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The development of tumour vascular networks
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Derek Abbott 4,7

The growth of solid tumours relies on an ever-increasing supply of oxygen and nutrients that

are delivered via vascular networks. Tumour vasculature includes endothelial cell lined

angiogenesis and the less common cancer cell lined vasculogenic mimicry (VM). To study

and compare the development of vascular networks formed during angiogenesis and VM

(represented here by breast cancer and pancreatic cancer cell lines) a number of in vitro

assays were utilised. From live cell imaging, we performed a large-scale automated extraction

of network parameters and identified properties not previously reported. We show that for

both angiogenesis and VM, the characteristic network path length reduces over time; how-

ever, only endothelial cells increase network clustering coefficients thus maintaining small-

world network properties as they develop. When compared to angiogenesis, the VM network

efficiency is improved by decreasing the number of edges and vertices, and also by increasing

edge length. Furthermore, our results demonstrate that angiogenic and VM networks appear

to display similar properties to road traffic networks and are also subject to the well-known

Braess paradox. This quantitative measurement framework opens up new avenues to

potentially evaluate the impact of anti-cancer drugs and anti-vascular therapies.
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Solid tumours contain robust vascular networks capable of
supplying nutrients integral to support cancer progression.
Here, we discuss the behaviour of cancer cells over time and

gain novel understanding of cancer progression that may provide
new knowledge for the development of anti-cancer therapies. The
term network is a broad description for a set of elements with
interactions among them. In biology, there are a number of
examples that contain or utilize networks, e.g. protein–protein
interacting networks, neural networks, metabolic networks, vas-
cular networks and others. Analysis of networks may potentially
address fundamental questions to aid in our understanding of
biology. For example, how do gene networks drive the biology of
breast cancer1? Can network analysis assist C-reactive protein
forecasting2,3? Which proteins have the highest number of
interactions with other proteins? How long does it take for a
signal from the brain to reach the limbs? What is the shortest
path of reactions that transforms one metabolite into another?
What is the role of cell signalling networks in the relationship
between molecular species4? How does adopting a particular
strategy lead to survival in a species under a competition5? How
does a growing tumour increase its oxygen and nutrient supply?
Such questions may potentially be addressed if we investigate the
topology and morphology of the networks, i.e., the way con-
tributing factors connect and interact.

In order to analyse biological networks, we mathematically
translate them into graphs. In this context, a network graph is a
mathematical concept containing vertices and edges representing
various factors and connections6. Therefore, analysing the
structure, topology and morphology of the graph representing a
biological network may provide useful statistical information,
which eventually assists in developing a mathematical or com-
putational model. The challenge with such an approach is that it
is not immediately evident how mathematics might elucidate
biology. A question motivated by curiosity is: which features are
able to distinguish biological networks from other classes of
complex physical systems7? To address this question, we direct
our attention to indicating key parameters for the development of
vascular networks within solid tumours over time using graph
theory; which bear some similarity to other well-known networks
such as road networks, metro maps, power grids, fungi networks,
etc. Defining the vascular network of a solid tumour is the overall
aim of this study.

Without access to a blood supply, solid tumours cannot grow
more than a few millimetres in diameter8,9. In order to grow
beyond this volume, the tumour initiates a pro-angiogenic switch.
Prior studies deem that tumour vascularisation is influenced by a
number of parameters such as endothelial cell (EC) migration,
proliferation, oxygen availability, the existence of tumour angio-
genesis factors and presence of extracellular matrix
components10. There are various mechanisms for tumour vas-
cularisation including EC sprouting, intussusceptive angiogenesis,
recruitment of endothelial progenitor cells, vessel co-option,
lymphangiogenesis and vasculogenic mimicry11. Here, we con-
sider two types of networks that can contribute to the supply of
oxygen and nutrients for cancer progression: (i) angiogenesis (EC
lined vasculature) and (ii) vasculogenic mimicry (VM, cancer cell
lined vasculature). The vital role of angiogenesis and VM is
highlighted in growth, and metastasis of solid tumours8,12–15.
Briefly, angiogenesis is the process of new blood vessel
formation16 and involves the growth, migration, and differ-
entiation of ECs. In contrast, VM-competent cancer cells form
their own cancer cell-lines channels for blood transport inde-
pendent of typical modes of angiogenesis17–19. In 2016, a meta-
analysis was published detailing the 5-year survival outcomes of
>3600 patients across 11 different malignancies (including mel-
anoma, breast, ovarian and lung) with results suggesting that VM

content within a tumour mass (as identified by lumenised vas-
cular structures that are low/negative for CD31 (or CD34) and
stain positive with the periodic-acid Schiff (PAS) reagent) cor-
related strongly with poor prognosis20. Further investigation has
identified that VM contributes to tumour vasculature to varying
degrees21 with one study documenting that in a stage 3 neuro-
blastoma ~20% of the micro vessels were tumour derived while
that of stage 4 rose to 78%22. Notably, the literature also indicates
that cancer cells and endothelial cells can join forces to form
mosaic vascular structures and in vivo imaging demonstrated a
physiological perfusion of blood between endothelial-lined vas-
culature and VM networks (reviewed in ref. 23). Taken together,
there is growing support to target VM as a novel treatment
strategy for the most aggressive and difficult to treat cancers23,24.
The patterning characteristics of VM, detected by molecular
imaging, have proven to be a useful tool to aid clinical practice24.
Therefore, an analysis based on topologic and morphologic per-
spectives may potentially be used in VM and angiogenesis dis-
tinction and considered as a future tool to assist clinical practice.

In this paper, we develop an understanding of network for-
mation in canonical EC sprouting based on mathematical con-
cepts and graph theory, and address the fundamental question of
which mathematical network structure best characterizes angio-
genic networks. We also directly compare the development of
angiogenic EC networks with cancer cell formed VM networks
with a focus on a human breast cancer cell line25 (MDA-MB-
231 cells and their metastatic derivative MDA-MB-231-LM2) and
two human pancreatic cancer cell lines26 (BxPC-3 and AsPC-1
cells). This comparison builds on our understanding of the vas-
culogenic patterns that contribute to cancer progression.

Results
To investigate the dynamics of this process, we designed an
in vitro study to display the networks formed by cells; we
investigated the cell growth for angiogenesis using endothelial
colony-forming cells (ECFCs) and VM (represented by MDA-
MB-231 and BxPC-3 cells). Using real-time microscopy, we
captured a number of network images showing the vascular
process during the growth phase of these cells (see Supplementary
Videos 1–3). Using our customized image processing software, we
extracted and displayed the vertices and edges in the networks
(Fig. 1).

The results illustrate that the angiogenic networks established
by primary ECFCs27 from healthy donors possess longer edges in
the first 6 h in comparison to those formed by cancer cells;
however, in this assay, the stability is relatively short-lived and the
network breaks down after 24 h (Fig. 1a). Similar experiments
with the MDA-MB-231 breast cancer cell line revealed that a
network, containing a large number of edges of short length,
forms in the first 6 h. We observed that, compared to the ECs, the
number of vertices and edges is reduced after 24 h; but the edge
lengths increase significantly, and the network dynamics remain
stable at 24 h (Fig. 1b). For the BxPC-3 pancreatic cancer cell line,
Fig. 1c shows that the behaviour of these cancer cells is similar to
the breast cancer cells with the exception that the networks are
almost evenly distributed at all times throughout the
investigation.

To further understand vascular network behaviour, we visua-
lize the networks using circular layouts, in addition, we combine
the circular layouts and corresponding histograms are obtained
from five individual networks for each cell type showing the
distribution of averaged edge lengths (Fig. 2). The circular plot
and histogram in Fig. 2a illustrate that the number of vertices and
edges in an EC network drops significantly over time, and the
network tends to maintain only the long and short edges and not
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the midrange length edges. Similarly, the MDA-MB-231 breast
cancer cells formed a VM network with a large number of short
length edges during the early growth stages. The edges then
combined together, forming longer edges over time (Fig. 2b). In
addition, we observed that the total number of edges and vertices
related to the BxPC-3 pancreatic cancer cell VM network is
greater than in the breast cancer cell line suggesting greater
aggression in formation of the networks (Fig. 2c).

These observations allow us to characterize and compare the
vascularisation mechanisms within angiogenesis and VM for-
mation. The results suggest that cancer cells are more stable than
ECs (at least in vitro) in their ability to form and maintain vas-
cular networks.

Are the vascular networks small-world networks? Complex
dynamic systems are often characterized by a large number of
nonlinearly interacting elements. To investigate this intricate
connectivity, we further explored the network clustering coeffi-
cients and characteristic path length, which led us to investigate

the phenomenon of small-world networks28,29. A network pos-
sesses a small-world structure when its clustering coefficient (C) is
relatively high, but its characteristic path length (L) is relatively
low. This conceptual definition comes from the fact that a high
clustering coefficient occurs in the phenomenon of social groups
(demonstrated in Fig. 3a), while short mean path length occurs in
the phenomenon of rapid information spread30. The notion of
small-world networks introduced by Watts and Strogatz31, illu-
strated in Fig. 3b, has emerged and has given rise to empirical
studies of graphs such as neural networks32, biological
networks33, and transportation networks34. There are several
indices of small-worldness; here we used the σ factor that was
initially proposed by Kogut et al.35 and widely adopted in the
literature. Using an associated statistical test36, it can be identified
that the values of σ > 1 are interpreted as evidence of small-
worldness (see the ‘Methods’ section).

From the definitions above, we analysed five videos from each
cell type, and investigated mean clustering coefficient, character-
istic path length and small-worldness for our networks. The
decreasing trend in L and increasing trend in Cmaintains σ above

Fig. 1 Identifying edges and vertices from in vitro assays showing formation of angiogenic and VM networks. a The top panel shows how ECs form an
angiogenic network, and how this network evolves over time. In the lower panel, we demonstrate the results from our image processing software that
extracted the vertices (red) and edges (blue) from the EC network. b Breast cancer cells form a network with short edges in the first 6 h. The length of
edges increases and the number of nodes decreases over time. c The formation of the network is demonstrated for pancreatic cancer cells. The
arrangements of edges and vertices, and also the edge sizes are more evenly spread than in breast cancer.
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the purple dashed line suggesting that the ECFCs network is
small-world in 48 h (Fig. 3c). The number of vertices and edges in
the MDA-MB-231 breast cancer cell line network attains its
maximum after ~10 h. The decay rate of C is greater that L in the
breast cancer network, and this proportion causes a decrease in
the small-worldness factor (Fig. 3d). The maximum number of
vertices and edges grows faster for the BxPC-3 pancreatic cancer
cell line. The exponential decrease in C leads to an exponential
decreased trend in σ (Fig. 3e). Our observations suggest that
although the angiogenesis network formed by ECFCs is less stable
than both the cancer cell line VM (MDA-MB-231 and BxPC-3
cells), the neighbours of any given node are likely to be

neighbours of each other and most nodes can be reached from
every other node by a small number of hops or steps.

The Braess paradox in the development of networks. After
applying our software to five individual videos for each cell type,
we further analysed the association of the number of edges and
mean edge lengths in the networks formed by ECFCs, MDA-MB-
231 and BxPC-3 cancer cells. In addition, we investigated mean
edge thickness and length. We observed a network improvement
in all three cases, suggesting that although the number of edges
decreased, the mean edge lengths increased over time. The edge
thickness in breast and pancreatic cancer cells show a smooth

Fig. 2 Circular layouts of network growth and distribution of edge lengths. a Circular layout of EC network growth determined from the videos of five
independent experiments using the EC cells with the average taken over time. The corresponding histograms in the lower panel suggest there are a
substantial number of small edges in early stages but the edge lengths increase over time. b A similar analysis for the breast cancer cell VM network
determined from the videos of five independent experiments. c The histograms for pancreatic cancer cell VM network showing the total number of edges
over time. Histograms are plotted from five individual pancreatic cancer networks.
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pattern while the edge thickness in ECs fluctuates and finally
drops significantly.

We propose an explanation for this observation by referring to
a phenomenon, which is normally associated with road traffic
networks, known as the Braess paradox37,38. Adding a by-pass
road to a traffic network can counterintuitively cause the average
travel time to increase—this is known as the Braess paradox
(Fig. 4a). The Braess paradox has been explored in other areas

such as in electron transport in mesoscopic networks39 and in
systems of interconnected mechanical springs40. Previously, it has
been suggested that anti-angiogenic therapy may lead to a
normalisation of the vasculature before the vessel network finally
collapses41 due to the decreasing self-referential connections and
increasing vessel stability42.

Here for the first time, we have shown that VM by MDA-MB-
231 and BxPC-3 cancer cells display network behaviour similar to

Fig. 3 Small-worldness, characteristic path length and clustering coefficient for ECs, breast cancer cells and pancreatic cancer cells. a An example of
clustering coefficient on an undirected graph is shown. The local clustering coefficient of the red node is obtained as the proportion of connections among
its neighbours which are actually realised compared with the number of all possible connections. b The Watts-Strogatz model31 and the generation of
small-world networks. The model starts with a regular lattice network. Then, with probability p, edges are rewired uniformly at random such that at p ¼ 0
the network is a regular lattice and at p ¼ 1 the network is random. At intermediate values of p, the network has so-called small-world characteristics with
considerable local clustering (from the lattice network) and short characteristic path length (from the random network). c Analysis is of five angiogenic
networks formed by ECs with the average shown for each time point. The dashed red line is fitted on the data showing clustering coefficient decays in the
EC case; however, clustering coefficient increases. Here, VM networks were similarly analysed from five d breast cancer and five e pancreatic cancer
networks separately and the mean determined over time. Exponential lines are fitted to the characteristic path length and clustering coefficient. Both
characteristic path length and average clustering coefficient drop over time in VM networks.
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Fig. 4 Braess paradox in vascular networks. a A traffic network example is demonstrated to explain Braess paradox where a simple network consisting of
two routes connecting the start and end points. The travel time along orange roads is given by ρ/100min, where ρ represents the number of vehicles, while
the traffic time is 45min for the blue roads. In equilibrium, traffic will distribute evenly between these two routes connecting start to end. Therefore, the
travel time for total 4000 vehicles (2000 for each path) is 65min (45min for blue and 20min for orange roads) along each of the two routes. Installation
of the purple road with an extremely short travel time of approximately zero minutes on the bottom map offers the third route (γεβ). Drivers begin to use
the new route, reducing the travel time from 65 to 40; however, as more vehicles choose the new route, the travel time will increase to 80. b The edge
thickness and length are defined here. c The average number of edges and vertices is shown in red and blue lines (left panel), and the mean edge thickness
and length are shown in blue and orange lines (right panel) for five EC networks. It may be seen that the mean edge length trend increases significantly for
ECs. d The graph in part c is plotted for five breast cancer cases. e The formation graph in parts (c) and (d) is plotted for five pancreatic networks. A similar
trend can be seen in the rate of mean edge length and thickness in both cancers in part (d) and (e).
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what is observed as the Braess paradox for traffic networks. We
observe that a decrease in the number of edges and vertices in all
three cases, as a function of time, leads to an increase in mean edge
length showing a trend towards greater network efficiency and
avoiding the adverse effects of the Braess paradox (Fig. 4b, c, d).
During the early growth stage, the ECFCs reach the maximum
number of vertices and edges significantly faster than for MDA-
MB-231 and BxPC-3 cancer cells (Fig. 4c). We also notice that the
trend in the mean edge length in breast and pancreatic cancer is
approximately the same; however, there is a drastic increase in the
EC mean edge length. The mean edge thickness in ECs shows a
fluctuating pattern and drops significantly during later growth
stages.

Biological similarities between angiogenesis and vasculogenic
mimicry. One question that arises from these comparative
observations is whether the differences observed in the networks
are a consequence of different phenotypic properties between the
cells rather than differences in vascular-related events. To address
this possibility, we completed additional experiments with the
ECFCs and cancer cells (MDA-MB-231 and BxPC-3).

First, to compare the proliferation rate of these three different
cell types, we included carboxyfluorescein diacetate succinimidyl
ester (CFSE) into the cell culture where the fluorescent dye (that
stably labels cells) permeated into the cells such that proliferation
rate could be determined using flow cytometry43. Figure 5a shows
an exemplary CFSE histogram of the three cell types with a
similar profile of CFSE and demonstrates the similar peaks (dark
green). Based on the MFI, distribution of CFSE over 5 days is
similar in ECFCs and BxPC-3 pancreatic cancer cells suggesting
an equivalent rate of proliferation. Interestingly, the highly
aggressive and invasive human MDA-MB-231 breast cancer cells
exhibited a slightly faster rate of proliferation.

Next, to investigate and compare the expression of known
vascular cell markers we examined the gene expression of VE-
cadherin and Ephrin type-A receptor 2 (EphA2) in the ECs
and VM-competent cancer cells (breast and pancreatic). Notably,
in these experiments, we compared gene expression in
2-dimensional (2D) tissue culture as well as a 3-dimensional
(3D) context with tumours harvested from mice and for this we
utilized human breast cancer cells (MDA-MB-231-LM244, a VM-
competent cell line derived from the metastasis of the parentals
MDA-MB-231) and a second VM-competent human pancreatic
cancer cell line (AsPC-1)45. Figure 5b shows that, ECs express
high levels of CDH5 (VE-cadherin) and that it is also readily
detectable in the MDA-MB-231-LM2 breast cancer cells and
AsPC-1 pancreatic cancer cells. Notably, when we examined
CDH5 expression in the MDA-MB-231-LM2 and AsPC-1
tumours harvested from mice, we observed a significant increase
in expression. In direct contrast, EPHA2 is lowly expressed in ECs
when compared to the 2D tissue culture MDA-MB-231-LM2 and
AsPC-1 cells. Interestingly, MDA-MB-231-LM2 tumours har-
vested from mice exhibit a possible reduction compared to their
2D tissue culture, but still elevated compared to ECs. For the
AsPC-1 mouse tumour cells, EPHA2 appears to be similarly
expressed between 2D and 3D.

Finally, histology was performed as further support for the
aforementioned cancer cells to undergo VM and form vascular
structures in vivo. More specifically, we examined the vasculature of
the MDA-MB-231-LM2 and AsPC-1 3D xenograft tumours via
immunohistological staining of formalin-fixed paraffin-embedded
tumours sections using an antibody to CD31 and PAS stain to
define angiogenesis (CD31+PAS+) as well as VM structures
(CD31−PAS+). Figure 5c illustrates that within the tumour mass,
both angiogenesis and VM structures are detectable.

Discussion
We have taken theoretical and experimental approaches to study
different types of vascular networks. We examined the develop-
ment of networks formed by ECs (angiogenesis), and directly
compared the development to networks formed by cancer cells
(vasculogenic mimicry). We have shown that these cells, although
derived from different sources, i.e. endothelial cells versus cancer
cells, they share common features in the rate of cellular division,
expression of vascular proteins and are capable of performing the
same acts within a tumour mass, i.e. angiogenesis and VM.
Although we focused on topological and morphological phe-
nomena, our scheme for angiogenic network analysis may
potentially lead to applicability of network-based approaches for
clinical purposes. Our in vitro assays have shown that although
angiogenic networks are less aggressive than VM, they maintain
small-world properties for a longer time period. Our mathema-
tically modelling of these vascular networks, also revealed that
they behave much like automobile traffic on a road network.
Utility of this information may be in potentially characterizing
how different therapies might lead these networks to starve a
tumour from its blood supply. These network-based analyses can
potentially be used to develop a variety of cancer models via
graph theory. In addition, network-based quantitative measures
can open new avenues for evaluating the impact of anti-cancer
drugs and anti-angiogenic therapies.

Methods
Cell culture and angiogenesis/vasculogenic mimicry assays. Endothelial
colony-forming cells (ECFCs (or ECs)) were isolated from healthy human per-
ipheral blood, as previously described27, as approved by the human ethics com-
mittees of the University of South Australia (UniSA HREC #201187) and SA
Pathology (ethics #85–13). Briefly, collagen I-coated plates were seeded with per-
ipheral blood mononuclear cells and cultured in EGM-2 media (Lonza) containing
20% ES cell screened foetal bovine serum (Hyclone, GE Healthcare, Chicago, IL,
USA) until colony formation at ~14 days culture after which time the cells were
passaged and cultured for no more than nine passages.

MDA-MB-231 breast cancer cells were cultured in Dulbecco’s modified Eagle
medium (DMEM, Gibco, Life Technologies, Carlsbad, California, USA)
supplemented with 10% FBS (HyClone, Logan, UT, USA) and 2 mM GlutaMax
(Gibco) and BxPC-3 pancreatic cancer cells were maintained in RPMI1640 media
(Gibco, Thermo Fisher Scientific, Waltham, MA, USA) supplemented with
10% FBS.

For the in vitro vascular assays, 1.5 × 104 ECFCs, 1.5 × 104 MDA-MB-231 breast
cancer cells and 3.5 × 104 BxPC-3 pancreatic cancer cells were seeded per well onto
10 µl of Growth Factor Reduced/normal Matrigel (Corning, Corning, NY, USA) in
angiogenesis µ-slides (Ibidi, Munich, Germany) for up to 48 h. Time-lapse video of
the network formation was taken on the live cell imaging microscope ‘CellVoyager
CV1000 Yokogawa Spinning disk Confocal Scanner’ (Olympus Life Science,
Tokyo, Japan). Images were extracted from the video post-acquisition.

The network analysis software. The vascular structures of angiogenesis or VM
formation were extracted using our custom MATLAB software. Previous studies
normally used manual counting approach for measuring tubular structures in VM.
This computational approach, based on image processing tools, assists in extracting
useful information from VM networks, avoiding miscalculation. Therefore, we
developed a software that receives the network images and precisely outputs a
number of useful parameters such as number and position of tubular vessels and
junctions, histogram, graph parameters, etc.

The algorithm consists of the following steps:
Step (1) Reading image: Read in the cell images, which are the images of breast

cancer cells.
Step (2) Image adjusting: The RGB images are converted to grayscale and image

intensity values or colormap is adjusted to improve image contrast. In addition, the
area of interest is segmented, and any object out of border of area can be removed.

Step (3) B/W Filtering: The grayscale images converted to B/W, and after image
enhancement, the small holes in vessel images can be removed. In addition, the
scatter points related to a few cells that are not connected to tubular structures may
be removed.

Step (4) Vessel outline extraction: Using this morphological operation, all
objects are reduced to lines in 2-D binary images.

Step (5) Finding individual vessel: Tubular junctions are extracted, and the
vessels between them identified as an individual vessel. This information assists to
calculate the graph parameters.

COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-021-02632-x ARTICLE

COMMUNICATIONS BIOLOGY |          (2021) 4:1111 | https://doi.org/10.1038/s42003-021-02632-x | www.nature.com/commsbio 7

www.nature.com/commsbio
www.nature.com/commsbio


Small-worldness, clustering coefficient, and path length. In a network con-
sisting of N vertices, the distance Lij between two vertices, ni and nj is given by the
length of the shortest path between the vertices, that is, the minimal number of
edges that need to be traversed to travel from vertex ni to nj. The average or
characteristic path length L= <Lij> of a network is defined as the average distance

between all pairs of vertices6. The clustering coefficient relates to the local cohe-
siveness of a network and measures the probability that two vertices with a
common neighbour are connected. In the case of undirected networks, given a
vertex ni with ki neighbours, there exist Emax= ki(ki− 1)/2 possible edges between
the neighbours. The clustering coefficient Ci of the vertex ni is then given as the

Fig. 5 Defining characteristics of angiogenesis and vasculogenic mimicry. a Proliferation analysis of human endothelial cells (ECFCs), breast cancer cells
(MDA-MB-231) and pancreatic cancer cells (BxPC-3) stained with CFSE and measured by flow cytometry at Day 1 (dark green) and Day 5 (light green).
b Gene expression profiling of VE-cadherin (CDH5) and EPHA2 in ECFCs grown in 2D tissue culture, MDA-MB-231-LM2 breast cancer cells (2D tissue
culture and 3D tumours) and AsPC-1 pancreatic cancer cells (2D tissue culture and 3D tumours). Data are mean+ SEM, n= 3 biological replicates
normalised to the housekeeper gene CYPA; *p < 0.05 versus ECs. c Histological analysis of 3D tumours (breast cancer and pancreatic cancer xenografts)
stained with CD31 (brown) and periodic-acid Schiff (PAS, magenta) counter stained with eosin (scale bar: 100 μm).
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ratio of the actual number of edges Ei between the neighbours to the maximal
number Emax, therefore, Ci ¼ 2Ei

kiðki�1Þ. The small-worldness can be achieved via both

characteristic clustering coefficient (C) and path length (L) with respect to a single

reference graph: σ ¼ C=Cr
L=Lr

, where Cr and Lr are the mean clustering coefficient and

characteristic path length for an equivalent random network, respectively34.

Statistical analysis. Data were expressed as mean ± standard error of the mean
(SEM). Statistical analyses and significance were calculated by one-way ANOVA
Tukey’s multiple comparisons test to determine statistical significance using
GraphPad PRISM software (San Diego, CA, USA). In all comparisons, p < 0.05 was
considered statistically significant.

Cell proliferation assay. Adherent cells including ECFCs, MDA-MB-231 and
BxPC-3 were labelled using a Vybrant™ Cell Tracer Kit (CFDA SE, Thermo Fisher
Scientific) according to the manufacturer’s instructions. In brief, cells were washed
with 1× PBS and resuspended at 106 cells/mL in working dye solution (1–2.5 µM in
1× PBS) for 15 min at 37 °C. Adherent cells were detached by trypsin before
washing and labelling. Five volumes of cell culture medium were then added and
cell mixtures were allowed to rest for 5 min to remove free dyes. The labelled cells
were centrifuged, resuspended in culture media, and cultured for up to 5 days. The
seeding cell number was adjusted to 5 × 104 cells/mL for three different cells so that
the plate confluency did not reach 100% at the time of final harvest (Day 5).
Labelled cells were harvested Day 1 and Day 5 for flow cytometric analysis using
FCS Express 4 Flow Cytometry: Research Edition (De Novo Software,
California, USA).

In vivo tumour model. Animal experiments were approved by the Animal Ethics
Committees of SA Pathology and the University of South Australia and conform to
the guidelines established by the ‘Australian Code of Practice for the Care and Use
of Animals for Scientific Purposes’.

For the orthotopic mouse model of breast cancer, 1 × 106 MDA-MB-231-LM2
cells were mixed with Matrigel (Corning, cat# 354234) (1:1 ratio) and
subcutaneously (s.c.) injected as 50 μl into the fourth mammary fat pad of 6–8-
week-old female NOD/SCID mice44 and harvested before the tumours grew
>1 cm3.

For pancreatic cancer xenograft model, 2 × 106 AsPC-1 cells were mixed with
Matrigel and PBS (Corning, cat# 354234) (1:1 ratio in 30 μl) and injected under the
skin in the flank of 6–8-week-old female NOD/SCID/IL-2Rg (NSG) mice and
harvested between days 24 and 30 post implantation46.

Immunohistochemistry. Primary mouse tumours were fixed in 10% buffered
formalin for 24 h before processing and embedding in paraffin. Sections (4 µm)
were cut and subjected to heat-mediated antigen retrieval in pH-6.5 citrate buffer.
After cooling for 30 min, the sections were quenched with 1% H2O2 prior to
incubation with anti-CD31 antibody overnight (1:800, Cell Signalling Technology,
Danvers, MA, USA), followed by incubation with biotinylated secondary Ab
solution (1:500, Abacus dx, Mt Wellington, Auckland, NZ) for 35 min. Sections
were then incubated with avidin-biotinylated–horseradish peroxidase complex as
per manufacturer’s instructions (Vectastain Elite ABC kit, Vector Laboratories,
Burlingame, CA, USA) and visualized using DAB peroxidase substrate solution
(ImmPACT™ DAB, Vector Laboratories). Those same sections were further stained
using a PAS staining kit from (Sigma-Aldrich, St. Louis, Missouri, USA) according
to manufacturer’s instructions before counterstaining with haematoxylin and
mounting. Stained sections were scanned by the whole slide image (WSI) scanner
(Hamamatsu NanoZoomer Slide scanner). EC-lined blood vessels (CD31+/PAS+)
and VM structures (CD31−/PAS+) were further identified within the same
tumour section by the presence of RBCs or WBCs in the lumen.

Detection of human mRNA using quantitative polymerase chain reaction
(qPCR). Quantification of mRNA levels was carried out using qPCR. Total RNA was
isolated from excised tumours using TRIzol (Invitrogen, ThermoFisher, Carlsbad, CA,
USA, cat# 15596026) and extracted with the RNeasy Mini Kit (Qiagen, Hilden, Ger-
many, cat# 74106). Two micrograms of RNA was reverse-transcribed to cDNA using
Superscript III Reverse Transcriptase (Invitrogen, cat# 18080093) with cDNA then
subjected to quantitative real-time PCR with QuantiTect SYBR Green PCR kit (Qiagen,
cat# 204141). All reactions were performed in triplicate using a Rotor Gene 6000
thermocyclers (Corbett Research, NSW, Australia). Primers were designed for human
VE-cadherin (CDH5) (F-5′-TGACAATGTCCAAACCCACTCA-3′, R-5′-TGACAA-
CAGCGAGGTGTAAAGAC-3′) and human Ephrin type-A receptor 2 (F-5′-AGAC
GCTGAAAGCCGGCTAC-3′, R-5′-CAGGGCCCCATTCTCCATG-3′) using Primer
Blast (NIH, MD, USA) and purchased from GeneWorks (Thebarton, SA, Aus). Cycling
parameters began 15min at 95 °C, then cycling of 10 s 95 °C, 20 s 55 °C and 30 s 72 °C;
for 45 cycles followed by a melt phase. Resultant data were analysed using Rotor-Gene
Analysis Software version 6 (Corbett Research). Relative gene expression levels were
calculated using standard curves generated by serial dilutions of cDNAs normalised to
the human house-keeping gene cyclophillin A (CycA) (F-5′-GGCAAATGCTG-
GACCCAACACAAA-3′, R-5′-CTAGGCATGGGAGGGAACAAGGAA-3′).

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
All data needed to evaluate the conclusions in the paper are present in the paper or in the
supplementary materials.
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