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Self-repair is fundamental to biological neural networks. In a neural network with a large number of ele-
ments, the probability of failure of each component increases. With the breakdown of each part, there
may be a significant difference in the final results that will be completely affected by this defect. The exis-
tence of a process for detecting the error and compensating it by recruiting healthy elements leads to
improved performance. This is where adjacent synapses proxy faulty synapses to avoid disturbances in
the network function, thereby compensating the incurred error. In the present research, a self-
repairing analog circuit is designed based on an astrocyte-neuron interaction and new synapse architec-
ture. The designed circuit builds upon a software model of an astrocyte-neuron network with the proven
ability to detect errors and undertake self-repair. The results obtained from our circuit show that, when
an error occurs in the synapses associated with a neuron, the currents within functioning synapses of the
same neuron increase. This increase is made by receiving feedback from adjacent astrocytes and other
synapses. The process maintains the network function, compensating incurred errors in the network, pre-
senting a neural network-based analog circuit with self-repairing capability, while considering the effect
of astrocytes. In this paper, extensive simulation results using HSPICE with 0.35 lm CMOS technology are
provided for the evaluation of the proposed circuit.

� 2022 Elsevier B.V. All rights reserved.
1. Introduction

The increasing use of neural networks in many applications has
attracted the attention of many researchers in this field [1–4]. Neu-
ral networks comprise components such as neurons, synapses,
astrocytes, etc. Different mathematical models and circuits are
applied in each case [4–12]. The neuromorphic circuit is a new
topic that combines medical and electrical engineering in recent
decades [1–3,13,14]. To have an optimal hardware neural network
circuit, we need to properly design these mathematical models so
that we can best implement neural networks. So far, different ana-
log and digital circuits are presented for neurons, synapses, and
astrocytes. Different components of nervous systems play various
roles to ensure correct function [5,6].

Self-repair is the method that assists biologically-inspired ner-
vous systems to compensate for the task of faulty synapses.

The astrocyte plays a key role in the interaction between com-
ponents of neural networks [1,7–15]. Astrocytes, in addition to
feeding on different parts of the nervous system, play an active role
in the functions of information transfer, learning and etc.
[1,4,16,17].

In real neural networks, when network components have a
problem, other components detect it and fix it approximately. In
this condition, the neighbor synapses and neurons compensate
for the incurred faults. The astrocyte is one of the components that
helps the synapses to compensate for these faults.

One of the tasks recently discovered by researchers is the role of
astrocytes in the self-repair of neuronal networks [1,17,18]. Self-
repair involves the cooperation of various parts of the neural net-
work to compensate for faults. So far, there has been a significant
number of studies in this area [1,3,14,17-20] that show the ability
of the astrocyte to repair faults. One of the cases used is the control
of robots using neural networks and self-repairing algorithms,
which has been implemented digitally in [3]. Astrocytes, by having
glutamate (Glu) at the output known as the e-SP signal, create a
self-repairing network and compensate for any incurred faults.
By applying astrocyte self-repairing rules, fault tolerance can be
improved and the desired response is obtained. This signal is
affected by the frequency of all neurons around the astrocyte,

http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2022.01.077&domain=pdf
https://doi.org/10.1016/j.neucom.2022.01.077
mailto:ghkarimi@razi.ac.ir
https://doi.org/10.1016/j.neucom.2022.01.077
http://www.sciencedirect.com/science/journal/09252312
http://www.elsevier.com/locate/neucom


N. Veisi, G. Karimi, M. Ranjbar et al. Neurocomputing 496 (2022) 158–165
which due to its global signal can be less affected by errors in the
network. This process causes a network fault due to a defect in the
elements, does not affect the final output of this signal, and is a
suitable flag for initiating self-repair.

The self-repair is used in all of the networks where the possibil-
ity of damaging network components is high and there is a need for
repair and compensation.

In this paper, we present a new astrocyte-neuron analog circuit
with self-repair capability, which is potentially a step forward in
advancing analog neural networks. We use the astrocyte circuit
[16] in a small neural network to show that it can generate a global
signal (using the e-SP signal) as a feedback signal for repairing
incurred faults in the neural network. So, the main contribution
of the proposed approach is based on a new proposed
biologically-inspired self-repair structure by using the astrocyte
circuit, capturing the self-repairing capability of biological neural
networks.

The rest of the paper is organized as follows: Section II, explains
the self-repairing neural network model. The proposed circuit
implementation of astrocyte mediated self-repair is described in
Section III. The simulation results of the proposed circuit are pre-
sented in Section IV. Finally, in Section V, the importance and some
future directions of the present research are discussed.
2. Self-repairing neural network model

As mentioned, the goal of this paper is to present a new
astrocyte-neuron interaction analog circuit that captures the self-
repairing behaviors of spiking neural networks.

Astrocytes can cover a large number of synapses connected to
a neuron and connect to several neighboring neurons. These
astrocytes have many receptors that are used for synaptic infor-
mation transfer. For example, the astrocytes have connection
points for endocannabinoids or 2-arachidonoylglycerol (2-AG).
Endocannabinoids are retrograde messengers that are released
in postsynaptic neuronal depolarization [21]. When an action
potential reaches a presynaptic axon, neural transporter (gluta-
mate) is released in the synaptic gap and binds to dendrite,
resulting in postsynaptic neuronal depolarization and release of
2-AG. The released 2-AG may then reach the presynaptic terminal
via either of two paths:

1) Direct: 2-AG binds directly to type 1 Cannabinoid (CB1Rs)
receivers in the presynaptic terminal, resulting in reduced
transmission probability of release (PR) that is referred to
as Depolarization induced Suppression of Excitation (DSE)
[21].

2) Indirect: In indirect mode, 2-AG binds to astrocyte CB1Rs
and results in the release of Inositol trisphosphate (IP3) that
enhances the level of IP3 in the astrocyte; this, in turn, actu-
ates Ca2+intra-cellular broadcast (ICB). An increased level of
Ca2+ leads to an astrocytic broadcast of glutamate that binds
to the presynaptic group I Metabotropic Glutamate receivers
(mGluRs). This signaling increases PR, which is called e-SP
[22].

The PR of each synapse is affected by DSE and e-SP, as described
in the following [17,18]:

PRðtÞ ¼ PRðt0Þ
100

� DSEðtÞ
� �

þ PRðt0Þ
100

� eSPðtÞ
� �

ð1Þ

where PR (t0) is the initial value of PR for each synapse. In order to
model the released 2-AG, it is assumed that each time the postsy-
naptic neuron makes a spike (fires), 2-AG is released and can be
given by the following equation [14,17,18]:
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dðAGÞ
dt

¼ �AG
sAG

þ rAGdðt � tspÞ ð2Þ

where AG denotes the released amount of 2-AG, sAG and rAG are
decay and generation rates of 2-AG, respectively, and tsp is the time
of the postsynaptic spike. When 2-AG binds to the Cannabinoid CB1
receptors (CB1Rs) on the astrocyte, IP3 is produced following a
behavior similar to that described by the gatekeeper model [15]
that depends on the released amount of 2-AG and is described by
the following equation [14,17,18]:

dðIP3Þ
dt

¼ IP�3 � IP3

sIP3
þ rIP3AG ð3Þ

where IP3 is the amount of exist in the cytoplasm. Here, IP3* is the
basic amount of IP3 when the cell is in steady state. rAG, rAG are
decay rate and production rate, respectively.

In this model, Li-Rinzel astrocyte model [23] is used as follows:

dðCa2þÞ
dt

¼ Jchan Ca2þ;h; IP3
� �þ Jleak Ca2þ

� �� JpumpðCa2þÞ ð4Þ

where Jchan is opening of Ca2+ broadcast by the mutual gating of
Ca2+ and IP3 concentrations, Jpump is pumped amount of Ca2+ from
cytoplasm toward the endoplasmic reticulum (ER), Jleak is the
amount of Ca2+ leaked from ER, and h is the activated fraction of
inositol 1, 4, 5-trisphosphate receptors (IP3Rs). In this method, a lin-
ear relationship is assumed between the released 2-AG and DSE, as
follows [17,18]:

DSE ¼ AG� KAG ð5Þ
where AG refers to the released amount of 2-AG by postsynaptic
neuron (given by Equation (2)) and KAG is a scaling factor for con-
verting the level of 2-AG to the desired negative range. Intra-
cellular dynamic astrocytic calcium uses astrocyte for adjusting
the broadcast of glutamate. Target glutamate release (group I
mGluRs) is given by the following equation [14,17,18]:

dðGluÞ
dt

¼ Glu
sGlu
þ rGludðt � tCaÞ ð6Þ

where Glu is the amount of glutamate, sGlu and rGlu are decay and
generation rates of glutamate, respectively, and tCa is Ca2+ threshold
pass time.

The level of e-SP depends on the amount of glutamate, which is
modeled by (7) where seSP is the decay rate of e-SP and meSP is a
weighting constant [14,17,18],

seSP
dðeSPÞ
dt

¼ �eSPþmeSPGluðtÞ: ð7Þ

The adopted synapse model is a probability-based model
wherein a uniform distributed pseudo-random number generator
generates a random number between 0 and 1 whenever a presy-
naptic spike reaches the synapses. If the value of the generated
random number is equal to or smaller than broadcast PR, an Iinj
flow is injected to leaky integrate-and-fire neuron (LIF) [24] called

Iisyn, which can be expressed as the following equation [17,18]:

Iisyn ¼
Iinj random � PR
0 random > PR

�
i ¼ 1;2 number of neurons: ð8Þ

The parameter values are list in Table 1.

3. Proposed self-repairing analog circuit

In this section, we begin by presenting the concept and princi-
ples of self-repairing on spiking astrocyte-neuron networks fol-
lowed by delivering a detailed discussion on the proposed self-
repairing analog circuit and its implementation.

http://Inositol+trisphosphate


Table 1
Parameter values of the self-repairing model.

Parameter Value Parameter Value Parameter Value Parameter Value

IP3* 0.16 mM sCa 1 s KAGx �4000 rGlu 10 mMs�1

rip3 0.5 mMs�1 sAG 10 s sGlu 100 ms meSP 55 x 103

tip3 7 s rAG 0.8 mMs�1 seSP 40 ms

Fig. 1. Proposed block diagram architecture of an analog spiking astrocyte-neuron
network for self-repairing mechanism.
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3.1. Self-repairing strategy on spiking astrocyte-neuron networks

Fig. 1 describes the architecture of the proposed circuit that is
composed of two neurons and one astrocyte. This small network
is used to demonstrate principles of self-repair in hardware. In this
model, each neuron is connected to several synapses. The main
component of this network is the neuron facility (e.g. neurons 1
and 2 in Fig. 1). Inputs into neurons are signals from synapses,
and output signals include a neural spike, 2-AG, and DSE. The neu-
ral model proposed by [8] was used in the neuron facility. When a
postsynaptic neuron spikes, 2-AG is released according to Eq. (2)
while DSE is produced according to Eq. (5) which is the main pro-
cess in neuron facilities. The released 2-AG binds to CB1Rs on the
astrocyte, indirectly increasing PR of synaptic transmission. Never-
theless, DSE imposes a direct impact at postsynaptic terminal, i.e.
reduces PR of the synaptic transmission.

The second key component is the astrocyte facility. As shown in
Fig. 1, the astrocyte facility receives 2-AG signal from the postsy-
naptic neuron and generates e-SP signal for the synapsis, which
can enhance PR of synaptic transmission.

The third component of this network is the synapse facility. The
synapse facility is designed using the probability-based synapse
model as formulated in Eq. (8). The Synapse facility receives input
presynaptic spikes and DSE/e-SP from neuron/astrocyte. It has an
output signal (i.e. synapse out in Fig. 1) which is connected to
the neuron facility. As discussed previously, synaptic transmission
PR is set by DSE and e-SP. Two PR setters are designed to adjust the
process, one of which (for DSE) tends to reduce the value of PR,
with the other one (for e-SP) increasing the value of PR.

3.2. Self-repairing mechanism in analog circuit

The proposed analog circuit includes two neurons and one
astrocyte, with each neuron being connected to 10 synapses. Each
of these components is investigated in the following.

3.2.1. Neuron
The neural circuit used in the present paper was designed based

on the numerical model presented by Izhikevich [9] that was
designed by Wijecon [8]. This circuit includes 14 MOSFET transis-
tors and has two state variables: membrane potential (V) and slow
variable (U). Dynamics of the circuit is approximated using a series
of equations [10]:

dV
dt
¼

a1V
2 � a2V � a3U

2 þ a4U þ a5 þ i1 when V > U � VT

a6V
2 � a7V � a8UV þ i2 otherwise

8<
:

ð9Þ

dU
dt
¼ a9V

2 � a10V � a11U
2 þ a12U þ a13 ð10Þ

If

V > Vththen
V  c

U  U þ d

�
ð11Þ

where ai, VT, Vth, ii, c, and d are constants which depend on the tran-
sistor dimensions (e.g. W/L), region of operating, bias voltages, and
input current. This circuit generates a variety of cortical neuronal
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firing patterns [10,11]. This neural circuit has a compact layout
and low power consumption in the range of 9 pJ/spike [12].

3.2.2. Astrocyte
Attachment of the released 2-AG from the dendrite to CB1Rs on

the astrocyte releases some IP3 into the cytoplasm of the astrocyte.
These IP3s bind to IP3Rs on endoplasmic reticulum (ER) (ER is a
long network of conduits and vesicles used for storing calcium in
the cell [25]). The connection between IP3 and IP3Rs results in
opening Ca2+ channels and Ca2+ broadcast for ER into the cyto-
plasm. The increase in Ca2+ results in the release of glutamate
which returns to the synaptic gap and binds to presynaptic group
I mGluRs receivers. This signaling enhances synaptic transmission
probability and generates an e-SP signal which contributes to the
self-repairing behavior of faulty synapses [14,17,18].

The used astrocyte circuit in the present research is based on
the astrocyte dynamic model presented in [26]. Dynamics of the
astrocyte model is described by the following system of differential
equations:

_q ¼ 1þ tanhk1½Z � K2�ð Þ 1� qð Þ � k3q
_P ¼ �K4pþ K5 þ K6q

(
ð12Þ

where q is the internal state of astrocyte, ki (i = 1, 2, . . ., 6) is con-
stant (as listed in Table 2), and Z and p are the input and the output
of the astrocyte, respectively.

Fig. 2 illustrates the general structure of the used astrocyte
which has been reported in the previous work in detail [16].

As shown in [16], the used astrocyte circuit is based on the sim-
plified model of astrocyte dynamics (formulated in Eq. (12)) and
composed of two functional parts. Two modal variables (p, q) are
presented using voltages of the capacitors Cp (Vp) and Cq (Vq),
respectively. Indeed, the performance of the circuit is based on
the charging and discharging behaviors of the capacitors Cp and
Cq which generate p and q modes in the astrocyte dynamic model.



Table 2
Parameter values of Astrocyte dynamic model [26].

Parameter Value Parameter Value

k1 1 k2 2
k3 2 k4 1
k5 0.05 k6 1.5
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The employed astrocyte circuit (Fig. 2) has been studied exten-
sively, including equations governing the behavior of the circuit
and its transistor-level design implementation as mentioned in
the previous work [16].
Fig. 3. Architecture of the proposed synapse used in the proposed self-repair
circuit.
3.2.3. Synapse
The architecture of the proposed synapse used in the proposed

circuit is shown in Fig. 3. This includes two DPI (Differential Pair
Integrator) circuits [6], one comparator, and one resistor. In this
part of the circuit, on one hand, the neuron receives the value of
e-SP which is a global value, and on the other hand, the value of
DSE as a local measure is transmitted to the circuit by DPI synapse;
finally, the circuit produces an appropriate current to be injected
into the neuron.

Prior to injection into the neuron, the generated current is com-
pared against random value by a comparator. If a suitable condi-
tion is established, the generated current output of the
comparator is injected into the neuron. In fact, this random value
determines the probability of healthiness of the synapse.
Fig. 4. Simulation results of astrocyte circuit for different input pulse frequencies
with VAmp = 1.5 V. (a) f = 10 kHz, (b) f = 100 kHz, (c) f = 1 MHz, (d) f = 10 MHz.
4. Simulation results

Presented in this section are the results of simulating the
designed circuit. First, in order to demonstrate suitable properties
of the astrocyte [16] for this particular circuit, simulation results
were investigated for different input data at different frequencies.
In this simulation, input pulses with various frequencies were
applied to the astrocyte circuit and the output behavior of the
astrocyte with changing the frequency was demonstrated. Results
of this simulation are shown in Fig. 4. According to the results
reported in [16] and Fig. 4, one of the characteristics of the astro-
cyte is its frequency adaptation that has improved performance
at higher frequencies. These results show that when the input fre-
quency of astrocyte is high, the output astrocyte produces a contin-
uous signal. This continuous signal plays the role of the Glu signal
in the neural network.

In the next experiment as shown in Fig. 5, an input sinusoidal
waveform with a peak amplitude of 1.5 V is applied to the astro-
cyte circuit at different frequencies. As can be observed, the general
shape and the qualitative behavior of trajectories are similar for
the model and the developed circuit over a range of amplitudes.
Fig. 2. Illustrative structure of the astro
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This characteristic, as seen in Fig. 4 and Fig. 5, significantly con-
tributes to the self-repair mechanism. The root mean square error
(RMSE) and percent of error between state variables of the astro-
cyte model in MATLAB simulations and output voltages of the
astrocyte circuit in HSPICE simulations are listed in Table 3.
cyte circuit [16] used in this work.



Fig. 5. The phase plane of both original model and the proposed analog astrocyte
circuit with VAmp = 1.5 V and (a) f = 10kHz, (b) f = 100kHz, (c) f = 1 MHz, and (d)
f = 10 MHz. (Left panels) The results of the MATLAB simulations, (Right panels) The
results of the HSPICE simulations. Fig. 6. Simulation results with 0% fault rate. (a) PR of the first synapses, (b) PR of the

10th synapses, (c) DSE signal of both neurons, (d) global e-SP signal. (red color)
neuron #1, (blue color) neuron #2. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)
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These simulation results show sufficient accuracy of the astro-
cyte circuit for use in different circuits. By considering the changes
in output astrocyte behavior at different frequencies, appropriate
characteristics for self-repair can be found. As shown in this simu-
lation, by increasing the input frequency of astrocyte, the astrocyte
output signal has a continuous signal behavior. When the input
frequency of astrocyte increases, the little change of input fre-
quency cannot change the astrocyte output significantly. This
property causes to keep constant of approximately e-SP signal in
different faults.

In order to demonstrate this effect, the designed circuit was
investigated and analyzed to show the appropriate influence of
the astrocyte on the self-repairing behavior of the designed analog
circuit. This circuit was simulated both in a healthy state and for
different fault rates.

As mentioned in Section 2, Fig. 1 illustrates the self-repairing
mechanism of an astrocyte-neuron network. This network consists
of one astrocyte, two neurons, and 20 synapses (10 synapses per
neuron), and each neuron has several synapse inputs. Fig. 3 shows
the architecture of the proposed synapse used in the proposed self-
repair circuit. When the neuron becomes active and spikes, the 2-
AG and DSE signals are applied to the astrocyte and to the synapses
associated with each neuron respectively. And astrocyte generates
a global signal (e-SP) for all the synaptic terminals, modulating the
transmission PRs of all synapses. This synaptic modulation is the
key process for the self-repairing mechanism. So that, when some
associated synapses of a neuron are faulty and cannot able to play
their role in the network, adjacent synapses, by receiving feedback
from neuron and astrocyte, partly compensate the roles of faulty
synapses (causing to maintain the neuron average firing rate
through redistribution of PRs across all the synapses), having the
self-repairing capability.
Table 3
The RMSE between MATLAB and HSPICE simulation.

Input frequency RMSE Between q and Vq RMSE Between p and

10kHz 4.989 mV 6.654 mV
100kHz 4.576 mV 6.378 mV
1 MHz 4.343 mV 4.967 mV
10 MHz 4.124 mV 2.341 mV
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In a first test, a case where all of the synapses were healthy (0%
faulty) was considered. In this case, neurons #1 and #2 are acti-
vated by a presynaptic actuator and connected to the astrocyte
via 2-AG signal. Fig. 6 shows the data related to variables of both
neurons. The first and tenth synapses were selected as sample
synapses to present data on PR values of synaptic transmission.
Here, PR values of different synapses were seen to have similar
properties. Synapses have an initial PR value of 0.8 that changes
to an average value of 0.55 once the synapses get connected to
DSE and e-SP. That is, astrocyte-neuron networks set the value of
PR in steady state. Similar signals are observed for both neurons.
The e-SP signal is identical for both neurons, as it is a global signal.
Results of this simulation confirm that, in absence of any fault, the
analog circuit is consistent with the software model [18].

In a second test, the circuit was investigated in the case when
20% of synapses were faulty, i.e. 2 of the 10 synapses related to
neuron #2 had some fault injected into them so that the value of
PR decreased. Fig. 7 indicates the results for both neurons. In this
test, the first and second synapses for neuron #2 are damaged.
Fig. 7(a) highlights in blue the value of PR for synaptic transmission
for the damages synapse of neuron #2. After 400 ls, some error
was injected into the first synapse of neuron #2, so that the value
of PR changed to 0. As is evident in Fig. 7(b), the value of PR of the
healthy synapse of neuron #2 (which is highlighted in blue)
exceeds that of neuron #1 (which is marked in red), which indi-
cates the repairing process. With increasing the value of PR,
healthy synapses contribute to the maintenance of the perfor-
mance of the circuit.
Vp Percent error q and Vq (%) Percent error p and Vp (%)

2.91 4.06
2.30 3.47
1.75 2.53
1.20 1.35



Fig. 7. Simulation results with 20% fault rate. (a) PR of the first synapses, (b) PR of
the 10th synapses, (c) DSE signal of both neurons, (d) global e-SP signal. (red color)
neuron #1, (blue color) neuron #2. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)

Fig. 9. Simulation results with 60% fault rate. (a) PR of the first synapses, (b) PR of
the 10th synapse, (c) DSEs, (d) e-SP. (red color) neuron #1, (blue color) neuron #2.
(For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)
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In a third experiment, the associated rate of fault with neuron
#2 was increased to 40% by making the synapses 1–4 of neuron
#2 to be faulty. Fig. 8 demonstrates the simulation results. Follow-
ing fault injection at 400 ls, PR of the first synapse is zero while
that of the 10th synapse (i.e. healthy synapse) was increased by
the astrocyte. The increase in PR at healthy synapses was greater
on the network with the fault rate of 40%, as compared to that
when the fault rate was set to 20%. It is seen in Fig. 7 (c) and (d)
that, DSEs of the faulty synapses were somewhat reduced com-
pared to that of healthy synapses (considering absolute values),
which was pretty expected according to what was described
above; however, similar e-SP was obtained for both neurons since
Fig. 8. Simulation results with 40% fault rate. (a) PR of the first synapses, (b) PR of
the 10th synapse, (c) DSEs, (d) e-SP. (red color) neuron #1, (blue color) neuron #2.
(For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)
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the signal is global. Considering the signals related to neuron #2,
which were significantly faulty (e.g. at 40% in this test), this atten-
uated performance is acceptable since, according to the self-
repairing principle, the system is capable of getting adapted to con-
ditions and repairs itself.

In the fourth test, the proposed circuit was simulated with a
fault rate of 60%, (i.e. 6 of the 10 synapses related to neuron #2
had some error injected into them,) with the simulation results
demonstrated in Fig. 9. Based on this figure, it is observed that, fol-
lowing the occurrence of an error (i.e. at 400 ls), PR of the healthy
synapse (e.g. 10th synapse) of neuron #2 gets closer to the initial
PR value (0.8) to feedback from the astrocyte. The DSE of neuron
#2 is decreased compared to neuron #1, which is an expected
behavior defined in the evaluation of the software model [2]. Com-
pared to previous cases, the value of e-SP, in this case, is slightly
decreased, which is an expected behavior when considering the
fault percentage.
Fig. 10. Simulation results with 80% fault rate. (a) PR of first synapses, (b) PR of the
10th synapse, (c) DSEs, (d) e-SP. (red color) neuron #1, (blue color) neuron #2. (For
interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)
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In the fifth test, the proposed circuit was simulated with a fault
rate of 80%, with the simulation results demonstrated in Fig. 10. In
this figure, it is observed that, following the occurrence of faults
(i.e. at 400 ls), PR of the healthy synapse (e.g. 10th synapse) of
neuron #2 gets closer to the initial PR value (0.8) to feedback from
the astrocyte. The DSE of neuron #2 is decreased compared to neu-
ron #1, which is an expected behavior defined in the evaluation of
the software model presented in [18]. Compared to previous cases,
the value of e-SP, in this case, is just slightly decreased, which is an
expected behavior when considering the fault percentage. As
expected, all variables of neuron #1 remain constant and
unchanged in all five figures, and the presence of a faulty synapses
of neuron #2 imposes no impact on neuron #1.

According to the simulation results, it is observed that self-
repairing capability can be implemented in analog circuits using
the astrocyte circuit, while getting its good frequency adaptation.
By providing indirect feedbacks (i.e. e-SP) and increasing PR of
healthy synapses, astrocyte provides the circuit with the self-
repairing capability and improves its performance.
5. Conclusion

Errors in neural networks cause incorrect results in the whole
network. Recognizing this error and compensating for it greatly
helps all neural networks to be able to continue working despite
the error. Since astrocytes and synapses exhibit extensive activity
in neural networks, they can assist the whole network in detecting
and compensating for the occurred faults due to their capabilities.
Self-repairing capability is among the principal components of a
neural network. When a problem occurs in some fraction of local
synapses, adjacent synapses are responsible for bearing the load
resulting from the faulty synapses, mitigating network perfor-
mance failure, so that the network can continue to serve normally.
The astrocyte is a key element of self-repair, whose role in this
property is already proven [16]. In this paper, an analog circuit
was designed and presented to demonstrate the capability of astro-
cyte for self-repairing across local networks. By considering the
changes in output astrocyte behavior at different frequencies,
appropriate characteristics for self-repair can be found. As shown
in this paper, when the input frequency of astrocyte increases
(i.e. increase frequency of neighbor neurons), the astrocyte output
signal has the continuous signal behavior. When the input fre-
quency of astrocyte increases, the little change of input frequency
cannot change the astrocyte output significantly. This property
causes to keep constant approximately e-SP signal in low faults.
This being constant signal causes to unchanged the e-SP signal,
capturing the self-repairing capability by the proposed synapse cir-
cuit. We showed that the direct role of the astrocyte in the resul-
tant synaptic fault percentages in self-repairing capability is
significant. To the best of our knowledge, this is the first report
on designing and presenting an astrocyte analog circuit for self-
repairing in neural networks.
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