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We study the impact of adaptive degrees of trust on the evolution of cooperation in the quantum prisoner’s
dilemma game. In addition to the strategies, links between players are also subject to evolution. Starting with
a scale-free interaction network, players adjust trust towards their neighbors based on received payoffs. The
latter governs the strategy adoption process, while trust governs the rewiring of links. As soon as the degree
of trust towards a neighbor drops to zero, the link is rewired to another randomly chosen player within the
network. We find that for small temptations to defect cooperators always dominate, while for intermediate
and strong temptations a single quantum strategy is able to outperform all other strategies. In general,
reciprocal trust remains within close relationships and favors the dominance of a single strategy. Due to
coevolution, the power-law degree distributions transform to Poisson distributions.

ooperation is surprisingly a commonly observed behavior in human societies as well as in many other

biological systems. It is surprising because cooperation means sacrificing individual benefits for the good

of others, which inevitably compromises fitness in natural selection. According to Darwin, cooperation
should thus die out in a competitive setting. The survival of cooperation has therefore attracted ample attention,
and it has indeed become a significant topic studied within the theoretical framework of evolutionary games.
From Nowak and May’s seminal work' onwards, interesting results’~* have been reported using different types of
games. In particular, it has been discovered that network structure is a key factor in the evolution of cooperation,
which leads to a shift from studying evolutionary games on lattices to studying evolutionary games on complex
networks'®"" (for a review see'®). Moreover, coevolutionary rules were introduced to evolutionary games, which
meant that focus was shifting from the evolution on networks to the evolution of networks. For example, the
impact of different link-updating rules on the coevolution of strategy and structure'*~>°, population growth>”*,
teaching activity® ', as well as the mobility of players®* ¢ were studied.

The concept of evolutionary games has also been applied on very small scales, for example to describe
interactions of biological molecules®”*°, which motivates the consideration of the effects of quantum mechanics*'.
Consequently, a new field of quantum game theory has emerged as the generalization of classical game theory.
Notably, several phenomena without classical counterparts have been observed. For example, in the PQ penny
flip game**, a player who implements a quantum strategy can increase his/her expected payoff. Moreover, when
one player is restricted to classical strategies, while the other player is free to adopt quantum strategies, the
quantum player can direct the outcome regardless of the classical player’s strategy®’. When the Prisoner’s
Dilemma game is quantized*, the dilemma existing in the classical game is removed, if both players resort to
quantum strategies in a restricted space. Moreover, there is a unique Nash equilibrium for the Battle of the Sexes
game, if players are allowed to use entangled strategies®. It has also been shown that quantum games are more
efficient than classical games and a saturated upper bound for this efficiency is found*. Further, when the
previous performance of agents are considered, evolutionary quantum games* are found to be an appropriate
description. If there are a small group of mutants using quantum strategies in the population, the results of how
they invade a classical evolutionarily stable strategy (ESS)*® and the role of quantum mechanical effects in ESS*
have been investigated. Later, quantum repeated games®, quantum cooperative games®' and quantum correlation
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Figure 1| A model of a quantum game. For details on the notation we
refer to the Methods section, in particular the subsection Quantum
prisoner’s dilemma game.

games>” were studied. Recently, quantum games have also been ana-
lyzed by using geometric algebra>**. For further background on
quantum games, we refer to®*”’.

If Dawkins’ “selfish genes”® are a reality, it may be speculated that
games of survival are being played already on the molecular level*. In
recent years, it has been suggested that quantum mechanics may play
a role at the neural level*®'. These considerations have provided
motivation for investigation of the evolution of quantum and clas-
sical strategies on networks using the theory of quantum games. The
main difference between a quantum and a classical game is that
quantum effects such as entanglement are employed, producing
results for which there are no classical counterparts. Moreover, the
full quantum strategy space in quantum game theory is a very large
space, where the classical strategy set is only a subset of the full
quantum space. Also, it is worth noting that a quantum strategy is
not a probabilistic sum of pure classical strategies (except under
special conditions), and that it cannot be reduced to a set of pure
classical strategies*.

In this paper, the behavior of agents is described by quantum
strategies that are taken from the full quantum strategy space, and
agents interact with each other in terms of the model of a quantum
game. In accordance with the outcome of interactions, each agent
updates its strategy with a given probability and adjusts the degrees of
trust that it assigns to neighbors adaptively. As we can observe in
reality, people evaluate their friends positively or negatively accord-
ing to their past behavior, which causes trust in friends to increase or
decrease and relationships between them consequently become clo-
ser or more estranged. It often happens that low trust also reduces the
level of their interactions. Further, if the trust in a friend decreases
below a certain value, the relationship between them will be broken
and the agent will make a new friend. In the process, reciprocal
relationships are often preserved and the degrees of trust between
them remain high. Based on this observation, we study how the
adaptive degrees of trust influence the coevolution of quantum and
classical strategies on heterogeneous networks. After the coevolution
comes to an end, new patterns emerge in the population.
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The remainder of this paper is organized as follows. First, we
present the main results concerning the coevolution on networks,
the impact of the adaptive degrees of trust, as well as the resulting
degree distributions of nodes after the coevolutionary process
reaches a stationary state. Subsequently, we summarize our results
and discuss their outreach and potential implications, as well as
outline directions for future research. Lastly, in the Methods section,
we describe the elementary concepts of a quantum game, in which
the classical strategies of cooperation and defection are mapped as
two basis vectors in Hilbert space, as shown schematically in Fig. 1. In
the Methods section, we also provide a mathematically precise
description of the model and the employed coevolutionary rule.

Results

In this section, the impacts of adaptive degrees of trust on the strategy
evolution and the network evolution are investigated. First, the stat-
istical results of the evolution on SF networks are given, and then they
are analyzed and explained in detail. Finally, the degree distributions
before and after the coevolution are discussed. Before each simu-
lation starts, two quantum strategies are taken from the very large

space S by choosing the parameters, o, f and 0 at random, while in all
simulations two classical strategies keep the same forms in equation
(4). After a simulation, a result including four curves is produced, just
like Fig. 2(a)-(b), in which each point on a curve denotes the fraction
of agents using a strategy at a given b. For the curves corresponding to
two quantum strategies, the quantum strategy that produces the
topmost curve is defined as Q,, the other as Q,. Finally, all results
of Monte Carlo simulations are averaged statistically to obtain a
statistical result in order to reduce randomness.

Figure 2 exhibits the statistical results of the evolution of four
strategies on SF networks. When only the rule of adaptive degrees
of trust is introduced into the evolution, but the networks remain
static, the results are shown in Fig. 2(a). It can be seen that a quantum
strategy is the dominant strategy from the outset. Furthermore, the
fraction of agents using the dominant strategy rises slightly with the
increase of the temptation b. On the other hand, when the coevolu-
tion rules described in Methods are employed, there is a chance for
cooperators to prevail in the population when b is small. However,
the strategies, Q; and D, spread in the population quickly, after the
critical value of b. Hence, the fractions of agents with these strategies
rise significantly, while the fraction of cooperators drops further.
Interestingly, defectors’ strategies are not imitated by more agents
with the rise of b, but the fraction always stays at about 20%. It seems
that a quantum strategy outperforms the classical ones and conse-
quently the fraction of agents adopting the quantum strategy is far
higher than those of others. Furthermore, in all cases cooperators can
always survive in the population.
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Figure 2 | The evolution of strategies as a function of b. (a) static networks. (b) dynamic networks. Two panels, (a)—(b), exhibit the fractions of agents
using two quantum strategies (Q; and Q,) and two classical strategies (C and D) in the population after the evolution, where the left panel is
obtained when only the rule of adaptive degrees of trust is adopted, but the networks remain static, and the right panel is obtained according to the
coevolution rules in Methods. Both panels are statistical results of averaging over 100 simulation results.
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Next, the results of the coevolution are analyzed and explained. As
mentioned above, before each simulation, two quantum strategies
are chosen randomly from the full quantum strategy space S. In
Monte Carlo simulations, when an agent uses a quantum strategy

QE{S}\{C,D}, the cooperation C or the defection D against a neigh-

bor’s strategy XeS, its expected payoff (equation (3)) in each simu-
lation is different, because different quantum strategies are chosen in
the simulation. Therefore, the distributions of payoffs over different
strategy profiles are calculated at b = 1.05 and b = 2, as shown in
Fig. 3. Based on the statistical analysis, it can be found that most
quantum strategists’ payoffs are less than one, when b is small. With
the increase of the temptation b, payoffs of agents with a quantum
strategy become greater than one gradually, but the probability is still
low and most payoffs are approximately one. Furthermore, agents’
actual payoffs and total payoffs, as given in equation (6) and equation
(5), are closely associated with the adaptive degrees of trust, which
leads to a dynamic payoff matrix.

If both agents in a game want to keep their payoffs as high as that
without using the adaptive degrees of trust, they need to evaluate the
opponent always positively, namely, to keep [a,(ij) + a,(ji)]/2 = 1.
However, this happens only if the agent’s and its neighbor’s behavior
or strategies are reciprocal, and the payoff from the opponent is
greater than the average of received payoffs. Once an agent evaluates
its neighbor negatively, both agents’ payoffs will reduce due to [a,(if)
+ a,(ji)]/2 < 1, and vice versa. For example, ina C — D pair, after the
first round, the defector evaluates the cooperator positively, whereas
the cooperator surely decreases the degree of trust in the defector
because its payoff is zero. From the second round on, their payoffs
both reduce, because the weight on this link decreases constantly,
which can be regarded as punishment for nonreciprocal players. The
dynamic payoff influences defectors more than cooperators, because
defectors lose their positions as the ones with the highest payoffs.
After several rounds, when the defector’s actual payoff in the C — D
pair becomes less than the average of all its payoffs, both the defector
and the cooperator evaluate each other negatively, which accelerates
[a(if) + a(ji)]/2 to become smaller, rather like the Matthew effect.
More importantly, this makes the degree of trust decrease to zero
faster, and helps the cooperator to break the adverse tie more quickly.
Similarly, if there is a D — D pair, both defectors evaluate the oppon-
ent negatively from the first round, because their payoffs are always
less than the average. After several rounds, D — D pairs must be
broken in all cases, so do C — D pairs. When the links are broken,
according to the coevolution rules, a cooperator rewires the link in a
C — D pair, while one of defectors in a D — D pair gets a chance to
rewire. Noting that it is not completed in only one operation that the
degree of trust decreases to zero. In the process of adjustment, agents
get time to know their opponents gradually and give enough chances
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to them to change their egoistic strategies, which fosters reciprocal
strategies to prevail in the population. Moreover, this also makes the
time scale for the structural changes be slower than that for the
strategy update, which conforms to what we often observe in reality
that people change their strategies faster than their relationships
between friends.

When the temptation b is small, say b = 1.05, it is sure that both
sides of a C — C pair evaluate the other positively, because coopera-
tors’ payoff, one, are easily greater than the average and their strat-
egies are reciprocal. Thus, C — C pairs are largely preserved in the
population and the degrees of trust between cooperators keep high.
As for other pairs, they are preserved or broken, which depends on
the degrees of trust in the neighbors. Once the degrees are zeroes,
links will be broken. We analyze the weights on all link pairs and
the fractions of all link pairs in the population at different time
steps, which are depicted in Fig. 4. As shown in Fig. 4(a), the fraction
of C — C pairs soars in the population after about twenty time steps,
while others drop largely due to links broken. Consequently, the
fraction of C — C pairs is far higher than others, and the average
of weights on C — C pairs keep the highest too. Hence, as analyzed
above, cooperators can accumulate high total payoffs and prevail in
the population.

After the temptation b exceeds the critical value, the fraction of
agents using a quantum strategy rise quickly. When b = 2, the frac-
tion reaches the highest in the population. By analyzing the data in
Fig. 3(b), we can find that the probability that quantum strategists’
payoffs are around one is largest and the probability that they get
payoffs greater than one also increases. In this case, it becomes more
that the evaluation between quantum strategists is positive. As shown
in Fig. 4(c), the fraction of Q; — Q pairs is highest, which means that
they exist largely in the population. Meanwhile, weights on the links
are also quite high. As such, the total payoffs that agents with this
strategy collect are higher, which leads the strategy to prevail in the
population. The “fates” of C — Dand D — D pairs are similar to those
atb = 1.05, i.e., they are broken after several rounds, so their fractions
drop largely during the evolution. However, a defector’s payoff
received from a cooperator is highest and it is twice a cooperator’s
at b = 2. This may make defectors accumulate high total payoffs in a
round, so that the strategy D also spreads in the population. But the
fraction of defectors cannot increase further, for the degrees of trust
that the neighbors assign to defectors are lower and lower.

Summing up, in the model, the average of payoffs are used to
calculate the probability of imitation, which partly reduces the strong
heterogeneity of SF networks. Thus, an agent cannot acquire high
total payoffs, if it only counts on the large number of neighbors. More
importantly, the adaptive degrees of trust, like punishment, help
cooperators to prevail in the population when b is small.
Furthermore, if the behavior between agents is reciprocal, the degrees
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Figure 3 | The distributions of expected payoffs over different strategy profiles at different temptation b. (a) b = 1.05. (b) b = 2. First, 2 X 10* quantum
strategies are chosen randomly from S, and then payoffs over different strategy profiles are calculated. Finally, the distributions of payoffs are

obtained by statistical analysis at different b.
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Figure 4 | The weights on links and the fractions of link pairs at different temptation b. (a) and (c) are the fractions of link pairs. (b) and (d) are the
weights on links. (a) and (b) are obtained at b = 1.05, while (c) and (d) at b = 2. In each simulation, the fractions of all link pairs are calculated at each
time step at b = 1.05 and b = 2, respectively. Meanwhile, for a type of link pairs, e.g. C — C, all the weights on these links are averaged at each time step
at b = 1.05 and b = 2, respectively. Monte Carlo simulations are carried out over 100 different initial conditions, and then the statistical results are

obtained by averaging 100 results of simulations.

of trust in one another can keep high. Therefore, these link pairs are
preserved largely in the population. This is why agents on the end of
these links can accumulate high total payoffs, which makes the cor-
responding strategy spread widely in the population and finally
become the dominant strategy.

In the last part, the statistical features of networks are also inves-
tigated. In our model, links are broken and rewired when the degrees
of trust decrease to zero. As such, the network structure evolves over
time, and the degree distributions of nodes may change largely.
Therefore, we calculate the degree distributions on SF networks after
the coevolution at b = 1.05 and b = 2, which are presented in Fig. 5.
In order to obtain more details, we analyze not only the degree
distributions of the network, but also that of nodes with the same
strategy. Comparing the degree distributions before and after SF
networks evolve, we can see that when the rules of the coevolution
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are employed, the degree distribution of the network totally deviates
from the initial power-law distribution after the coevolution and
transforms into a Poisson distribution, where the degrees of most
nodes in the network are five. Further, it can be observed that the
nodes with the largest degree are cooperators at b = 1.05, while those
are agents with the quantum strategy Q; at b = 2. Moreover, the
largest degree in the network at b = 1.05 is a little greater than that at
b = 2. As is analyzed above, when b is small, most agents in the
population are cooperators, so that they are connected largely during
rewiring, and finally become the nodes with the largest degrees.
Similar processes happen at b = 2, but in this case, the nodes with
the largest degrees are occupied by agents with the quantum strategy
Q;. Meanwhile, defectors are also connected by some agents and
acquire high degrees too at b = 2, which prevents agents with the
quantum strategy Q; from acquiring higher degree.
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Figure 5 \ The degree distributions of networks at different temptation b. (a) b = 1.05. (b) b = 2. Two panels, (a)—(b), show the degree distributions
separately for different strategies as well as for the network as a whole, which are obtained by averaging those over 100 different initial conditions.

| 3:2949 | DOI: 10.1038/srep02949



Discussion

Summarizing, we have proposed a model with coevolutionary rules,
in which the adaptive degrees of trust are at the core of the setup.
Further, we analyze the impact of adaptive degrees of trust on the
evolution of quantum and classical strategies in the quantum prison-
er’s dilemma game. During the coevolution, instead of only two
classical strategies, all agents are allowed to use quantum strategies
and play quantized PD games with their immediate neighbors in
terms of the model of a quantum game. According to the received
payoffs, each agent evaluates its neighbors positively or negatively. In
other words, if the payoff from a neighbor is less than the average of
all received payoffs of an agent, the degree of trust in the neighbor
decreases. On the contrary, if the payoff is greater than the average,
the degree of trust increases. Furthermore, agents’ total payoffs drop
with the decrease of the degrees of trust, which may lower spread of
the strategies in the population. Once the degree of trust decreases to
zero, the link between an agent and its neighbor is broken and
rewired to a randomly chosen agent in the network. Therefore, the
adaptive degrees of trust influence the strategy evolution and the
network evolution significantly.

We show that when a model without the network evolution is
used, a quantum strategy dominates the population from the outset.
However, the results based on the model with coevolutionary rules
have demonstrated that the strategy Cis the dominant strategy when
b is small, while a quantum strategy prevails in the population after b
is greater than the critical value. As is known, if the behavior between
agents is reciprocal, they evaluate each other positively, which results
in high degrees of trust between them and preservation of the link
pairs. When b is small, cooperators’ payoffs are easily greater than
those of quantum strategists and the averages of received payoffs, so
the weights on links keep high and C — Clink pairs exist largely in the
population, while others reduce gradually. Consequently, the strat-
egy C spreads widely in the population. As b rises, the payoffs of
quantum strategies increase due to the high degree of trust between
them, which ultimately leads to quantum strategy dominance in the
population. If b = 2, the payoffs of defectors are also high, and hence
the D strategy is initially imitated by some myopic agents. The initial
uprise, however, is quickly dampened because the degree of trust
towards the defectors, and thus also the links that connect them with
other players, inevitably suffer from their exploitative nature.

In terms of possible directions for further research, influential
players could be introduced to the population, and their impact on
the coevolution may be investigated. How second-order trust, i.e., the
trust a particular individual has in the friend of a friend, influences
the coevolution might also be a viable direction to pursue in the
future. Furthermore, the framework of quantum evolutionary game
theory may be applicable in engineering applications, specifically for
the coordination control of distributed generators on a microgrid. If
such generators are considered as agents and their behavior is
mapped by means of quantum strategies, then their output can be
adjusted according to the outcome of the coevolutionary process.
Accordingly, a stable and optimal state may be reached gradually
during the interaction of agents. In general, it seems safe to conclude
that for a broad plethora of classical networks, the currently applied
control schemes may be improved and indeed may benefit from the
adoption of quantum-like rules at the algorithmic level.

Methods

Quantum prisoner’s dilemma game. Before describing the coevolutionary model,
we briefly introduce the quantized Prisoner’s Dilemma (PD) game* first. The
classical PD game is widely applied in many scientific fields, where human behavior is
abstracted as two strategies, Cooperation (C) and Defection (D). If both agents use the
strategy C, they receive Reward (R). On the contrary, they get Punishment (P) due to
both using the strategy D. If two agents adopt different strategies, the agent with the
strategy C receives Sucker (S), while the other with the strategy D acquires the highest
payoff, Temptation (T). The focal agent’s payoff is given by the following matrix

C D C D

C(R S cf1 0 (1)
p\r P} D\b 0)
where, without loss of generality, R=1,T=b (1 <b=2),P = 0and S = 0. When the
PD game is quantized, the classical strategies, C = 0 and D = 1, are mapped as two
basis vectors {C ~ |0), D ~ |1)} in Hilbert space and the game is played according to
the model of a quantum game, which is shown in Fig. 1*.
Assume a quantum game starts in an initial state |00), where two qubits belong to
two agents. After it goes through a unitary operator j = (I ®2 1ig®?) /\/2, the state is

|t/o) =J|00). Then, each agent applies its quantum strategy to the qubit, which is
chosen from the full quantum unitary strategy space S*,

0

- ¢ cos? ie'f sin ¢ .
Y(,8,0)= ( 2 C 20 €S, (2)

ie— i sin ¢ 4
ie”"siny e cosy

where o, f € [—m, 7], 0 € [0, n]. Before a projective measurement on the basis {|0),
[1)} is performed, the final state is )l/If> =J1(¥1®7>)]|00). Finally, the focal agent’s

expected payoff can be calculated as

)=o) 1ol o) o)

Mathematical model. Let us consider a finite well-mixed population with N = 5000
agents who interact with neighbors by playing quantized PD games, and assume that
agents occupy all nodes of a network G(V, E), where Vis the set of nodes, E is the set of
links and t is the time step. In this paper, a Barabdsi-Albert scale-free (SF) network®**
are considered, in which there are no duplicated links and self loops. The SF network
is constructed from a small network with two fully connected nodes, and then a new
node with two links is added into the network. The operations of adding new nodes do
not stop according to the rules of “growth” and “preferential attachment”, until the
total number of nodes is N. In the network, the neighbors of an agent i are those
connected by links between them, so the neighbor set of the agent at a time step ¢ can
be defined as I'(i) = {j | e:(ij) € E,j € V\i} and the number of neighbors is k(i) =
|T'(i)|, where V\i means the set of nodes, V, not including the ith node (a complement
of {i} in V) and || is the cardinality of a set. Initially, assume each agent in the network
totally trusts their immediate neighbors, so the degrees of trust that an agent i gives to
neighbors are a,(ij) = 1, j € I',(i). Before each simulation starts, two classical
strategies (C and D) and two quantum strategies are randomly chosen from the full
quantum strategy space S. Particularly, the classical strategies, C and D, have the

following forms:
. L0\ .
C=Y(0,0,0)= €S and
01

N 0 i\ .
D=Y(0,0,m)= €S,

i 0

4)

while two quantum strategies, Q; and Q,, are produced by choosing the parameters, o,
p and 0, in equation (2) randomly. For example, at the ¢-th simulation, initially,
Qi =Y (o1 Bi1,0n), Q= Y(02,B15,012). As such, more quantum strategies in the full
quantum strategy space rather than two specific quantum strategies can be tested. The
four strategies are randomly assigned to all agents with equal probability.

Then, all agents in the network simultaneously play 2 X 2 maximally entangled
quantum games with all their neighbors. The total payoff of an agent i after the games
is the summation of all received payoffs, which can be calculated by

E(i)= Y Pi(ij), (5)
Jjel (i)

Py(if) = T1o (Y3, Y;) -we (i), (6)

wi (i) = [a: (if) + a: (ji)] /2- 7)

Here, P(ij) is the actual payoff that the agent obtains and w(ij) is the average of two
degrees of trust, also called a weight on a link, so that w,(ij) = w(ji) always holds.
Subsequently, all agents choose a neighbor from their neighborhood at random. If the
total payoff of the selected neighbor is greater than an agent i, the agent will imitate
this strategy with probability p.(i), which is given by the Fermi rule

; 1
s )= . 5 B B ]
PO S e RGO - B G R GITAT
where 4 is the intensity of selection and set at A = 0.05. Finally, all agents in the
network update their strategies synchronously.
Further, according to the payoffs that are received after agents play games with
their neighbors, each agent reevaluates its neighbors positively or negatively by

(8)
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increasing or decreasing the degrees of trust. If the payoff from a neighbor j is greater
than the average of received payoffs, then the neighbor j is evaluated positively and the
degree of trust is increased by an agent i. Otherwise, it is decreased. Therefore, the
degree of trust is updated by

1, Q>1,

Q, 0<Q<1, 9)
0, <0,

a1 (if) =

A:(if)

Q=a,(ij) + =——2
(i) > jer (iy@bs[ A (i)]

(10)

(i)
AON

A= Pui) - (1)
where abs(*) returns the absolute value of a number. It is worth noting that generally
the degree of trust that an agent i gives to a neighbor j, a,(if), does not equal to that the
neighbor gives to the agent, a,(ji), because the payoffs that the agent and the neighbor
receive and the adjustment to the degrees of trust are different. If a degree of trust that
an agent gives to a neighbor is adjusted negatively several times, it may decrease to
zero, which means that the agent does not trust the neighbor any more, so that the link
between them is broken. Thus, the agent gets a chance to rewire the link to a randomly
chosen agent in the network. Additionally, there exists a particular case that the
degrees of trust that both sides of a link give the other are zero. At this time, the agent
and the neighbor compete for the chance to rewire. The winner will rewire the link to
an agent at random. When the new link is created, the degree of trust that each side
gives the other is highest, namely, a(ij) = a(ji) = 1. Thereafter, the structure of the
network begins to evolve over time.

Monte Carlo simulations are carried out for over 100 times in terms of the above
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