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Abstract

An array of N comparators subject to the same input signal and independent additive noise, with the outputs from each comparator

summed, is a useful noise model for a range of systems including flash analog-to-digital converters, Digital Multibeam Steering sonar arrays

and parallel neurons. It has previously been shown that for certain threshold configurations the transmitted information through such an array

is maximised for non-zero noise. This behaviour has been termed Suprathreshold Stochastic Resonance (SSR) [1] and in this paper we show

that SSR occurs for a number of different signal and noise distributions. Also presented is an analysis of the variance of the quantisation error

incurred when all thresholds are set equal to the signal mean, for Gaussian and uniform distributions. It is shown that the minimum error

variance is given by a non-zero value of noise.

q 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Consider an array of N comparators, subject to the same

continuously value input signal, x, as shown in Fig. 1. The

ith device is subject to independent continuously valued

additive noise, hi ði ¼ 1;…;NÞ: The output from each

device is 1 if the input signal plus the noise is greater than

the threshold ui of that device and 0 otherwise. The outputs

from the devices are summed to give the output signal y.

Hence y is a discrete signal taking on integer values from 0

to N and can be considered as the number of devices that are

currently ‘on’.

Such an array has many similarities to parallel neuron

configurations, such as a summing network of N FitzHugh–

Nagumo neurons [2,3]. It is known that sensory neurons can

be very noisy, with some papers reporting signal to noise

ratios of 0 dB [4], yet still effectively transfer information. It

is of interest to investigate this phenomenon to see if it is

possible to utilise it to improve non-linear electronic devices

such as motion detection systems [5,6]. Such arrays are also

good models of flash (parallel) analog-to-digital (A/D)

converters [7] (when the thresholds are uniformly distrib-

uted across the signal space) and DIMUS (Digital Multi-

beam Steering) sonar arrays, in the ‘on target’ position [8,9].

Our aim is to investigate the conditions under which the

performance of such an array can be optimised by a certain

non-zero noise setting. The phenomenon of a non-linear

system performing optimally for non-zero noise levels is

known as stochastic resonance [10–14]. Stochastic reson-

ance was first reported as an explanation for the periodicity

of ice ages [15]. Since then, it has been shown to occur in

many non-linear systems, such as electronic devices [16],

ring lasers [17], SQUIDS (super conducting quantum

interference devices) [18] and in biological sensory neurons

[19] and ion channels [20].

A number of methods have been used to quantify

‘optimal performance’ in the literature. Originally, stochas-

tic resonance was defined as an increase in output signal to

noise ratio for a weak periodic signal in a non-linear system.

However, it was later shown that stochastic resonant

phenomena could occur for broadband signals. This is

known as Aperiodic Stochastic Resonance [21,22]. For such

broadband signals, cross-correlation measures [23], trans-

mitted information (Shannon information) [1,21], Fisher
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information [24], Kullback entropy [25], f-divergences

[26,27] and channel capacity [28,29] have all been shown

to possess maxima for non-zero noise values in various

systems.

In this paper, we consider only the (Shannon)

transmitted information [30]. For general conditions,

such a quantity is more robust for broadband excitation

signals than quantities such as signal to noise ratio and

cross-correlation coefficient for non-linear systems where

the signal is large compared to the noise [31]. A brief

summary of this paper follows. Section 2 gives

mathematical descriptions of the transmitted information

for the array of threshold devices, and of various

probability densities on which the transmitted information

depends. Four different probabilistic distributions of the

signal and noise amplitude are considered. In particular,

a general formula is presented for calculating the

probability that n comparators are ‘on’ for a given

signal x.

Section 3 presents results obtained showing how the

transmitted information varies with the noise intensity for

two different threshold configurations and the four

probability distributions. An alternative approach to

analysing the array is given in Section 4. Here we

consider the output to be an estimator of the input, and

derive a formula for the variance of the error between

the output and the input. It is shown that this variance

has a minimum for non-zero noise intensity when N . 1

and hence displays stochastic resonant-like behaviour.

Finally, Section 5 summarises the paper and presents

some conclusions and future directions for this work.

2. Calculating information transmitted through

the array

The array of N comparators is shown in Fig. 1. The

output of device i is given by

yi ¼
1 if x þ hi . ui;

0 otherwise:

(

Hence, the output of the array is y ¼
PN

i¼1 yi: We

consider the array to be an information channel. The

transmitted information I through a channel is given by

the entropy HðyÞ of the output less the conditional

entropy HðylxÞ of the output given the input as

I ¼ HðyÞ2 HðylxÞ: ð1Þ

As noted by Stocks [1], HðylxÞ can be interpreted as the

amount of encoded information about the input signal

lost through the channel. Since the input to the array is

continuously valued and the output is discretely valued,

we can consider the channel to be semi-continuous [32].

The transmitted information through such a channel is

given by

I ¼ 2
XN
n¼0

QðnÞlog2QðnÞ

2 2
ð1

21
PðxÞ

XN
n¼0

PðnlxÞlog2PðnlxÞdx

 !
; ð2Þ

where PðxÞ is the probability density of the input signal x,

QðnÞ is the probability of the output signal y being equal

to n ðn ¼ 0; 1;…;NÞ and PðnlxÞ the conditional prob-

ability that the output is n given the input is x [1,31,33].

We have also the equation

QðnÞ ¼
ð1

21
PðnlxÞPðxÞdx; ð3Þ

relating QðnÞ and PðnlxÞ: Hence, the transmitted infor-

mation can be expressed in terms of only PðxÞ and

PðnlxÞ: In turn, PðnlxÞ is determined by PðxÞ and the

channel characteristics, that is, the number N of threshold

devices, the values ui of the thresholds and the noise

probability density RðhÞ: Section 2.1 describes briefly the

method we use to calculate PðnlxÞ given the channel

characteristics. We shall consider four different signal

and noise probability distributions: uniform, Gaussian,

Rayleigh and exponential. Expressions for these prob-

ability distributions are given in subsequent sections.

2.1. Calculating PðnlxÞ

Following the notation of Stocks [1], let P1lx;i be the

probability of device i being ‘on’ (that is, signal plus noise

exceeding the threshold ui), given the input signal x. Then

P1lx;i ¼
ð1

ui2x

RðhÞdh ¼ 1 2 FRðui 2 xÞ

ði ¼ 1;…;NÞ;

ð4Þ

where FR is the cumulative distribution function of the

noise.

Given a noise density and threshold value, P1lx;i can be

calculated numerically for any value of x from Eq. (4).

Assuming P1lx;i has been calculated for desired values of x,

Fig. 1. Array of N summing comparators.
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a convenient way of numerically calculating the probabil-

ities PðnlxÞ for a given number N of devices is as follows.

Let Tk
nlx denote the probability that n of the devices ðn ¼

1;…; kÞ are ‘on’, given x. Then T1
0lx ¼ 1 2 P1lx;1 and T1

1lx ¼

P1lx;1 and we have the recursive formulae

Tkþ1
0lx ¼ ð1 2 P1lx;kþ1ÞT

k
0lx;

Tkþ1
nlx ¼ P1lx;kþ1Tk

n21lx þ ð1 2 P1lx;kþ1ÞT
k
nlx ðn ¼ 1;…; kÞ;

Tkþ1
kþ1lx ¼ P1lx;kþ1Tk

klx: ð5Þ

We have PðnlxÞ given by TN
nlx: An alternative evaluation is

the coefficient of z n in the power series expansion of

YN
i¼1

½1 2 P1lx;i þ zP1lx;i�:

In particular, when all the thresholds have the same value,

then each P1lx,i has the same value P1lx and we have the

binomial distribution

PðnlxÞ ¼
N

n

 !
ðP1lxÞ

nð1 2 P1lxÞ
N2n ð0 # n # NÞ:

Thus, for any arbitrary threshold settings and signal and

noise probability distributions, PðnlxÞ can be easily

calculated from Eqs. (4) and (5) and therefore the

transmitted information can be calculated by numerical

integration of Eq. (2). In previous papers, numerical

integration of Eq. (2) has been verified by digital

simulations [1,31]. However, digital simulation becomes

very difficult for large N, so that N was limited to be less

than 100 [31]. The approach given here has the benefit that

PðnlxÞ can be found even for very large values of N, for any

given threshold settings.

The following sections give expressions for four different

probability densities (uniform, Gaussian, Rayleigh, and

exponential), and for each of these gives expressions for

P1lx,i obtained directly from Eq. (4). The results in this paper

are independent of the value of the mean of the signal or

noise, so we have chosen the mean for each distribution

below for convenience.

2.2. Uniformly distributed signal and noise

If the input signal, x is uniformly distributed between

2sp=2 and sp=2 with zero mean, then

PðxÞ ¼
1=sp for 2 sp=2 # x # sp=2;

0 otherwise:

(
ð6Þ

If the independent noise h in each device is uniformly

distributed between 2sr=2 and sr=2 with zero mean, then

RðhÞ ¼
1=sr for 2 sr=2 # h # sr=2;

0 otherwise:

(
ð7Þ

Substituting Eq. (7) into Eq. (4) gives

P1lx;i ¼

0 for x , ui 2sr=2;

x=sr þ 1=22 ui=sr for ui 2sr=2 # x # ui þsr=2;

1 for x . ui þsr=2:

8>><
>>:

ð8Þ

2.3. Gaussian signal and noise

If the input signal has a Gaussian distribution with zero

mean and variance s2
p; then

PðxÞ ¼
1ffiffiffiffiffiffiffi

2ps2
p

q exp 2
x2

2s2
p

 !
: ð9Þ

If the independent noise in each device is Gaussian with

zero mean and variance s2
r ; then

RðhÞ ¼
1ffiffiffiffiffiffiffi

2ps2
r

p exp 2
h2

2s2
r

 !
: ð10Þ

Substituting Eq. (10) into Eq. (4) gives

P1lx;i ¼ 0:5 erfc
ui 2 xffiffiffiffiffi

2s2
r

p
 !

;

where erfc is the complementary error function [34].

2.4. Rayleigh signal and noise

If the input signal x ($0) has a Rayleigh distribution with

mean sp

ffiffiffiffiffi
p=2

p
; then

PðxÞ ¼
x

s2
p

exp 2
x2

2s2
p

 !
: ð11Þ

If the independent noise h ($0) in each device has a

Rayleigh distribution with mean sr

ffiffiffiffiffi
p=2

p
; then

RðhÞ ¼
h

s2
r

exp 2
h2

2s2
r

 !
: ð12Þ

Substituting Eq. (12) into Eq. (4) gives

P1lx;i ¼
exp 2

ðui 2 xÞ2

2s2
r

 !
for x , ui;

1 for x # ui:

8>><
>>:

2.5. Exponential signal and noise

If the input signal x ($0) has an exponential distribution

with mean sp then

PðxÞ ¼
1

sp

exp 2
x

sp

 !
: ð13Þ
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If the independent noise h ($0) in each device has an

exponential distribution with mean sr, then

RðhÞ ¼
1

sr

exp 2
h

sr

� �
: ð14Þ

Substituting Eq. (14) into Eq. (4) gives

P1lx;i ¼
exp 2

ðui 2 xÞ

sr

� �
for x, ui;

1 for x$ ui:

8><
>:

3. Comparison of transmitted information for different

threshold settings and noise distributions

3.1. Thresholds distributed optimally for zero noise

For the case where all comparators are noiseless HðylxÞ
is zero, since the output of the array is completely

deterministic given the input. Therefore, from Eq. (1),

the transmitted information is simply the entropy HðyÞ of

the output signal. Maximizing the output entropy

is achieved by ensuring all output states are equally

probable, that is, QðnÞ ¼ 1=ðN þ 1Þ for all n [30]. In this

case, from Eq. (2), the transmitted information is given by

log2ðN þ 1Þ bits per sample. Since there is no noise, P1lx,i

is zero when x , ui and unity otherwise. Therefore, PðnlxÞ
is equal to unity when x is between un and unþ1 and

zero otherwise. If the sequence ðunÞ
N
n¼1 is increasing, then

from Eq. (3)ðuiþ1

ui

PðxÞdx ¼
1

N þ 1
, FPðuiÞ ¼

i

N þ 1
, ui

¼ F21
P

i

N þ 1

� �
;

where i ¼ 0;…;N and F21
P is the inverse cumulative

distribution function of the input signal.

In the case of a uniformly distributed signal, as in Eq. (6),

the thresholds are

ui ¼ sp

i

N þ 1
2

1

2

� �
ði ¼ 1;…;NÞ:

In the case of a Gaussian signal distribution, as in Eq. (9),

the thresholds are

ui ¼
ffiffi
2

p
sp erf21 2i

N þ 1
2 1

� �
ði ¼ 1;…;NÞ;

where erf21 is the inverse of the error function [34].

In the case of a Rayleigh signal distribution, as in

Eq. (11), the thresholds are

ui ¼ sp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
22 ln 1 2

i

N þ 1

� �s
ði ¼ 1;…;NÞ:

In the case of an exponential signal distribution, as in

Eq. (13), the thresholds are

ui ¼ 2sp ln 1 2
i

N þ 1

� �
ði ¼ 1;…;NÞ:

3.2. Thresholds equal to the signal mean

The second configuration of thresholds we shall consider

is the case where all thresholds are set equal to the signal

mean. This setting will give a transmitted information of

exactly 1 bit when there is no noise, since all of the threshold

devices will be simultaneously either ‘on’ or ‘off’ and y can

be only 0 or N, each value occurring with probability of 0.5.

Setting all of the thresholds to values other than the signal

mean will give transmitted information of less than 1 for

zero noise.

3.3. Results

Figs. 2–5 show plots of transmitted information against

s ¼ sr=sp for the case where the signal and noise are

identically distributed. Hence, s is the ratio of the signal

standard deviation to the noise standard deviation for all

four probability densities. In all figures sp is set equal to

one. The value of sr is varied between 0 and 1.6 and the

transmitted information calculated numerically from Eq. (2).

It is important to note, however, that since we have plotted

the transmitted information against the ratio of sr to sp that

the results plotted below are valid for any size (characterised

by the variance) of the signal.

It can be seen from the figures that when the thresholds

are set so that the transmitted information is maximised

for zero noise, the transmitted information in the absence of

noise ðs ¼ 0Þ is indeed given by log2ðN þ 1Þ bits per sample.

As s increases, the transmitted information decreases

Fig. 2. Plot of transmitted information against s for various values of N and

uniformly distributed signal and noise. The solid lines are the case where all

thresholds are set to the signal mean. The dotted lines are the case where the

thresholds are set to optimise the noiseless transmitted information.
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monotonically from this value. However, for the case of the

thresholds all set to the signal mean, the transmitted

information is always 1 bit per sample for zero noise. For

N . 1; as the noise intensity increases from zero, the

transmitted information also increases until it reaches a

maximum before decreasing again. As N becomes large, the

value of s that gives the maximum transmitted information

increases towards unity.

These results confirm those reported by Stocks [33] and

furthermore we have extended them to show that a noise-

induced maximum occurs in the transmitted information for

the Rayleigh and exponential distributions. As pointed out

by Stocks, since these results are valid for any size of input

signal, they contrast with classical stochastic resonance

results where the signal has to be subthreshold for stochastic

resonance phenomena to occur. Stocks has coined the term

Suprathreshold Stochastic Resonance (SSR) to describe this

new result.

3.4. Analysis of results

For the case of all thresholds set to the signal mean, the

reason that only 1 bit is transmitted in the absence of noise is

that only the two output states 0 and N are possible. Hence,

only 1 bit of information can be transmitted, as this is

equivalent to a binary signal. As noise becomes non-zero,

the other output states become accessible and hence more

than 1 bit of information can be transmitted per sample. This

is true for N . 1: For N ¼ 1; at most 1 bit per sample can be

transmitted. This illustrates how using more than one device

in parallel can give improvements in signal transfer.

The increase in the transmitted information for non-zero

noise can be explained as follows. A probabilistic input

signal has a high information content. In the absence of

noise, the transmitted information is limited to 1 bit (for all

thresholds equal to the signal mean) and much information

is lost due to the nature of the channel. As non-zero noise is

added independently in each device, all output states

become accessible and hence HðyÞ increases towards a

maximum before decreasing again. However, HðylxÞ
increases monotonically with increasing noise. Therefore,

the transmitted information also contains a maximum [31].

As the number N of threshold devices is increased, the

transmitted information also increases, since the number of

output states available increases.

In the case where the thresholds are distributed

optimally for zero noise, this setting is not optimal for

Fig. 3. Plot of transmitted information against s for various values of N and

Gaussian signal and noise. The solid lines are the case where all thresholds

are set to the signal mean. The dotted lines are the case where the thresholds

are set to optimise the noiseless transmitted information.

Fig. 4. Plot of transmitted information against s for various values of N and

Rayleigh distributed signal and noise. The solid lines are the case where all

thresholds are set to the signal mean. The dotted lines are the case where the

thresholds are set to optimise the noiseless transmitted information.

Fig. 5. Plot of transmitted information against s for various values of N and

exponentially distributed signal and noise. The solid lines are the case

where all thresholds are set to the signal mean. The dotted lines are the case

where the thresholds are set to optimise the noiseless transmitted

information.
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many non-zero values of noise. It is clear from the

figures that for moderate values of s the transmitted

information, in the case of all thresholds set to the signal

mean, can increase above that for the thresholds set

optimally for zero noise. This implies that A/D

converters designed for optimum performance for random

input signals, in the absence of noise, may not perform

optimally when non-zero independent noise is present in

each comparator. If one had knowledge of the probability

distribution of the input signal and the noise at each

comparator, then optimising the A/D converters could

entail setting the thresholds to zero, and possibly

increasing the noise variance.

The above discussion leads to a further problem; that

of finding the threshold values that maximise the

transmitted information for a given number of compara-

tors and non-zero values of s. It is anticipated that the

recursive formula given by Eq. (5) will be of benefit in

future work on algorithms that calculate or approximate

such maximal threshold values.

4. Variance analysis

In this section we consider only zero mean uniform or

Gaussian signal and noise, and all thresholds set equal to

the signal mean, i.e. zero. The analysis is simplified for

these distributions, since they are even functions. The

fact that the transmitted information increases to a

maximum with increasing noise when all thresholds are

set to the signal mean can be seen qualitatively by

considering an output time-series of the array. If the

output signal y [ {0; 1;…;N} is normalised so that it

takes on values between 2c and c, it becomes a digital

approximation to the input signal. We will call this

normalised signal

ŷ ¼ c
2y

N
2 1

� �
:

Let 1 ¼ ŷ 2 x: We show in Appendix A that E½ŷ� is zero

for both the uniform and Gaussian cases (indeed, for any

even zero mean density function), and hence E½1� is

zero. The variance of 1 then gives an indicator of the

quantisation error between the input and output signals

when ŷ is taken as an estimate for x. We can derive the

variance of 1 theoretically when all thresholds are equal

to the signal mean for the case of uniform and Gaussian

signal and noise.

From the definition of variance, and given E½ŷ� ¼ 0;

var½1� ¼ E½ŷ2� þ var½x�2 2E½xŷ�; i.e. the sum of the

variance of the input and output, less twice the

correlation of x and ŷ. Hence to find the variance of

the quantisation error, 1, we need only to find E½ŷ2� and

E½xŷ�: The details of these derivations is given in

Appendix A.

4.1. Uniform signal and noise

For uniform signal and noise we get

E½ŷ2� ¼

s2
p

4

1

N
þ

N 2 1

N
1 2

2s

3

� �� �
ðs # 1Þ;

s2
p

4

1

N
þ

N 2 1

N

1

3s2

� �� �
ðs $ 1Þ;

8>>><
>>>:

and

E½xŷ� ¼

s2
p

1

8
2

s2

24

 !
ðs # 1Þ;

s2
p

1

12s

� �
ðs $ 1Þ:

8>>><
>>>:

Therefore

var½1� ¼

s2
p

sð1 2 NÞ

6N
þ

s2 þ 1

12

 !
ðs # 1Þ;

s2
p

s2ð3 þ NÞ2 2Nsþ N 2 1

12Ns2

 !
ðs $ 1Þ:

8>>>><
>>>>:

ð15Þ

Note from Eq. (15) that for a given non-zero value of sp,

the variance of the error for s # 1; is a quadratic

function of s and has a minimum of s2
pð2N 2 1Þ=ð12N2Þ

at s ¼ ðN 2 1Þ=N: For s $ 1; it is straightforward to

show that the variance is strictly increasing. Hence, the

variance of the error is minimised for a non-zero value

of s and is independent of the size of the signal

variance.

As N becomes large, the variance of 1 approaches the

variance

lim
N!1

var½1� ¼

ðsr 2 spÞ
2

12
ðs # 1Þ;

ðsr 2 spÞ
2

12s2
ðs $ 1Þ;

8>>><
>>>:

ð16Þ

of a uniform distribution. We saw earlier that as N !1; the

value of s that gave the maxima in the transmitted

information approaches one. This is also the case here,

where from Eq. (16) the variance approaches 0 as s! 1:

Plots of the variance of 1 for various N are shown in

Fig. 6. The theoretical calculation was verified by digital

simulation.

Interestingly, the value of s that minimises ŷ 2 x is not

the same as that which maximises the transmitted

information. However, the minimum of the variance of 1

has the same qualitative behaviour as the maximum in the

transmitted information. Stocks calculated an approxi-

mation for the value of s which maximises I for large N

and s , 1 [31]. This is given by
ffiffiffiffiffiffiffiffi
N þ 1

p
=ð

ffiffiffiffiffiffiffiffi
N þ 1

p
þ 3:297Þ

which clearly is not equal to ðN 2 1Þ=N; although both

approach unity as N becomes large.
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4.2. Gaussian signal and noise

Let y be normalised so that ŷ is between ^k signal

standard deviations, i. e. c ¼ ksp: Then for Gaussian signal

and noise we get

E½ŷ2� ¼ k2s2
p

1

N
þ

2ðN 2 1Þ

Np
arcsin

1

s2 þ 1

� �� �

and

E½xŷ� ¼ ks2
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

pð1 þ s2Þ

s
:

Therefore

var½1� ¼ s2
p k2 1

N
þ

2ðN 2 1Þ

Np
arcsin

1

s2 þ 1

� �� � 

22k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

pð1 þ s2Þ

s
þ 1

!
:

ð17Þ

If s is a fixed value, then the minimum value of var½1�

becomes a function of k. We can obtain this function by

differentiating Eq. (17) with respect to k and setting to zero.

For instance, when s ¼ 0 (the noiseless case):

var½1� ¼ s2
pðk

2 2 2
ffiffiffiffiffi
2=p

p
k þ 1Þ

and var½1� has a minimum value of s2
pð122=pÞ at k¼

ffiffiffiffiffi
2=p

p
:

Plots of the variance of 1 for various N are shown in Fig. 7

for k ¼
ffiffiffiffiffi
2=p

p
; and in Fig. 8 for k set to minimise the

variance for each value of s. The theoretical calculation was

verified by digital simulation. It is clear that for N . 1; there

is again a minimum in the error variance for a non-zero

value of s. This occurs whether k is a constant, or set to

minimise the variance for each s. Note from Fig. 8 that as N

increases, the variance significantly decreases when com-

pared with Fig. 7.

5. Conclusions and further work

In this paper we have examined the problem of

optimising the transmitted information through a sum-

ming array of N comparators, where each comparator is

subject to additive noise. We have verified the results of

Stocks which show that for uniform or Gaussian signal

and noise there is a maximum in the transmitted

information at a non-zero value of noise when all

thresholds are set to the signal mean. This phenomena is

Fig. 8. Plot of the variance of ŷ 2 x against s for various values of N and

Gaussian distributed signal and noise, with sp ¼ 1 and k set to minimise the

variance for each value of s. The solid line plots are the exact value of the

variance from Eq. (17) and the circles are from digital simulation.

Fig. 7. Plot of the variance of ŷ 2 x against s for various values of N and

Gaussian distributed signal and noise, with sp ¼ 1 and k ¼
ffiffiffiffiffi
2=p

p
: The solid

line plots are the exact value of the variance from Eq. (17) and the circles

are from digital simulation.

Fig. 6. Plot of the variance of ŷ 2 x against s for various values of N and

uniformly distributed signal and noise, with sp ¼ 1: The solid line plots are

the exact value of the variance from Eq. (15) and the circles are from digital

simulation. The minimum value of the variance occurs for non-zero s for

N . 1 and approaches 1 as N becomes large.
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known as SSR. We have also shown that SSR occurs

when the signal and noise have a Rayleigh or

exponential distribution and derived a convenient method

of calculating the transmitted information for any value

of N, and any given set of threshold values and noise

and signal probability densities. Furthermore, we showed

that the variance of the difference between the input and

output signals is minimised for non-zero values of noise

when the signal and noise have uniform or Gaussian

distributions.

It has previously been pointed out that for threshold

devices, stochastic resonance is related to, or indeed

equivalent to dithering in A/D converters [35,36]. The

direction of future work is aimed towards finding the

optimal threshold settings for a given noise variance, and to

investigate the relationship of the results presented here to

dithering. Also of interest is whether SSR occurs when the

input signal is a non-random signal, and where the

distributions of the signal and noise are non-identical.

In recent work, it was shown that under certain

conditions both SR and SSR occurred in a network of

motion detectors [5]. We hope to apply knowledge gained

by this study of SSR in a simple array of comparators to the

more complex problem of determining whether SSR could

be usefully applied in motion detection systems.
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Appendix A. A derivation of error variances

We consider zero mean uniform and Gaussian signal and

noise distributions, with all thresholds set equal to the signal

mean, i.e. zero. Hence the probability densities of each

distribution are even functions.

Let 1 ¼ ŷ 2 x: Then

var½1�¼var½ŷ2x�¼E½ðŷ2xÞ2�2E½ŷ2x�2

¼E½ŷ2�22E½xŷ�þE½x2�2E½ŷ�2þ2E½ŷ�E½x�2E½x�2

¼var½ŷ�22E½xŷ�þ2E½ŷ�E½x�þvar½x�

¼var½ŷ�þvar½x�þ2 cov½ŷ;2x�:

Note that E½xŷ� is the correlation of x and ŷ. When E½ŷ�¼0;

then var½ŷ�¼E½ŷ2�; and

var½1�¼E½ŷ2�þvar½x�22E½xŷ�:

Hence, var½1� is the sum of the mean squared value of ŷ and

the variance of x, less twice the correlation of x and ŷ.

We denote the probability that a device is on, given x, as

P1lx. That is:

P1lx ¼ probðx þ h $ 0lxÞ ¼
ð1

2x
RðhÞdh:

Since RðhÞ is even with mean zero we can write

P1lx ¼
ðx

21
RðhÞdh ¼

1

2
þ
ðx

0
RðhÞdh:

The expected value of P1lx over the signal distribution is

then

E½P1lx� ¼
1

2
þ E

ðx

0
RðhÞdh

� �

¼
1

2
þ
ð1

21

ðx

0
RðhÞdh

� �
PðxÞdx:

Since RðhÞ is even,
Ðx

0 RðhÞdh is odd and therefore the

integral above is zero, since PðxÞ is even. Thus, E½P1lx� ¼ 0:5:

Suppose the noise in all N devices is independent and

identically distributed. If the output y is normalised to ŷ so

that when y ¼ N; ŷ ¼ c; then we can write

ŷðx;h1;h2;…;hNÞ ¼
c

N

XN
i¼1

signðx þ hiÞ;

where hi is the noise in the ith device.

The expected value of ŷ given x is then

E½ŷlx� ¼
c

N
E

XN
i¼1

signðx þ hiÞlx
" #

¼ cE½signðx þ hÞlx�;

(since all h are independent and identically distributed)

E½ŷlx� ¼ cð21ð1 2 P1lxÞ þ 1P1lxÞ ¼ cð2P1lx 2 1Þ:

Therefore, the expected value of ŷ is:

E½ŷ� ¼ E½E½ŷlx�� ¼ 2cE½P1lx�2 c ¼ 0: ðA1Þ

The mean square value of ŷ given x is

E½ŷ2lx�¼
c2

N2
E

XN
i¼1

signðx þ hiÞ

 !2
2
4

������x
3
5

¼
c2

N2
ðNE½ðsignðx þ hÞÞ2lx� þ NðN 2 1Þ

	 E½signðx þ hiÞsignðx þ hjÞlx�Þ

¼
c2

N2
ðN þ NðN 2 1Þð22P1lxð1 2 P1lxÞ

þ ð1 2 P1lxÞ
2 þ P2

1lxÞÞ

¼
c2

N2
ðN þ NðN 2 1Þð2P1lx 2 1Þ2Þ:
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Therefore, the mean square value of ŷ is

E½ŷ2� ¼ E½E½ŷ2lx��

¼
c2

N
þ

c2ðN 2 1Þ

N
E½ð2P1lx 2 1Þ2�

¼
c2

N
ð1 þ ðN 2 1Þð4E½P2

1lx�2 4E½P1lx� þ 1ÞÞ

¼
c2

N
ð1 þ ðN 2 1Þð4E½P2

1lx�2 1ÞÞ: ðA2Þ

The correlation of x and ŷ is

E½xŷ� ¼ E½E½xŷlx�� ¼ E½xE½ŷlx��

¼
ð1

21
xE½ŷlx�PðxÞdx

¼
ð1

21
xPðxÞcð2P1lx 2 1Þdx

¼ 2c
ð1

21
xPðxÞP1lx dx 2 c

ð1

21
xPðxÞdx

¼ 2c
ð1

21
xPðxÞP1lx dx 2 cE½x�

¼ 2c
ð1

21
xPðxÞP1lx dx: ðA3Þ

A.1. Uniform signal and noise with all thresholds zero

For a uniformly distributed signal, as given by Eq.

(6), we wish the output to take on states between 2sp=2

and sp=2: Hence, c ¼ sp=2: From Eq. (8), P1lx is 0 for

x # 2sr=2; a function of x for 2sr=2 # x # sr=2 and 1

for x $ sr=2; and E½1� depends on whether sp is less

than or greater than sr. Therefore, we require separate

derivations of E½1� for s ¼ sr=sp less than 1 and greater

than 1. When s ¼ 1; both cases give E½1� ¼ s2
p=6N:

A.1.1. Uniform signal and noise with s # 1

We have

E½P2
1lx� ¼

ð1

21
P2

1lxPðxÞdx

¼
1

sp

ðsr=2

2sr=2

1

2
þ

x

sr

� �2

dx þ
1

sp

ðsp=2

sr=2
dx

¼
1

2
2

s

6
:

Therefore from Eq. (A2) we get

E½ŷ2� ¼
s2

p

4

1

N
þ

N 2 1

N
1 2

2s

3

� �� �
; ðA4Þ

and from Eq. (A3)

E½xŷ� ¼ 2c
ð1

21
xPðxÞP1lx dx

¼ sp

ðsr=2

2sr=2
x

1

2
þ

x

sr

� �
1

sp

dx þ sp

ðsp=2

sr=2

x

sp

dx

¼
s2

r

12
þ

s2
p

8
2

s2
r

8

 !
¼ var½h� þ

s2
p 2 s2

r

8

¼ 2
s2

r

24
þ

s2
p

8
¼ s2

p

1

8
2

s2

24

 !
: ðA5Þ

Accordingly, from Eqs. (A4) and (A5)

var½1� ¼
s2

p

4

1

N
þ

N 2 1

N
1 2

2s

3

� �� �

2 2s2
p

1

8
2

s2

24

 !
þ

s2
p

12

¼ s2
p

sð1 2 NÞ

6N
þ

s2 þ 1

12

 !
:

A.1.2. Uniform signal and noise with s $ 1

We have

E½P2
1lx� ¼

ð1

21
P2

1lxPðxÞdx ¼
1

sp

ðsp=2

2sp=2

1

2
þ

x

sr

� �2

dx

¼
1

4
þ

1

12s2
:

Therefore, from Eq. (A2) we get

E½ŷ2� ¼
s2

p

4

1

N
þ

N 2 1

N

1

3s2

� �� �
; ðA6Þ

and from Eq. (A3)

E½xŷ� ¼ 2c
ð1

21
xPðxÞP1lx dx

¼ sp

ðsp=2

2sp=2
x

1

2
þ

x

sr

� �
1

sp

dx ¼ s2
p

1

12s

� �
: ðA7Þ

Accordingly, from Eqs. (A6) and (A7)

var½1� ¼
s2

p

4

1

N
þ

N 2 1

N

1

3s2

� �� �
2 2s2

p

1

12s

� �
þ

s2
p

12

¼ s2
p

s2ð3 þ NÞ2 2Nsþ N 2 1

12Ns2

 !
:

A.2. Gaussian

If the signal is Gaussian, and we wish y to be

normalised so that ŷ spans ^k signal standard deviations,

then c ¼ ksp:
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We have

E½P2
1lx� ¼

ð1

21
P2

1lxPðxÞdx

¼
ð1

21

1

2
þ

1

2
erf

xffiffi
2

p
sr

 ! !2

PðxÞdx

¼
ð1

21

1

4
þ erf

xffiffi
2

p
sr

 !
þ

1

4
erf

xffiffi
2

p
sr

 !2 !
PðxÞdx

¼
1

4

ð1

21
PðxÞdxþ

ð1

21
erf

xffiffi
2

p
sr

 !
PðxÞdx

þ
1

4

ð1

21
erf2 xffiffi

2
p

sr

 !
PðxÞdx

¼
1

4
þ0þ

1

4

ð1

21
erf2 xffiffi

2
p

sr

 !
PðxÞdx;

since PðxÞ is even and erfðxÞ is odd and therefore the second

term above is zero. From a table of integrals [37], we haveð1

21
expð2a2x2Þerf2ðxÞdx¼

2

a
ffiffi
p

p arctan
1

a
ffiffiffiffiffiffiffiffi
a2 þ2

p : ðA8Þ

Therefore

E½P2
1lx� ¼

1

4
þ

1

4
ffiffiffiffiffiffiffi
2ps2

p

q ð1

21
erf2 xffiffi

2
p

sr

 !
exp 2

x2

2s2
p

 !
dx

¼
1

4
þ

s

4
ffiffi
p

p
ð1

21
erf2ðtÞexpð2s2t2Þdt

¼
1

4
þ

1

2p
arctan

1

s
ffiffiffiffiffiffiffiffi
s2 þ2

p

� �

¼
1

4
þ

1

2p
arcsin

1

s2 þ1

� �
;

since s$ 0: Therefore, from Eq. (A2)

E½ŷ2� ¼
c2

N
1þ

2ðN 21Þ

p
arcsin

1

s2 þ1

� �� �
; ðA9Þ

and from Eq. (A3)

E½xŷ�¼2c
ð1

21
xPðxÞP1lxdx¼2c

ð1

21
xPðxÞ

ðx

21
RðhÞdh

� �
dx

¼2c
ð1

21
RðhÞ

ð1

h
xPðxÞdx

� �
dh

¼2c
ð1

21
RðhÞ

ð1

h

xffiffiffiffi
2p

p
sp

exp 2
x2

2s2
p

 !
dx

 !
dh

¼
2cspffiffiffiffi

2p
p

ð1

21
RðhÞexp 2

h2

2s2
p

 !
dh

¼
2cspffiffiffiffi

2p
p

ð1

21

1ffiffiffiffi
2p

p
sr

exp 2
h2

2s2
r

 !
exp 2

h2

2s2
p

 !
dh

¼
c

ps

ð1

21
exp 2

h2

2

1þs2

s2
r

 ! !
dh:

The final integrand is a Gaussian density function, with

variance s2
r =ð1þs2Þ: Hence, the integral from negative to

positive infinity is 1 times the normalizing factor, i.e.

E½xŷ�¼
c

ps

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2p

s2
r

1þs2

 !vuut ¼csp

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2

pð1þs2Þ

s

¼ks2
p

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2

pð1þs2Þ

s
: ðA10Þ

Accordingly, from Eqs. (A9) and (A10):

var½1�

¼
c2

N
1þ

2ðN21Þ

p
arcsin

1

s2þ1

� �� �
22csp

ffiffiffiffiffiffiffiffiffiffiffiffi
2

pð1þs2Þ

s
þs2

p

¼
k2s2

p

N
1þ

2ðN21Þ

p
arcsin

1

s2þ1

� �� �
22ks2

p

ffiffiffiffiffiffiffiffiffiffiffiffi
2

pð1þs2Þ

s
þs2

p

¼s2
p k2 1

N
þ

2ðN21Þ

Np
arcsin

1

s2þ1

� �� �
22k

ffiffiffiffiffiffiffiffiffiffiffiffi
2

pð1þs2Þ

s
þ1

 !
:
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