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a b s t r a c t

High accuracy implementation of biological neural networks (NN) is a task with high computational
overheads, especially in the case of large scale realizations of neuromorphic algorithms. This paper
presents a set of piecewise linear FitzHugh Nagumo (FHN) models, which can reproduce different
behaviors, similar to the biological neuron. This paper presents a set of equations as a model to describe
the mechanisms of a single neuron, which are implementable on digital platforms. Simulation results
show that the model can reproduce different behaviors of the neuron. The proposed models are
investigated, in terms of digital implementation feasibility and computational overhead, targeting low
cost hardware realization. Hardware synthesis and physical implementations on FPGA show that the
proposed models can produce a range of neuron behaviors with higher performance and lower
implementation costs compared to the original model.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

During the past few decades, neuroscientists have been looking for
new horizons to clarify how neural networks in the brain process
information. Thus researchers in this field have investigated a variety
of applications. To understand how the brain processes information,
simulation and implementation of brain like networks are considered
essential [1]. Motivated by biological discoveries, pulse coupled neural
networks with spike timing are employed as a necessary component
in biological information processing systems, such as the brain [1].
Many different models have been given for spiking neural networks,
representing their dynamical behavior. These models are based on the
biochemical behavior of the neuron structures and are usually
modelled by a set of differential equations. Although detailed neuron
models result in imitating most experimental measurements to a high
degree of accuracy; due to their complexity, a majority are difficult to
implement in large scale artificial spiking neural networks.

Many kinds of simplified models are presented for studies in
the field of neural information coding, memory, and network
dynamics. These models must reproduce the biological behavior
of different types of neurons with higher performance and
significantly lower hardware overhead compared to the original
model. In general, there is a trade off between model accuracy and
its computational complexity. For example, when it is required to
understand how neuronal behavior depends on measurable

physiological parameters, such as the maximal conductance,
steady state activation/inactivation functions and time constants,
the Hodgkin Huxley type [2] models are technically more suita
ble, but are computationally intensive and thus prohibit stimula
tions of large neuron populations. Since the influential work of
Hodgkin and Huxley [3], there has been a continued interest in the
dynamical systems perspective of a neuron. The Hodgkin Huxley,
Hindmarsh Rose [4], and FitzHugh Nagumo (FHN) [5,6] models
are the most successful dynamical models in computational
neuroscience for capturing neural spiking behaviors. An intricate
explanation of these and several other models can be found in [7].
The Hodgkin Huxley model, with four differential equations, is
capable of creating all of the neural spiking behaviors but is highly
nonlinear. Although the FHN model involves two differential
equations, it is not more complex than the Hodgkin Huxley and
Hindmarsh Rose models, does not use a reset or add noise [3]. In
this paper, we present greatly simplified models that can exhibit
most of the neural spiking behavior reproduced by well known
dynamical systems models. Note that we use the term complexity
to refer to the presence of redundancies in the model in addition
to its capability of capturing neural spiking behaviors, and diffi
culty in parameter estimation. This neuron model has been
commonly accepted as an accurate and computationally tractable
model, while producing a wide range of cortical pulse coding
behaviors. Implementation of this model, targeting different plat
forms, has been the subject of studies in terms of efficiency and
large scale simulations based on optimal transfer capability of the
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spike signals provided by addressing event representation [8,9].
There are three major approaches for addressing this challenge:

1. Analog implementations are considered to become a strong choice
for direct implementation of neuro inspired systems [7,10,11]. In
this approach, electronic components and circuits are employed to
mimic neuronal dynamics. Due to its high performance and well
developed technology, an analog VLSI implementation enables
prototyping of neural algorithms to test theories of neural compu
tation, structure, network architecture, learning and plasticity and
also simulation of biologically inspired systems in a real time
operation. Although these analog solutions are fast and efficient,
requiring a long development time [1,12].

2. Special purpose hardware has been presented to implement
neurobiological functions using software based systems for large
scale simulations such as Blue Brain [13], Neurogrid [14], and
SpiNNaker [15]. Even though these systems are flexible and
biologically realistic having high performance, the presented
hardware approaches suffer from limited programming capability
and high cost. Unfortunately the cost and development time
make these approaches impractical for public access, especially
for large scale simulations of neuromorphic algorithms.

3. While analog neural chips inherently have limited program
ming capability, recently, reconfigurable digital platforms have
been used to realize spiking neurons. This approach uses digital
computation to emulate individual neural behaviors in parallel
and distributed network architecture to implement a system
level dynamic. Although digital computation consumes more
silicon area and power per function in comparison with the
analog counterpart, its development time is considerably lower
and is not susceptible to power supply, thermal noise, or device
mismatch. In addition, high precision digital computation
makes it possible to implement networks with high dynamic
range, greater stability, reliability, and repeatability.

Also simulation and implementation of a single neuron as well as
large scale systems, in order to understand the brain behavior, have
been the subject of numerous studies in recent years [14,16,17].
Therefore, efficient implementations of spiking neural network
(SNN) systems are essential in this field of research. With this
purpose in mind, this paper suggests a neuronal implementation
based on the FitzHugh Nagumo (FHN) model, proposing a set of
multiplierless models called MDL1 and MDL2. These models are
computationally low cost compared with the original model and
can be implemented on digital platforms such as field
programmable gate arrays (FPGAs). To represent the neuron
mechanisms, the FitzHugh Nagumo neuron model is considered.
Simulation and implementation results demonstrate that the pro
posed models produce the same dynamics and can trace the
original model in different states. The paper is organized as follows:
background and mechanisms of the proposed neuron have been
described in Section 2. Section 3 presents the modified neuron
models, dynamics and phase plane trajectories in detail. Design and
hardware implementation are discussed in Section 4. Section 5
presents implementation results. The paper concludes in Section 6.

2. Background

A simplified version of the Hodgkin Huxley model is the FHN
model [5,6]. This model consists of several parameters, two
equations and one condition, without the auxiliary reset equa
tions, described given by

_v ¼ v3

3
wþ I

_w ¼ 1
T
ða bwþvÞ

8>><
>>: ð1Þ

where v represents the membrane potential of the neuron and w
is the activation of Kþ ionic currents and inactivation of Naþ ionic
currents represents a membrane recovery variable. Here, a and c
are scaling parameters, I is a constant stimulus current (input
excitation current), τ is a constant parameter and all the variables
are dimensionless. The spiking threshold, b, varies from 0 to 1, and
to obtain electrical spiking, usually bo0:5 is chosen [16]. Since
hardware implementation requires lower area and power per
function, power and cost are very important factors, so using
multiplier is a costly approach for hardware implementation. For
reducing multipliers, the proposed modified equation is suggested
in the next section.

3. The proposed models

3.1. Mathematical approximation

1. MDL1 and MDL2 models: To improve the computational effi
ciency of the model, the proposed models can be considered for
the neuron model. Dynamics of the proposed models can be
given by the following equations defined as: MDL1:

_v ¼ vð 3
p

jvj Þ wþ I

_w ¼ 1
T
ða bwþvÞ:

8><
>: ð2Þ

MDL2:

_v ¼ 0:3sinhðvÞð 3
p

jvj Þ wþ I

_w ¼ 1
T
ða bwþvÞ:

8><
>: ð3Þ

Fig. 1 presents matching accuracy of proposed models. It is
noted that, in MDL2 model, we can use hyperbolic calculation
unit (HCU) for producing 2sinhðvÞ function similar to the
method presented in [18], according to Fig. 2. Multiply opera
tions between term 2sinhðvÞ in other sections of equation is
shift and add operations, because sinhðvÞ ¼ ð2v 2ð�vÞÞ=2 and
can be implemented according to [18] strategy.

2. System level implementation: To investigate the functional
behavior of MDL1, MDL2 and original models, they are mod
elled using VHDL AMS. To compare these models, we applied
input signals with the same intensity and frequency to all of
them. These comparisons are illustrated in Fig. 3.

Fig. 1. Equilibrium v–w locus of the original and proposed models with these conditions a 0.7 mV, b 0.8 and τ 13 Ω. (a) Original nullclines. (b) MDL1 model
corresponding to v equation. (c) MDL2 model corresponding to v equation. This figure shows how the variations of the input signal, i, changes the state of the nullclines and
finally the trajectories of these equations.
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3.2. Dynamics and phase plane trajectories

To present a more rigorous justification for the proposed
models, the nullclines provide an insight into the similarity in
dynamics in comparison with the original model.

1. Dynamical system: dynamical systems theory attempts
describe systems that are constantly changing [20]. A dyna
mical system is a set of variables where a deterministic rule
describes the evolution of the state variables with time.
The evolution rule of dynamical systems is given implicitly by
a relation that gives the future state of the system [20].
Mathematical models describing the biological neuron models
can be given as (time continuous differential equation)

_v ¼ Fðv;wÞþc
_w ¼ Gðv;wÞþd:

(
ð4Þ

For original and proposed models, we have

original :
_v ¼ v

v3

3
wþ I

_w ¼ 1
T
ða bwþvÞ

8>><
>>: ð5Þ

MDL1 :

_v ¼ vð 3
p

jvj Þ wþ I

_w ¼ 1
T
ða bwþvÞ

8><
>: ð6Þ

MDL2 :

_v ¼ 0:3sinhðvÞð 3
p

jvj Þ wþ I

_w ¼ 1
T
ða bwþvÞ:

8><
>: ð7Þ

2. Phase portrait: A phase portrait is a geometric representation
of the trajectories of a dynamical system in the phase plane.
Each set of initial conditions is represented by a different
curve, or point [20].

3. Equilibrium points: Mathematically, the point v̂ARn is an
equilibrium point for the following differential equation:

dv
dt

¼ Fðv;wÞþc

dw
dt

¼ Gðv;wÞþd

8>><
>>: ð8Þ

if Fðt; v̂Þ ¼ Gðt; v̂Þ ¼ 0 for any time (t) [20].
4. To find the type of Equilibrium points in both linear and non

linear systems, we need to find Jacobian matrix [20]. Assum
ing a 2 D dynamical system,

original :
_v ¼ v

v3

3
wþ I

_w ¼ 1
T
ða bwþvÞ

8>><
>>: ð9Þ

Jðv;wÞ ¼ Jðveq;weqÞ ¼
∂ _v
∂v

∂ _v
∂w

∂ _w
∂v

∂ _w
∂w

2
664

3
775 ð10Þ

Jðv;wÞ ¼ Jðveq;weqÞ ¼
A B

C D

� �
ð11Þ

where A, B, C, D are the coefficients of the Jacobian matrix. So
for original and proposed models:

Fig. 2. Hyperbolic calculation unit (HCU). Here, v and �v are the inputs of the
Exponential block (ExU) that are composed of two parts for each of them [18]. The
sign bits have determinant roles for the computation.

Fig. 3. Output of the original and proposed models. (a) Membrane potential (I 0.4 mA). (b) Membrane potential (I 0 mA). (c) Current variable and membrane potential of
MDL2 model. (d) Membrane potential of the MDL1 model. (e) MDL2 model when (I40). (g) (c) Current variable and membrane potential of MDL2 model (I 0.33 mA).
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Jðvoriginal;woriginalÞ ¼ Jðveq;weqÞ ¼
A¼ 1 v2 B¼ 1

C ¼ 1
τ

D¼ b
τ

2
4

3
5 ð12Þ

JðvMDL1;wMDL1Þ ¼ Jðveq;weqÞ ¼
A¼ 3

p
þjvj ðv 1Þ B¼ 1

C ¼ 1
τ

D¼ b
τ

2
64

3
75

ð13Þ

JðvMDL1;wMDL1Þ ¼ Jðveq;weqÞ
A 0:3coshðvÞð 3

p
�jvj Þþ0:3ðjvj ÞsinhðvÞ B �1

C
1
τ

D
�b
τ

2
64

3
75:
ð14Þ

5. Eigenvalues: Eigenvalues can be obtained using the following
equations:

T ¼ AþB

Z ¼ AD BC

PðλÞ ¼ λ2 TλþZ

8><
>: ð15Þ

where A, B, C and D are the coefficients of the Jacobian matrix.
By solving these equations, we find two real eigenvalues equal
to ðλ1; λ2Þ. So for the original and proposed models, we have

original :

T ¼ v2

Z ¼ bðv2 1Þ
τ

þ1
τ

PðλÞ ¼ λ2þv2λþbðv2 1Þ
τ

þ1
τ

8>>>>><
>>>>>:

ð16Þ

MDL1 :

T ¼ 3
p

þjvj ðv 1Þ 1

Z ¼ bð 3
p

þjvj ðv 1ÞÞ
τ

þ1
τ

PðλÞ ¼ λ2 ð 3
p

þjvj ðv 1Þ 1Þλþ b 3
p

þjvj ðv 1Þ
τ

þ1
τ

8>>>>><
>>>>>:

ð17Þ

Therefore for 2 D dynamical system; we have λ1, λ2 and, depend
ing on these points, the type of equilibrium points will be
determined [19].

This analysis shows that the behavior of the proposed models
(especially MDL2), without input, is quite similar to the original
model as shown in Fig. 4 (1 (a) 1 (c)). In addition, it can be seen
that the origin is a globally stable equilibrium point of the total
system. Thus, for all values of I, the proposed models are globally
stable. We have the same type of equilibrium points. So, similar to
the original model, there are stable states in the proposed models
that are shown in Fig. 4 (2 (a) 5 (c)). Thus it is verified that the
proposed models can replace the original model.

4. Design and hardware implementation

The proposed system architecture for MDL2 model is presented
in Fig. 5, which includes system block diagram. This architecture is
described in more detail in the following subsections.

4.1. Equations discretization

Each design is included of two blocks to calculate v and w in
models as indicated in their corresponding equations. In the
first step for implementation, it is essential to discretize
equations. In this research, we have utilized the Euler method
as

original :
v½nþ1� ¼ v½n�þdtðv½n� ðv½n� � v½n� � v½n�Þ=3 w½n�þ I½n�Þ
w½nþ1� ¼w½n�þdtððv½n�þa bw½n�Þ=τÞ:

(

ð19Þ

This follows similarly for MDL1 equations which are given by

MDL1 :
v½nþ1� ¼ v½n�þdtðv½n�ð 3

p
v½n�Þ w½n�þ I½n�Þ

w½nþ1� ¼w½n�þdtððv½n�þa bw½n�Þ=τÞ:

(
ð20Þ

The MDL2 are given by

MDL2 :

v½nþ1� ¼ v½n�þdtð0:3sinhðvÞð 3
p

v½n�Þ w½n�þ I½n�Þ
w½nþ1� ¼w½n�þdtððv½n�þa bw½n�Þ=τÞ

8><
>:

ð21Þ

where dt represents time step in the Euler method. Table 1
verifies these discrete equations and the number of stages in
pipeline implementation.

4.2. Bit width determination and the proposed architecture

To determine the bit width of the variables and parameters,
two basic points must be taken into account. The first is the
minimum/maximum bounds of the values at each point of the
hardware structure and the second is the minimum/maximum
required logic shifts either to right or left during calculations. In
this structure, v has almost a range from 2 to 2 for tonic
neurons and these values need 3 bits. The other variables and
parameters need fewer than v for their value ranges but to avoid
any overflow and also increasing accuracy of the calculations, a

bit width of 20 has been considered where 10 bits for the
integer part and 10 bits are for the fractional part.

4.3. N unit

As shown in Fig. 6, this unit is a digital multiplierless imple
mentation of the neuron model as described in Eq. (21). This unit
includes vpipeline, wpipeline, vbuffer and wbuffer. vpipeline, wpipeline are v

and w in Eq. (22) respectively. These are implemented in a pipeline
structures with vstage and wstage stages, where vbuffer and wbuffer are
the buffer registers of the v and w values and vbuffer�size and
wbuffer�size are the size of v and w states. With every rising edge of
the clock, these buffers are shifted and get new values. The bit
number can be calculated, according to usage and precision. Based
on the variable equations, to create repetitive states, buffer outputs
are applied to the related arithmetic units. None of these arith
metic modules are in pipeline state, which means we need a
register after arithmetic state in order to save data. Accordingly,

MDL2 :

T ¼ 0:3coshðvÞð 3
p

jvj Þþ0:3ðjvj ÞsinhðvÞ 1

Z ¼ 0:3bðcoshðvÞð 3
p

jvj Þþ0:3ðjvj ÞsinhðvÞÞ
τ

þ1
τ

PðλÞ ¼ λ2 ð0:3coshðvÞð 3
p

jvj Þþ0:3ðjvj ÞsinhðvÞ 1Þλþ 0:3bðcoshðvÞð 3
p

jvj Þþ0:3ðjvj ÞsinhðvÞÞ
τ

þ1
τ
:

8>>>>><
>>>>>:

ð18Þ
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following conditions must be satisfied:

N¼ vbuffer�sizeþvstage ¼wbuffer�sizeþwstage

vbuffer�size ¼wbuffer�size

vstage ¼wstage

8><
>: ð22Þ

where N is the number of neurons. We define the stage delay in
order to synchronize all the equations, for the case of unequal

numbers of stages. In each time sample, average values of v and w
are calculated and in the next time sample, they are applied as
inputs. This guarantees that the final neuron provides an output
with appropriate timing. After finding the average value, the first
neuron is upgraded to obtain new value in the next rising edge
clock. This condition is provided by applying neuron input at the
last pipeline stage. This process omits the average computing
delay that is upgraded in the next time sample (for applying to the

Fig. 4. v–w curve of original model, MDL1 and MDL2models and nullclines of these systems with increasing the current for seven states of (a)–(g) with the following conditions
a 0.7 mV, b 0.8 and τ 13 Ω. This figure shows how the increasing of the input signals (i) changes the state of the nullclines and finally trajectories of these equations.
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neuron). For an improved comparison between original, MDL1 and
MDL2 models, the scheduling diagrams (Data Flow Graph with
scheduling control steps) based on Eqs. (19) (21) are drawn in
Fig. 7. The number of minimum resources in the scheduling of the
original and proposed models is presented in Table 2.

4.4. Control unit

The control unit (CU) is responsible for two major tasks:
(1) providing suitable signal for the output provider unit in order
to select suitable neuron which is selected by K bit input of the
user defined number applied to the control unit. (2) Providing
suitable signal for average computing unit in order to calculate the
average value of neuron's output. The architecture of the control
unit is presented in Fig. 8. The CU equipped with a counter that
acts as a pointer and fetches the neuron number. For rising edge of
the clock pulse, this counter is increased by one and when the
counter reaches N this yields the reset time. The comparator
checks the value of the counter register as a pointer

register and when the counter is at N, the time is reset. The
reset instruction points to the first neuron and sends this to the
average computing unit as an instruction. Another comparator
compares the value of pointer register with the selective
neuron number that is the selector register and sends a

suitable instruction to the Output Provider Unit. The selector

register is updated by enabling the write enable signal.

4.5. Average computing unit

The average computing unit (ACU) computes v and w state
variables. The architecture of the ACU is presented in Fig. 9. The
ACU performs the task by reading the accumulator register

with a serial accumulator repetitively and accumulates it with the
v and w variables of the neuron unit and the outcome returns to
the register in every clock pulse. The accumulator register is
storing of N 1 number of v and w input variables at the ðN 1Þth
clock pulse after the latest reset. Therefore, the adder's output is
the final addition of N variables of v and w at the mentioned clock
pulses. This amount must be saved in auxiliary register

after N clock pulses in order to apply neuron model in the next
time sample. The value of the auxiliary register must be
divided by N average values that are sent to the input computing
unit. We have selected N as a power of 2 in order to replace the
multiplication operation by a shift operation.

4.6. Input computing unit

The input computing unit (ICU) is designed as the structure
shown in Fig. 10(a), caches the input, obtains v and w variable
averages from the input port and ACU and then computes the
difference. Afterward, it multiplies the result by constant K. The
ICU must perform this operation without any delay. After comput
ing a new average that is produced by average computing unit, it
should give the updated input to the neuron immediately. There
fore, this unit is designed via a combination of gates and does not
include any register. We should notice that the implementation
complexity of the K constant multiplier can be substantially
decreased by selecting suitable value for K. If a suitable value of
K is chosen, one may implement it with pairs of accumulators and
shift logic operations. In this paper, we select K in such a way that
multiplication can be replaced by simple shift operation.

4.7. Output provider unit

The output provider unit (OPU), shown in Fig. 10(b), saves the v

and w variables in a register called the output register in N
clock pulses. The control unit provides writing activation for this
register in order to save valid v and w variables. The OPU also
transforms saved digital numbers in the output register to an
analog signal via a Digital Analog Converter (DAC).

5. Results

Neuron behaviour is described with VHDL code. In these
simulations, “v” and “w” are 20 bits wide that are used in fixed
point calculations. Neuron parameters are chosen as a¼0.7, b¼0.8,
τ¼13. Also initial values are v0 ¼ 1

1024 and w0 ¼ 1
1024 , so that 10 bits

are for the integer part and 10 bits for the fractional part. To

Fig. 5. The proposed system architecture (system block diagram). Abbreviations:
neuron unit (N Unit), input computing unit (ICU), output provider unit (OPU),
control unit (CU), average computing unit (ACU).

Fig. 6. General overview of N unit. (pip. pipeline, buf. buffer).

Table 1
Discrete equations of v and w for original and modified models, and number of stages in pipeline implementation.

Models Output variable Discrete equation Pipeline stage

Original model v v½nþ1� v½n�þdtðv½n��ðv½n� � v½n� � v½n�Þ=3�w½n�þ I½n�Þ 6
Original model w w½nþ1� w½n�þdtððv½n�þa�bw½n�Þ=τÞ 4
MDL1 model v v½nþ1� v½n�þdtðv½n�ð 3

p
�v½n�Þ�w½n�þ I½n�Þ 6

MDL1 model w w½nþ1� w½n�þdtððv½n�þa�bw½n�Þ=τÞ 4
MDL2 model v v½nþ1� v½n�þdtð0:3sinhðvÞð 3

p
�v½n�Þ�w½n�þ I½n�Þ 6

MDL2 model w w½nþ1� w½n�þdtððv½n�þa�bw½n�Þ=τÞ 4
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complete the comparison between the original model and the
proposed models, we applied the same input signals as driving
stimulus to all of them. Results are shown in Fig. 3. Responses of
the proposed models have acceptable similarity to the original
model. For measurement of hardware resources used in this
project, we sensitize the design that is mentioned in the last
sections, and the necessary resources for a single neuron that is
realized in both of MDL1 and MDL2 models in pipeline configura
tion are implemented. The proposed circuit is implemented on a
XILINX Virtex II Pro development board. Fig. 11 displays oscillo
scope photograph of MDL2 model implementation. As observable,
MDL2 model has excellent accuracy and low cost implementation.
Table 3 shows the synthesis results with the optimization goal.

6. Conclusion

This paper demonstrates the MDL1 and MDL2 models, which
have the same characteristics as a full FitzHugh Nagumo implemen
tation. Our system level simulation results indicate that the MDL1
and MDL2 models have sensitivity to both amplitude and frequency
of input signal. In order the achieve a reduction in hardware and
computational overhead, a multiplierless hardware structure has
been proposed and implemented. These models are applicable for
future large scale implementations. These systems can be imple
mented on accelerated FPGA hardware. The MDL1 model has lower
precision but higher hardware cost. The MDL2 model advantages are
excellent accuracy, dynamically tracks the original model and is not

Fig. 7. Arithmetic pipelines. (a) v Pipeline in original model. (b) w Pipeline in original model. (c) v Pipeline in MDL1 model. (d) v Pipeline in MDL1 model. (e) w Pipeline in
MDL1 model. (f) v Pipeline in MDL2 model. (g) w Pipeline in MDL2 model.

Table 2
The number of minimum resources in the scheduling of v and w.

Resources Output Original MDL1 MDL2
model model model

Adder v 4 4 7
Multiplier v 3 1 –

Multiplexer v – – 2
Adder w 3 3 3
Multiplier w 2 – –

Multiplexer w – – –

Fig. 8. Control unit (CU) of the proposed model. Abbreviations: comparator (Com.), average computing unit (ACU), output provider unit (OPU), Write_enable (W_en).
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Fig. 9. General structure of the average computation unit (ACU). Abbreviations: Accumulator_register (Ac._reg.), Auxiliary_register (Aux._reg.), Write_enable (W_en).

Fig. 10. General overview of input computation unit and output provider unit. (a) Input computation unit. (b) Output provider unit.

Fig. 11. Output of the MDL2 model implemented on XILINX Virtex-II Pro XC2VP30. (a) Tonic spiking implementation. (b) Adaptation implementation. (c) Tonic spiking
implementation (I 27 mA). (d) Tonic spiking implementation (I 33 mA). (e) Delayed regular tonic implementation (I 40 mA). (d) Tonic spiking implementation. The
horizontal axis denotes time, and the vertical axis shows voltage (time scale 100 ms and voltage scale 5 mV).

Table 3
Device utilization summary.

Logic utilization Used Available Utilization (%)

Number of slices 648 1408 46
Number of slices flip flops 526 2816 18
Number of 4 input LUTs 1085 2816 38
Number of bonded IOBs 86 140 61
Number of MUL18�18 s 0 0 0
Number of GCLKs 1 16 6
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as costly as MDL1 model. Also the dynamic behavior of the neuron
has been examined for all of models and our results demonstrated
the desired performance for the models, especially the MDL2 model.
Its biggest advantage of the MDL2 model is that its behavior is close
to a biological neuron. These results give rise to the possibility of
employing MDL1 and MDL2 neurons for performing a wide range of
signal processing applications.
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