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Motion detection and stochastic resonance in noisy environments
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Abstract

Several motion detection schemes are considered and their responses to noisy signals investigated. The schemes include the Reichardt
correlation detector, shunting inhibition and the Horridge template model. These schemes are directionally selective and independent of the
direction of change in contrast. They function by using spatial information and comparing it at successive time intervals. A rudimentary noise
analysis is performed on the Reichardt and inhibition detectors to compare their natural robustness against noise. Using these detectors,
stochastic resonance (SR) is applied, which is characterised by an improvement in response when noise is added to the input signal. It is found
that the performance of the detectors degrades with the addition of noise. Employing Stocks’ suprathreshold SR, an improvement can be
gained when considering a network of detectors. Furthermore, when using an incorrect threshold setting for the template model, SR can be

displayed. © 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

In poor weather conditions, millimetre waves offer a
much greater penetration over the visible spectrum through
small dust particles (aerosols), rain and fog. Antenna arrays
capable of detecting mm-waves can be constructed [1]. This
design utilizes radiometry, which is the science of using
passive detection techniques to detect background radiation.
Unlike radar, which transmits a signal then receives the
backscattered radiation, a radiometer only receives naturally
occurring blackbody radiation. It is reasonable to expect
then, in this passive detection system, the signals are
inherently noisy. Thus, the noise must be taken into account
when processing the antenna array signals for the desired
application.

The primary application is for a collision avoidance
sensor, that is, a motion detector. This has stemmed from
earlier work that developed a single ‘seeing chip’ [2-4]
based on insect vision. This functioned in the visible spec-
trum and implemented a simple ‘insect template model’ to
detect motion [5-7]. The aim is to extend this to the
mm-wave spectrum and utilize the noise to develop a robust
mm-wave collision avoidance sensor.

A common belief is that addition of noise to a system
always degrades the quality of the response; however, by
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use of the phenomenon of stochastic resonance (SR), this is
not always true. Certain non-linear systems have shown that
there is an optimal non-zero noise intensity which can be
added to a system to improve the response [8]. Originally
developed for periodic signals, SR has been extended to
systems with either sub or supra-threshold broadband
(aperiodic) signals [9].

Three motion detection schemes have been investigated
and we have evaluated the effects of SR in the presence of
noisy signals. The first is the Reichardt detector, which was
the earliest explicit model in motion processing [10]. The
second involves shunting inhibitory neurons [11], which
originated from a neurophysiological model [12]. The last
is the Horridge template model, which is based on the navi-
gation mechanism that bees use, to navigate [13]. This is
included for historical reasons, and also because of its
simplicity to implement.

2. Motion detection schemes

In order for a scheme to detect motion, in a directionally
selective way, certain minimum requirements must be satis-
fied; asymmetry, two inputs and a non-linear interaction
[14]. Two inputs are necessary since motion is a vector, a
single receptor could not distinguish a change in intensity
coming from either the left or right. A non-linear interaction
between the inputs is required; otherwise, all information
about the temporal sequence is lost. This inhibits the sensor
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Fig. 1. (a) A section of the widefield Reichardt detector. (b)The response to two positive steps (0.5 and 1.0 s) with the BPF (solid line) and without (dashed

line).

from being directionally sensitive. Finally, there must be
some asymmetry between the two inputs; otherwise, the
input receptors could be switched without affecting the
output, giving no directional selectivity.

There are several broad categories of detection schemes,
which stem from the basis of their conception. Biological
schemes based on cellular mechanisms or neurophysiology
can be divided into gradient and correlation type of models.
Gradient schemes estimate motion by relating the changes
in spatial and temporal intensity, whilst correlation schemes
are essentially based on the common delay and compare
systems. The other broad categories are the artificial
schemes that take more engineering type of approaches.

Before going into details about the motion detection
schemes, some criteria are established to determine the
requirements of the schemes [11]:

e The sign of the response must indicate the direction of
motion. This should be independent to the direction of
change in contrast of the moving object.

e There should be no response to a stationary edge or a
varying contrast.

e Ideally, it should be robust to noise.

e For an array of sensors, i.e. in the widefield, the position
of the response should correspond to the moving edge.
That is, spatially separated moving edges should each
have a corresponding response.

The detectors that are considered in this paper are the
Reichardt correlation detector, shunting inhibitory neuron
and the Horridge template model.

2.1. Reichardt detector

Also called the correlation detector, it is one of the
earliest biological motion detection systems based on the
optomotor response of insects [10]. The Reichardt elemen-
tary motion detector (EMD) detects motion in one direction
by comparing the signal from one receptor to a delayed
signal from an adjacent receptor. The dashed box in Fig.
1(a) shows a single EMD. The comparison unit employs a

simple multiplication, or correlation of the two signals. Due
to the asymmetry of the EMD, there exists a preferred and a
null direction. That is, the response to a stimulus moving in
one direction has a larger magnitude (preferred direction) to
the response of the same stimulus moving in the opposite
direction (null direction). For the EMD highlighted in
Fig. 1(a), the preferred direction is to the right and the
null to the left.

Combining two EMDs tuned to opposite directions forms
a bi-directional motion detector which is shown in Fig. 1(a)
in the widefield configuration. Bandpass filters (BPF) are
placed directly after the receptors to attenuate unwanted
high frequency components in the response.

The delay stage, represented by 7, is modelled as an
exponential decay, which is implemented as a first order
low pass filter with the transfer function H(s) = A/(s + A),
where A is the cut-off frequency. This allows better inte-
gration of the delay stage into the biological modelling. The
delay stage, along with the spatial separation of the recep-
tors, allows tuning of the detector to different velocities.

The response of one of the local outputs (y; say) to a step
input is shown in Fig. 1(b) by the solid line. This is briefly
explained as follows. Consider a step with background
luminance L that increases to (1 + ¢)L whilst moving
from left to right, where c is the contrast (—1 = ¢ = 1).
The output of the BPF is a pulse and with appropriate
tuning, the delay time corresponds to the time taken to
move between receptors allowing the pulses to coincide at
the correlation unit to produce a positive response. The
differencing of the EMDs then determines the sign of the
direction. If the pulse generated by the BPF has not decayed
before the stimulus reaches the next receptor, the pulse tail
interacts causing a small dip.

This dashed line in Fig. 1(b) is the response of the Reich-
ardt detector when the BPFs are omitted. The two peaks
reveal the interactive mechanism at work, namely an exci-
tatory one. This means that, every time a change is incident
on one receptor, neighbouring outputs are affected, usually
with the opposite magnitudes as seen in Fig. 1(b). Once the
signals have been bandpass filtered, the effect of the
excitatory mechanism is reduced to a small dip. This was
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deliberately created by not allowing the tail from the BPF of
the step input to decay away before the next step is incident.
Hence, there is no dip in the first pulse in Fig. 1, but there is
before the second pulse.

2.2. Inhibitory detector

Rather than using an excitatory mechanism to compare
channels, an inhibitory mechanism is also capable of
providing a directionally selective sensor. The first inhibi-
tory mechanism proposed by Barlow and Levick was digital
and was derived from studies of directionally selective units
in rabbit’s retina [12]. An alternative lateral inhibition
mechanism, which resulted from studies of horseshoe
crabs contains a linear interaction [15]. A non-linear version
of this lateral inhibition, called shunting inhibition was
developed by considering the neurochemistry of visual
cells [16]. Using this type of neuron, motion detection
systems that have similar behavioural properties to the
Reichardt detector, have been developed [17]. The shunting
inhibition neuron is described by the following non-linear
equation

%§:L—am—mghm&x M

where m(t) is the response (membrane voltage), L(¢) is the
excitatory input, a is the self decay of the neuron, k; are
the weights, f; are the activation functions and X;(7) are
the inhibitory inputs. With regard to diagrams of the neuron,
a dot represents the excitatory and a bar represents the
inhibitory inputs, see Fig. 2 for example.

The modelling of the inhibitory neuron can be simplified
by ignoring the internal dynamics, that is, setting m = 0.
This is equivalent to the steady-state operation and treats
the neuron as a division operator giving

L

BEDN ) @

This simplifies the case studies when designing a detector
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Fig. 2. Local inhibitory detector, M is the shunting inhibitory neuron.

based on this neuron, but in practice, it is highly susceptible
to noise.

The shunting neuron can be configured similar to the
Reichardt detector, but the result does not satisfy the speci-
fied criteria — the response is dependent of the direction of
contrast change. However, by constructing the inhibitory
neuron as shown in Fig. 2, the problem is remedied. The
difference is the excitatory input of both neurons is provided
by the same receptor, the inhibitory inputs are provided by
the other receptor. A delay inserted into one of the paths
provides the asymmetry. A consequence of this is the
response is zero until the stimulus reaches the inhibitory
input. When the stimulus reaches the excitatory input
(Ry), the output of both neurons change by the same amount
which is cancelled at the summer. A response is only gener-
ated when the stimulus reaches the inhibitory input (R,),
since this contains the asymmetry. The overall effect of
this configuration is the introduction of preferred and null
directions that make it characteristically similar to the EMD.

Since the arrangement in Fig. 2 exhibits similar charac-
teristic to the EMD, placing two back-to-back solves the
problem of preferred and null directions and dependency
on change of contrast. Since a response is only generated
when the stimulus is incident on the inhibitory input coming
from either direction, they are placed back-to-back centred
about the inhibitory input. Such an arrangement is shown in
Fig. 3 in the dashed box. This forms the directionally sensi-
tive local inhibitory motion detector (DSLIMD) [11], with
the response is given by y;. The response y; is also now
independent to the direction of change of contrast.

In order to carry out a preliminary investigation of noise
robustness, the Reichardt detector and DSLIMD with and
without the internal dynamics, were subjected to the same

Fig. 3. The dashed outline shows a single slice of the DSLIMD from the
widefield configuration. In practice, only one time delay element is required
per receptor, two are drawn here for clarity.
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Fig. 4. Simple noise analysis. The horizontal axis of all plots is time over 0.8 s, the vertical axis of the top row is luminance (changing 10 to 12.5 levels of grey)
and for the other rows it is a scaled response. Noise with standard deviation of 0.2 and 2.0 was added to column (a) and (b), respectively.

noisy signal. Although a bandpass filter does not satisfy the
criteria for a motion detector, it is included to see how it
modifies the input signals for the Reichardt detector and
template model. The responses for small and large intensi-
ties of additive noise are shown in Fig. 4, they have been
appropriately scaled for clarity.

One comparison immediately observable is the
presence of internal dynamics is essential for robustness
against noise. This includes the BPF, which can alter-
natively be expressed as a differential equation. This is
in agreement with the response of the Reichardt detec-
tor without BPFs (not shown), which looks similar to
the steady state DSLIMD. For the Reichardt and DSLIMD,
the shapes are quite similar but the DSLIMD is not quite
noisy.

R, R,
BPF BPF

2.3. Template model

The template model, originally developed by Horridge, to
model insect vision, shares both biological and engineering
heritage [13,18]. A diagram of the template model is shown
in Fig. 5(a). The input channels are first bandpass filtered,
which is then quantised by thresholding and sampling to
give one of three states, increase (1), decrease (|) or no
change (—). Templates are then formed by considering
adjacent spatial channels at successive time intervals. This
forms a 2X2 template that contains both spatial and
temporal information to be used with a look up table.
Since there are three possibilities for each of the four quad-
rants of the template, there are a total of 81 possible
templates. By considering each of the possible templates,

Time

20

40 60 80
Displacement

Fig. 5. Template model and response. (a) A section of the widefield schematic of the template model. The signal from the receptors is bandpass filtered,
thresholded, sampled (not shown), delayed and stored as a 2 X 2 template. (b) The response to a step input being moved back and forth, <I and > denote

leftward and rightward motion, respectively.
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only eight indicate coherent motion, which are known as
directionally motion-selective templates (DMST) [5].
Although there are others that have the required 3:1 diag-
onal asymmetry [18] that indicate motion, the eight DMSTs
used in this paper are those most immune to noise. By
tracking particular templates, quantities such as velocity
and time to impact can be calculated [6,7].

The response of the template model to a spot moving
back and forth is shown in Fig. 5(b). This differs from the
previous two schemes as the leading and lagging parts of the
edge, not the edge itself is tracked [19]. Another difference
is that it does not have any type of reliability measure,
whereas for the previous schemes, larger response magni-
tudes indicated a higher probability of motion. The template
model has a discrete output, either there is motion (left or
right) or there is none, no matter how large the contrast
difference is for example.

2.4. Performance measures

In communication systems, the performance of the
detector can be easily quantified since its output should
match the source as closely as possible. However, the output
of motion detection schemes do not resemble that of the
source (intensity images, for example); hence, some inter-
mediate steps are necessary. The intuitive action is to create
a benchmark, or some type of template from a clean signal.
Mathematically, we can predict where the motion M(x, f) is,
from the instantaneous spatial and temporal gradients as

aL oL

M(X, t) = a 9 = _th,

3)
where L is the luminance, x and ¢ are space and time respec-
tively. This provides a (change of) contrast independent
measure of motion, the minus sign orientates a positive M
as being rightward. Using this quantity as a benchmark, the
performance of the motion detection schemes can be
measured, via correlation or mean square error types of
metric. It is important to use Eq. (3) only on clean images
such as those generated by computer as differentiation
operators are inherently noisy.

Eq. (3) is sufficient for the Reichardt and DSLIMD
schemes, but it may not useful for the template model.
This detects leading and lagging parts of an edge, thus we
require a benchmark such as

M(x, 1) = sign(M)|LyLy]- 4)

To quantify the response, a normalised cross-correlation
is taken with these quantities. This, along with an informa-
tion theoretical measure is described in Section 3. A gener-
alised network configuration is also described that will be
used for the simulations.

3. Stochastic resonance

There are large amounts of literature relating to SR

involving periodic signals (see Ref. [8] for an extensive
review); thus, we will limit this discussion to the newer
types of SR. They are aperiodic stochastic resonance
(ASR) and suprathreshold stochastic resonance (SSR).

The term ASR, first coined by Collins [20,21] in 1995,
describes a SR system that works with broadband signals.
Clearly, the previous techniques using signal-to-noise ratio
or modes in interspike interval histograms [22] are not
appropriate for ASR. Collins et al. proposed a new measure,
the power norm, with the normalised version given as

c = < s(Or(D) >
50?121 (1) = (D)1

where s(7) is the zero mean aperiodic signal and r(¢) is the
response of the system. The overbar denotes an average over
time and (), an ensemble average. Essentially, this is a
simple input—output cross-correlation, as determined by
the numerator, which is taken at a time lag of zero. In
general, we wish to utilize the measure that quantifies the
peak in the correlation function [21]. The two terms in the
denominator are equivalent to the standard deviations of
the signal and response, their purpose to normalise the
correlation.

While ASR (and periodic SR) improves the response with
the addition of noise, it lacks robustness due to the sensitive
setting of the threshold. If the signal strength increases past
the threshold, the addition of noise only serves to decrease
C,, which removes the SR from the system. It is shown that
a much improved response can be gained by lowering the
threshold so an output is always produced [23], although
this requires a different system architecture. A promising
alternative is SSR, where the signal is suprathreshold,
with the threshold usually placed at the signal mean. This
improves the robustness of the system, as the threshold
setting is independent of the signal strength.

It has also been pointed out that one of the problems with
using the measure C; is that it is a linear indicator based
on linear response theory [24,25]. Although linearisation
occurs for large enough amplitudes of noise [26], the system
is designed primarily to be non-linear. Therefore, it seems
inappropriate to use correlations, especially for small noise
intensities. A more general indicator is the amount of
information transmitted through a system, referred to as
the average mutual information (AMI) [9]. In this setting,
we consider a network of N devices, each with independent
noise sources as shown in Fig. 6(a).

The Heaviside function forms one of the most simple
non-linear devices and is described by

1 if x() + n;(t) > 6;
) = {

0 otherwise

®)

) (6)

where 7,;(7) are the noise and 6; are the thresholds, x(r) and
y(t) are the input and output, respectively. Thus, the
response of the network is equal to the number of devices
that have been triggered. Any model can be used in the
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Fig. 6. (a) A summing network of N devices. (b) The AMI against the normalised noise o = o, /0, for various N with all §; = 0, from bottom up the values of
Nare 1, 2, 3,7, 15 and 31. The crosses are from simulations of the network and the lines are from numerically evaluating Eq. (7).

device usually some type of neuron model, but the Heavi-
side function is used for simplicity.

Having established the threshold network, the transmitted
information is written as [9]

N
AMI = H(y) = HOl) = — > P,(n) log P,(n)
n=0

_ ( _ r > P (0)P(nfx) log Plnlx) dx) )
% =0

where H(y) is the information content (or entropy) of y(¢)
and H(ylx) is the amount of information lost in transmission.
Py(n) is the probability the output y(7) is n and P(n|x) is the
conditional probability density of the output being n, given
the signal value x. The logarithms are taken as base 2, and
thus the units of AMI are in bits. The AMI for several values
of N (number of devices) are shown in Fig. 6(b), both from
simulations of the system and numerically integrating Eq.
(7). As mentioned earlier, an improvement due to SSR can
be achieved for varying signal strength without modifying
the threshold. This is true as long as the noise scales accord-
ing to signal strength, which is highlighted by the x-axis of
Fig. 6(b). This defines the noise intensity relative to the
signal intensity as o = o,/0,, where the o’s are the stan-
dard deviations of the respective signals.

It was pointed out by Stocks and colleagues that,
placing all the thresholds at the same value is an ineffi-
cient use of N devices. Finding the set of optimal
threshold, {6;}, is a problem in ‘optimal quantisation’
where one must maximise the AMI [27]. Given that a
system has a priori knowledge of the input signal, one
can find the optimal threshold settings. For a uniformly
distributed signal, uniformly distributing the thresholds
between the limits of the signal leads to optimal threshold
levels [25]. Note that the system is only optimal in the
absence of noise, as the noise changes the distribution of
the signal. The important result is that when noise is added

to a system with optimal thresholds, it only proves detri-
mental to the system.

4. Simulations

The test sequences are based on what could be expected
to be captured from a PC. A sample rate of 16 frames/second
(h = 1/16) and an image width of 100—120 pixels was used.
As mentioned earlier, the schemes process the horizontal
lines of a 2-D image independently, which means that we
only need to consider a vector image to gauge performance.
Two test sequences were used, the first was simply a spot
(intensities 10 and 12.5) moving back and forth with slightly
blurred edges, similar to that shown in Fig. 5(b). The second
consisted of a square wave grating (slightly blurred) with
the same intensities moving in one direction for the first half
of the time and the other direction for the last half of the
time.

We first consider the Reichardt and DSLIMD configured
in the network of Fig. 6(a). One can think of the widefield
configuration shown in Fig. 3(a) being parallel with itself N
times and the responses added to give the total response of
the system. The correlation coefficient is calculated based
on Eq. (5), taking into account the extra spatial dimension.
The motion benchmark was generated using Eq. (3) from a
noiseless image sequence. The delay between the input and
output was compensated for, in order to produce the maxi-
mal input—output correlation.

It is easy to see from Fig. 7 that the addition of noise only
degrades the response, the correlations generally decrease as
the noise intensity increases, independent of the number of
parallel detectors in the network. However, as we may intui-
tively expect, the performance improves as the number of
elements in the network increase. This is due to the aver-
aging properties of the Gaussian noise.

A possible explanation for the increased degradation of
performance may be that the system is near optimal. In the
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Fig. 7. Correlations for the (a) Reichardt detector and (b) DSLIMD versus the standard deviation of the added noise. The solid and dashed curves represent the
single spot and grating stimulus, respectively and the number of elements in the network are 1, 8 and 32 from bottom to top.

absence of noise, the correlations are very close to unity
with either high or low contrast images. The addition of
noise does not add any more degrees of freedom to the
system in the same way as the threshold network [24],
thus no extra information is gained. Note, the correlation
at zero noise depend on the input sequence and the para-
meters of the detector.

There are several ways to configure the template model in
the parallel network due to the separable units it contains.
We have considered two configurations, first, having the
whole model in parallel in similar fashion to the previous
detectors, or second, parallelising only the BPF and thresh-
olding units. The first configuration is computationally more
intensive as the template model must be formed in every
device, whereas the second configuration only requires one
template model formation.

Fig. 8 shows the correlations for both configurations of
the template model. Since the outputs of the template model
are spiky motion vectors, a short 2-D Hanning window is
passed over the response. This is the technique used for

(a) 1

0.8}

0.6}

—

@)
047}

0.2}

Noise, o

finding the instantaneous firing rate from action potentials
of neurons [21]. This simply smoothes the response to allow
better matching to the motion benchmark, which is M, in
this case. The correlations shown in Fig. 8 have the thresh-
old adjusted to best match the distance between the leading
and lagging template to M. In this situation, the addition of
noise typically decreases the thresholds.

However, once the threshold is moved away from its
optimal position (with respect to matching M) definite SR
characteristics are observed. This applies to both configura-
tions of the template model, the latter is shown in Fig. 9.
Recall that the placement of the threshold changes the
spacing between template pairs, which may affect which
benchmark to use, M or M. The correlations for both have
been shown in Fig. 9 to highlight this difference.

For a high threshold setting, the templates are close
together and it also may be possible that no crossings are
made for small noise intensities. The signal is subthreshold,
thus we expect to observe classical SR, which is shown in
Fig. 9.

(b) 1

08¢

Noise, o

Fig. 8. Correlations for the template model. (a) BPF and threshold units in parallel. (b) Whole detector in parallel. The solid and dashed curves represent the
single spot and grating stimulus, respectively and the number of elements in the network are 1, 8 and 32 from bottom to top.
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Fig. 9. Correlations for the template model (all in parallel) with N = 16.
The solid and dashed curves represent correlations with M and M, respec-
tively and the pairs of curves from top to bottom have thresholds 0.1, 0.03
and 0.3, respectively.

For a low threshold setting the system is suprathreshold,
that is, there is always a response even in the absence of
noise. As expected, for a single detector, noise degrades
performance (not shown). For more detectors in parallel,
the performance actually improves until some optimal
noise intensity is reached, whence the performance then
continues to degrade as shown in Fig. 9.

This could prove useful if the contrast changes radi-
cally for some reason that makes the thresholds sub-
optimal. For example, if the lights are suddenly turned
on or off, there is classical SR to provide for the small
signal amplification and SSR to provide for the large signal
amplification.

The improvement in correlations are due to the extra
degrees of freedom that the noise adds to the system. In
the absence of noise, the output of each detector is identical,
thus the matching to M or M is not that good. The noiseless
response produces sharp peaks, whereas the benchmark
consists of wider, smooth curves. When a little noise is
added, the motion vectors can deviate from this noiseless
position a little, which gives more of a Gaussian spread to
better match the benchmark. Hence, for low noise intensi-
ties, when the spread is small M is the better measure; but
once the spreading becomes larger, the motion vectors tend
to ‘bunch up’ making M a better measure. This explains why
for low thresholds correlations with M start higher but die
away quicker whereas with M they start low but are better in
higher noise.

Though these image sequences exhibit stochastic reso-
nant characteristics, it could be possible to find sequences
that are optimally matched with no additional noise, in
which case, noise only degrades the system. Similarly, we
have only considered setting all the thresholds identically,
which at least in a threshold network is an efficient use of the
devices [27]. With the appropriate distribution of thresh-
olds, noise may again be of no assistance.

5. Conclusion

The astute observer may note the qualitative results
shown in Fig. 4 for o = 2.0 appear better than the results
in Fig. 7 for N = 1 at o = 2.0. The reason is due to different
parameter settings. Fig. 4 uses a much higher sampling rate
(h = 0.001) and the generated pulse from the detector is
spread over a longer time for demonstration purposes. In
reality, we are only using 4 = 1/16 and we want the pulses
to die down quickly before the next edge arrives. The trade-
off is that a shorter pulse width is more susceptible to noise,
since we need to let higher frequency components through
in the filter settings. These two factors dramatically dimin-
ish the robustness to noise, though the general trends are the
same.

We have shown with these motion detection schemes
using a simple network configuration, that no benefit is
gained by adding noise to the signal when the system is
operating optimally. However, departing from the optimal
configuration in the template model, which contains a
threshold function, noise can enhance the performance of
the detector. Though when operating in the suprathreshold
region, more than one device is required in the network. The
detector performance is also improved by including more
detectors in the network.

In a previous paper [28], the results for the template
model did not show any benefit with the addition of noise.
In [28], the template model was only used with the thresh-
olds optimally set, thus as was shown in this paper noise
only degrades performance. Furthermore, in this paper, the
correlations for the template model have been normalised
to provide a more reliable measure than the covariance
(unnormalised correlation {r(¢)s(¢))). It is common for the
covariance to monotonically decrease while the correlation
coefficient can display SR [29], which is the case for some
instances in the template model.

In this work, quantitative results were achieved via the
use of correlations, which were based on Collins et al. origi-
nal power norm C;. Further work is required in order to
implement an information theoretical measure. Another
metric to consider is that of information transfer rate [30].
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