train of variable width pulses.

Adding some resistors in the positive feedback path gives
rise to a comparator with hysteresis, that is, a Schmitt trigger
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Fig. 1. The pictures are generated from the popular signal processing image of “Lenna” on a 256 gray scale color depth at a resolution of 256× 256 pixels: (a)
original image; (b)–(d) increasing noise intensities from left to right.

Fig. 2. The first half of the FHN neuron response (fast voltage,v(t)) is due to
a suprathreshold signal, while the right half of the response is driven by
pure noise. The output is the spike train shown by the vertical lines.



[28]. This is a bistable circuit since the output voltage
depends on the previous state of the output. Modifying
this circuit slightly again, we are able to control the positive
gain of the transfer characteristic while maintaining the
bistable nature. This is achieved by placing nonlinear
components in the feedback path as shown in Fig. 3a,
which gives the transfer characteristics in Fig. 3b. The trans-
fer function of the circuit is determined by the positive gain,
bias and threshold voltages, it is most nonlinear for zero
gain (i.e. Schmitt trigger) and becomes more linear as the
gain is increased. We refer to this type of characteristic as S-
shaped.

3. Numerical simulations

This section explicitly details the algorithms used for
numerical analysis. By showing the algorithms, it should
enable the reader to easily replicate the simulations.

We can approximate Gaussian white noise by choosingt c

equal to the integration step size. The Box–Muller algo-
rithm [32] (Eqs. (5) and (6)) were used to generate normal-
ized Gaussian random variables from uniform random
variables, and the algorithm described by Eq. (7) was used
to integrate the OU process to produce colored noise [33].
This has the advantage of allowingt c and the integration
step size to be chosen independently while providing a noise
integration accuracy of the order 3/2. The algorithm is as
follows: find

V1 � 2rand 2 1 and V2 � 2rand 2 1; �5�
where rand produces a uniformly distributed random on
[0,1]. Then calculateS� V2

1 1 V2
2 ; which must satisfy

S, 1; otherwise find a newV1 and V2. This gives the
normally distributed random variables as

g1 � V1

���������������22 ln S�=Sp
and g2 � V2

���������������22 ln S�=Sp
:

�6�
The colored noise is then generated by

zn11 � e2azn 1
�������������������
D�1 2 e22a�=tc

q
gn; �7�

where a � h=tc; and h is the integration time or step
size.

Simulating the threshold systems with a stochastic
process (i.e. the OU process) presents no problems, but
caution must be exercised when simulating the neuron
model [34]. We need to solve the deterministic ODEs of
(Eqs. (3) and (4)) coupled with the SDE of Eq. (1). The
deterministic equations were numerically integrated using
a fourth order Runge–Kutta (RK-4) method coupled with
the algorithm in Eqs. (5)–(7). In other words, solve Eqs. (3)
and (4) using the standard RK-4 algorithm, but use Eq. (7) to
generate the noise for the next time step. As the RK-4
requires samples every half of an integration step, a linear
interpolation between the two adjacent points was used,
although a simpler zero-order hold method would suffice
[35].

An aperiodic signal was constructed to demonstrate ASR
according to the procedure used in Refs. [21,31]. A 10 s
unit-area Hanning window filter was convolved with
colored noise having correlation timetc � 20 s: The
Hanning window has the effect of smoothening the signal
like a low-pass filter which ensures the time scale of the
signal is much greater than that of the noise [20,27]. This
signal is amplified and shifted to give zero mean and
variance 1:5 × 1025

: The periodic signal consisted of a
simple sinusoid with a period of 20 s.

Simulations were performed with different integration
and noise correlation times to determine the most appropri-
ate choice. It was found that the results did not vary signifi-
cantly for step sizes less than 0.01 s, hence this is the value
of h used throughout the paper. To simulate white noise, a
noise correlation time equal to the integration time was
used, that istc � 0:01 s: It is worthy to note that when a
d -spike is produced in simulations, the discrete time version
of thed-function is used, defined as

d̂ �kh� �
1=h if k � 0

0 otherwise:

(
�8�

When considering ASR, the output spike train may need to
be converted to a mean firing rate, which gives an average
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Fig. 3. (a) The operational amplifier circuit. The circuit in the dashed area is the nonlinear components that are added to the Schmitt trigger. (b) The S-shaped
input–output transfer characteristics of the circuit in (a).



number of spikes per second. We can achieve this by
passing a 10 s Hanning window filter over the spike train.
The edge effects of the Hanning window filter were dealt
with by sufficiently padding the signal with zeros.

4. Replicating SR

The most common way to quantify SR is through the
SNR [36], which is the method used in this paper. The
SNR is defined as the ratio of the signal power spectral
density to the broadband background noise taken at the
signal frequency and is given in decibels as

SNR� 10 log10
S� f0�
B� f0�

� �
; �9�

whereS andB are the signal and background noise at the
fundamental frequencyf0, respectively. The process used to
calculate the SNR given the output signal from a system is
shown in Fig. 4. If SR exists we expect the SNR to peak as
the noise is increased, we note that this is not a bona fide
resonant peak as the increased response isnot due to the
natural frequency of the system [10]. The alternative use of
the expression ‘resonance’ is derived from the SNR having a
peak due to some other parameter, but this definition will
suffice for our purposes.

The amount of literature in SR is extensive, so we restrict
ourselves to considering SR in the LCC system and the S-

shaped characteristic systems. The former case will also
serve as a comparison with ASR techniques while the latter
investigates the role of system linearity.

Our level crossing circuit is different, although not unique
[37], from most previously studied as it produces a variable
width pulse when the signal exceeds the threshold, where as
others produce a fixed width pulse [38,39]. The level cross-
ing detector was implemented with a threshold voltage of
0.1 V. Although, the LCC is not new [37,40], it will serve as
a basis for comparison with ASR. The SNR from numerical
simulations are shown in Fig. 5a. This clearly shows that SR
is present. The amount of improvement offered by SR is
dependent on the signal-to-threshold distance, the larger
the distance the smaller the improvement in SNR. Hence,
when given a noisy signal one should also consider varying
the threshold (if possible) as well as the noise intensity.

Several S-shaped transfer characteristics were simulated
with the SNRs shown in Fig. 5b. For low-noise intensities,
there are no transitions between the low and high states. To
simplify the calculation of the SNR, the dc component of the
output response was removed. This helps to isolate the
signal component as it is not drowned out by the dc offset.

For a linear system, the response can be fully character-
ized in terms of linear responses theory. This means that the
SNR at the output must be proportional to the SNR at the
input. This is evident in Fig. 5b at low-noise intensities,
where decreases in SNR is independent of gain as the
system is operating completely in the linear region. In the
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Fig. 4. (a) The power spectral density (PSD) is found by taking the discrete Fourier transform of the response. (b) By taking the PSD of the response for
different values of noise, a three-dimensional plot is generated. The fundamental frequency can easily be observed. (c) The SNR for the fundamental frequency
and harmonics are found from Eq. (9), as the two stars shown in (a), to determine how the SNR varies with noise intensity.

Fig. 5. (a) Numerical simulations of the LCC system with a sinusoidal signal. The threshold was placed at 0.1 V and the three lines have signal amplitudes of
0.075, 0.04 and 0.01 V from top to bottom, respectively. (b) Numerical simulations of the S-shaped characteristic systems. The threshold and bias were both set
to 0.1 V with a signal amplitude 0.01 V. The lines have gains of 0, 2 and 10 from bottom to top.



high-noise regime, where the noise dominates the switching
between states, it linearizes the system in that all the SNRs
converge. The effect of the gain is most noticeable for inter-
mediate values of noise intensity. The largest improvement
in SNR is when the gainG is zero, that is, for the most
nonlinear system. Similarly, whenG is increased and the
system becomes more linear there is less improvement in
SNR. This is not totally obvious from Fig. 5b as the dc
component of the response was removed.

5. Replicating ASR

A large proportion of work in SR has been limited to
systems with periodic stimulus. Although it has served
useful in many areas (Section 1), the applicability of SR
to in practice is limited. This is due to many real world
stimuli being aperiodic.

This limitation leads to the concept of ASR, first coined
by Collins et al. [20]. ASR introduces another hindrance,
namely, how to measure it. Both the methods used for SR in
Section 4 assess the coherence of the response from the
system with the input signal. These metrics are inappropri-
ate for systems with aperiodic inputs.

A cross-correlation based measure was introduced [20]
that considers the correlation between the stimulus signal
and the system response. This is termed as the power norm
C0 and is given by

C0 � k�S�t�2 S�t���R�t�2 R�t��l; �10�

whereR(t) is the mean firing rate signal constructed from
the system output and the overbar denotes an average over
time. The normalized power normC1 is given by

C1 � C0

k�S�t�2 S�t��2l1=2k�R�t�2 R�t��2l1=2 : �11�

These measures assume the peak in the input–output cross-
correlation occurs at a time lag of zero. However, in certain
systems, a lag may exist between the stimulus and response.
In this case, one should use the peak in the input–output
cross-correlation function.

It has been common to use neuron models for the
nonlinear system in ASR, the integrate and fire, [23,41]
the Hodgkin–Huxley, [23] and the FitzHugh–Nagumo
[20,31,42], for example. We present our results for the
FHN neuronal model in order to replicate the original
work of Collins et al. [20]. This is followed by the LCC
system that shows ASR is possible in the simplest nonlinear
system.

The FHN neuronal model described by Eqs. (3) and (4)
was used with an integration step of 0.01 s. Fig. 6a and b
shows the ensemble averaged values ofC0 andC1 for noise
intensitiesD over 300 trials using the same aperiodic input
signal.

The results shown in Fig. 6 agree with those reported in
Refs. [20,31]. Although, they look promising, one must take
into account the distribution of the correlations [31]. In Fig.
6c, the individual trials used to generate Fig. 6b have been
plotted. Even at the resonant peak, the distribution is very
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Fig. 6. (a) and (b) The correlationsC0 and C1 of the FHN neuronal model, respectively. (c) The individual instances ofC1 showing the broad range of
distributions, some even having negative correlations at the optimal noise intensity.

Fig. 7. (a) and (b) Numerical simulations of the LCC system with an aperiodic signal showing the correlationsC0 andC1. (c) A sinusoidal signal (amplitude
0.01 V) was used in the LCC system to plot both the SR metric (SNR from Fig. 5a) and the ASR metric on the same axis.



broad, including negative correlations between the input and
output. We can gain a marked improvement by having
neurons in parallel [21,31].

Now that we have verified our ASR system, and now we
can turn our attention to the LCC system. Although, a multi-
level trigger system has been previously studied [43], ASR
has not been explicitly reported for the simplest implemen-
tation of a nonlinear system. The same stimulus from the
FHN model was employed in the LCC with a thresholding
voltage of 0.1 V, which allows easy comparison. The results
shown in Fig. 7a and b clearly show that ASR is exhibited.
What this means is that using the simplest nonlinear system,
the input–output correlation can be improved for any signal
with addition of noise.

This is of interest for those who deal with simple threshold
systems. One example is motion detection schemes that use
insect vision models [44,45]. A differencing between two
successive frames is needed to determine the change of inten-
sity in each pixel. If the intensity change does not exceed a
certain threshold, then no change is registered. When dealing
with noisy scenes, ASR may offer some assistance.

Since ASR caters for any shaped stimulus, it works
equally well for a periodic signal. By using the same signal
as in Section 4, we can compare the metrics. Fig. 7c shows
SNR calculated according to Eq. (9) and the correlation
coefficients calculated by Eqs. (10) and (11). As we are
dealing with the same signals and systems, there should
not be too much discrepancy in the optimal noise value,
which is supported by Fig. 7c.

6. Conclusion

We have explicitly provided the algorithms for the
numerical simulations. This should enable the reader to
easily replicate a system that exhibits ASR. Using these, it
was shown that ASR is present in even the simplest
nonlinear system—the LCC. This exposes a wide variety
of systems where ASR can be used, not just neuron models.
For the first time, we have explicitly demonstrated ASR in
an LCC. This is of importance for motion detection models,
for example, and for making a clearer performance compar-
ison with the more widely published periodic SR results.
Finally, we have seen that the two metrics for characterizing
the different forms of the SR are in agreement.
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