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ABSTRACT | The ability to carry out signal processing,

classification, recognition, and computation in artificial

spiking neural networks (SNNs) is mediated by their synap-

ses. In particular, through activity-dependent alteration of

their efficacies, synapses play a fundamental role in learning.

The mathematical prescriptions under which synapses mod-

ify their weights are termed synaptic plasticity rules. These

learning rules can be based on abstract computational

neuroscience models or on detailed biophysical ones. As

these rules are being proposed and developed by experi-

mental and computational neuroscientists, engineers strive

to design and implement them in silicon and en masse in

order to employ them in complex real-world applications. In

this paper, we describe analog very large-scale integration

(VLSI) circuit implementations of multiple synaptic plasticity

rules, ranging from phenomenological ones (e.g., based on

spike timing, mean firing rates, or both) to biophysically

realistic ones (e.g., calcium-dependent models). We discuss

the application domains, weaknesses, and strengths of

various representative approaches proposed in the litera-

ture, and provide insight into the challenges that engineers

face when designing and implementing synaptic plasticity

rules in VLSI technology for utilizing them in real-world

applications.
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Munro (BCM); calcium-based plasticity; learning; local correla-

tion plasticity (LCP); neuromorphic engineering; rate-based

plasticity; spike-timing-dependent plasticity (STDP); spike-

based plasticity; spiking neural networks; synaptic plasticity;

triplet STDP; very large-scale integration (VLSI); voltage-based
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I . INTRODUCTION

For more than a century, there has been considerable

effort in attempting to find answers to the question: ‘‘how

does learning and memory take place in the brain?’’

Although there is still no general agreement, neuroscien-

tists concur on a common set of general rules and

hypotheses [1]–[3]. It is agreed that learning and memory
in the brain are governed mainly by complex molecular

processes, which give rise to a phenomenon called synaptic
plasticity. The actions of synaptic plasticity can manifest
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themselves through alterations in the efficacy of synapses

that allow networks of cells to alter their communication.

In order to decipher the mystery of learning through

synaptic plasticity, neuroscientists typically postulate

their hypotheses on how the brain learns and propose

specific models of plasticity rules that can explain their
theoretical and experimental observations. Then, these

hypotheses can be implemented in software or hardware

and tested with real-world stimuli to verify their values

in addressing real-world challenges. While software

implementations are ideal for exploring different hypoth-

eses and testing different models, dedicated hardware

implementations are commonly used to implement

efficient neural processing systems that can be exposed
to real-world stimuli from the environment and process

them in real time, using massively parallel elements that

operate with time constants that are similar to those

measured in biological neural systems. This approach is

followed for both attempting to get a deeper understand-

ing of how learning occurs in physical systems (including

the brain), and for realizing efficient hardware systems

that can be used to carry out complex practical tasks,
ranging from sensory processing to surveillance, robotics,

or brain–machine interfaces. The synaptic plasticity

models developed by neuroscientists are typically trans-

lated into electronic circuits and implemented using

conventional very large-scale integration (VLSI) technol-

ogies. Currently, many of these models form the

foundations for developing VLSI ‘‘neuromorphic systems’’

[4], [5]. In this paper, we present an overview of a
representative set of synaptic plasticity circuits presented

in the literature, and compare them to the learning

circuits that we have developed throughout the course of

the last ten years.

II . SYNAPTIC PLASTICITY RULES

Experimental investigations on synaptic plasticity can lead
to extremely diverse results, depending on the animal

preparation studied, on the area of the brain analyzed, on

the protocol used, and on many other factors [1], [6], [7].

These variations have produced inconsistent or even

controversial results, and led to the development of a

large number of synaptic plasticity models, ranging from

very abstract ones, to very elaborate and detailed ones [8].

Abstract models of synaptic plasticity are typically based

on the timing of the spikes produced by presynaptic and

postsynaptic neurons, and are aimed at reproducing the

basic phenomenology of learning. These rules are the ones

often used to implement learning mechanisms for various

applications [9]–[12]. Examples of such rules include the
basic spike-timing-dependent plasticity (STDP) [6], [7],

[13] and the triplet-based STDP (TSTDP) [14], [15]

models. On the other hand, more detailed models that

attempt to explain the data obtained in neuroscience

experiments take into account neuron and synapse state

variables, in addition to the timing of the spikes. Examples

of such models include the spike-driven plasticity model

[16], the voltage-based STDP model [17], and membrane
potential-based models, such as those reviewed in [8].

Even more detailed plasticity models have been proposed

to explain the detailed cellular and molecular mechanisms

observed in real synapses [18].

When selecting a synaptic plasticity model to imple-

ment, it is important to consider the target application

domain, and to choose the required level of complexity

accordingly. Table 1 lists a number of representative
synaptic plasticity rules that have been designed and

successfully implemented in VLSI, ranging from very

abstract (e.g., based solely on the timing of the presynaptic

and postsynaptic spikes), to biophysically realistic ones.

These rules are compared in terms of synaptic variables

employed for altering the synaptic efficacy, i.e., spike time,

membrane potential, and calcium ion concentration.

A. Pair-Based STDP
The pair-based STDP (PSTDP) rule is the classical

description based on the timing of the spikes produced by
the presynaptic and postsynaptic neurons. This rule has

been used in many computational studies [13], [31], [32].

The original rule is expressed by

Dw ¼ Dwþ ¼ Aþe
ð�Dt
�þ
Þ
; if Dt > 0

Dw� ¼ �A�eð
Dt
��Þ; if Dt � 0

(
(1)

where Dt ¼ tpost � tpre is the timing difference between a

single pair of presynaptic and postsynaptic spikes. The rule

Table 1 Synaptic Plasticity Models Already Implemented in VLSI
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presented in (1) shows that, if a postsynaptic spike arrives
in a predetermined time window, specified by �þ, after a

presynaptic spike, this order of spikes leads to an increase

in the synaptic weight, and a potentiation occurs. On the

other hand, if a postsynaptic spike precedes a presynaptic

one, in a specified time window of ��, the synaptic weight

is decreased, or a depression occurs. The amount of this

depression or potentiation depends on the time difference

between the two spikes ðDtÞ, as well as the potentiation
and depression amplitude parameters (Aþ and A�).

B. Triplet-Based STDP
In the TSTDP model, changes to synaptic weights occur

in relation to the timing differences among triplet

combinations of spikes [15]

Dw ¼
Dwþ ¼ e

ð�Dt1
�þ Þ Aþ2 þ Aþ3 e

ð�Dt2
�y
Þ

� �
Dw� ¼ �eð

Dt1
��Þ A�2 þ A�3 eð

�Dt3
�x
Þ

� �
8><
>: (2)

where the synaptic weight is potentiated at times when a

postsynaptic spike occurs or depressed at the time when a

presynaptic spike occurs. The depression and potentiation
amplitude parameters are A�2 , A�3 , Aþ2 , and Aþ3 , while

Dt1 ¼ tpostðnÞ � tpreðnÞ, Dt2 ¼ tpostðnÞ � tpostðn�1Þ � �, and

Dt3 ¼ tpreðnÞ � tpreðn�1Þ � � are the time differences be-

tween preðnÞ and postðnÞ, postðnÞ and postðn� 1Þ, and

preðnÞ and preðn� 1Þ, respectively. Here, ��; �x and �þ; �y

are time constants that determine the windows, in which

depression and potentiation take place [15]. Besides, � is a

small positive constant that is needed to distinguish
between the current spike and the previous spike of the

same type [15].

C. Spike Driven Synaptic Plasticity (SDSP)
In the spike-driven model of synaptic plasticity, changes

in synapse efficacy occur whenever a presynaptic spike

arrives [16]. At this time, if the postsynaptic membrane

potential Vmem is higher than a threshold voltage Vmth

potentiation, or if it is lower than the threshold, depression

will occur requiring the fact that the amount of calcium

concentration in the postsynaptic site CðtÞ is within a
predefined boundary at the arrival of the presynaptic spike.

In short, the synaptic efficacy W will change according to

W ¼W þ a; if VmemðtÞ > Vmth and �l
up G CðtÞ G �h

up

W ¼W � b; if VmemðtÞ � Vmth and �l
dn G CðtÞ G �h

dn

(3)

where a and b are the amount of potentiation and

depression, respectively. In addition, ½�l
up; �

h
up� and

½�l
dn; �

h
dn� are the boundaries for the calcium concentration

CðtÞ for potentiation and depression states, respectively.

If the required conditions are not satisfied, there will

be no potentiation or depression. When there is no spike

coming and therefore there is no synaptic weight change,

the synaptic weight W will drift toward either high or low

synaptic weight asymptotes. The direction of the drift will

depend on the values of the weights at that specific time,

which can be above/below a certain threshold �W [16], [25]

dWðtÞ
dt
¼ �; if WðtÞ > �W

dWðtÞ
dt
¼ ��; if WðtÞ � �W :

(4)

D. BCM-Like Local Correlation Plasticity (LCP)
A phenomenological rule that has been successfully

implemented in VLSI is the LCP rule [8], [33]. This is a
BCM-like rule based on

dmðtÞ
dt
¼ uðtÞ � �uð ÞgðtÞ (5)

where mðtÞ is the synaptic weight, uðtÞ is the neuron’s

membrane potential, �u is a threshold that separates LTP

and LTD induction, and gðtÞ is a conductance variable that

is related to the postsynaptic current Ipsc and therefore has

its maximum value at the time of a presynaptic arrival and
decays thereafter. Detailed expressions for uðtÞ and gðtÞ
can be found in [8] and [27].

E. Modified Ion Channel-Based Plasticity
This rule not only considers calcium and its level for

inducing synaptic weight changes, but also introduces the

effect of other ion channels and receptors as the pathways

for calcium to change in the postsynaptic neuron and

therefore causes either potentiation or depression. The
synaptic weight change mechanism is as follows: presyn-

aptic action potentials release glutamate neurotransmitters

that binds to N-methyl-D-aspartate (NMDA) receptors,

and when postsynaptic activities that provide large

membrane depolarizations are simultaneously present, it

leads to an increase in the level of calcium [28], [29]. This

rule is capable of reproducing both BCM (rate-based) and

PSTDP (timing-based) mechanisms using a unified model.
However, this model is complex and requires a large

number of state variables [29].

F. Iono-Neuromorphic Intracellular
Calcium-Mediated Plasticity Model

This is a synaptic plasticity rule that is focused on the

intracellular calcium dynamics of the synapse. It is a

biophysically realistic plasticity rule that acts entirely on
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the dynamics of the ions and channels within the synapse.
The rule was originally proposed by Shouval et al. [18] and

modified to be implemented in VLSI. The weight changes

for the VLSI circuit are given by

dw ¼ � ½Ca�ð Þ � W ½Ca�ð Þ � 	wð Þ (6)

where w is the current synaptic weight, �ð½Ca�Þ is a

nonlinear function, Wð½Ca�Þ is the calcium-dependent

update rule, and 	 plays the role of a learning rate. Similar
to the first mentioned biophysical rule, this rule is also

shown to be able to reproduce BCM and PSTDP biological

experiments [30].

III . BUILDING BLOCKS FOR
IMPLEMENTING SYNAPTIC PLASTICITY
RULES IN VLSI

This section reviews the most common and useful

electronic building blocks required for implementing

various types of synaptic plasticity rules in VLSI.

A. Single Capacitors and Transistors
The storage of synaptic weight values, and of other

state variables that need to be memorized in models of

synaptic plasticity requires memory elements in VLSI.

Typically, analog values are stored using capacitors. In

VLSI technology, capacitors can be implemented using

metal–oxide–semiconductor capacitors (MOSCAPs), or

multiple layers of poly-silicon separated by an insulator

(typically silicon dioxide), or special metal-on-metal
(MOM) structures that are built from orthogonal inter-

leaved metal fingers. These solutions usually offer the most

compact and convenient way of storing variables, but they

have the limitation of being leaky: as the charge stored in

these devices tends to slowly leak away due to imperfect

insulator used in building these devices. Alternative ways

of storing analog variables involve the use of floating-gate

devices [34], or of dedicated analog-to-digital converters
(ADCs) and digital memory circuits, such as static random

access memory (SRAM) elements [35], [36]. Considering

the required time constants and the targeted network and

application, these approaches are more/less bulky and/or

convenient, compared to the storage on VLSI capacitors,

which is not applicable for longtime storage. Another issue

that should be taken into account when selecting the

storage technique for synaptic weight and dynamics is the
required precision they need for their application. This

issue is discussed in Section V-H.

While capacitors are passive devices, metal–oxide–

semiconductor field effect transistors (MOSFETs) are

active and represent the main basic building block in VLSI

technology. Depending on the voltage difference between

the transistor gate and source terminals Vgs, their current–

voltage characteristic can dramatically change. In partic-
ular, if Vgs > Vth, the transistor acts in its above-threshold

(i.e., strong inversion) regime. On the other hand, if

Vgs G Vth, the transistor operates in its subthreshold (i.e.,

weak inversion) regime [37].

Neuromorphic engineers are interested in the sub-

threshold domain for two essential reasons. The first reason

is the exponential relationship between the drain current ID

of a transistor and its gate voltage Vg , as shown in

Ids ¼ I0e
nVg=UT ðe�Vs=UT � e�Vd=UT Þ (7)

where I0 is a current-scaling parameter, 
n denotes the
n-type MOSFET subthreshold slope factor, UT represents

the thermal voltage, and Vd, Vg, and Vs are the drain, gate,

and source voltages of the transistor, as is shown in

Fig. 1(a), relative to the bulk potential, respectively [37].

Fig. 1(b) shows that the drain-source current shown in (7)

is a summation of two currents in opposite directions: one

is called forward current If , which is a function of the gate-

source voltage, and flows from the drain to the source; and
the other current Ir is called the reverse current, and flows

from the source to the drain

Ids ¼ I0e
nVg=UT�Vs=UT � I0e
nVg=UT�Vd=UT ¼ If � Ir: (8)

If Vds > 4UT � 100 mV, as the energy band diagram in
Fig. 1(b) shows, because of the larger barrier height (in

contrast to the Vds G 4UT state, where barrier heights are

almost equal), the concentration of electrons at the drain

end of the channel will be much lower than that at the

Fig. 1. (a) Symbol of an NMOS transistor. (b) The drain-source

current Ids of an NMOS device in its subthreshold region of operation

is a summation of two currents with opposite directions.

(c) Current-voltage characteristic of the NMOS transistor, which shows

significantly different behavior for above and below threshold [37].
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source end, and therefore the reverse current, from source
to drain, Ir becomes negligible, and the transistor will

operate in the subthreshold saturation regime. Therefore,

there will be a pure exponential relationship between Vgs

and Ids as

Ids ¼ I0e
nVg=UT�Vs=UT : (9)

This exponential behavior is analogous to the exponential

relationship between the ionic conductance of a neuron
and its membrane potential. Therefore, a transistor is able

to directly emulate the required behavior of an ionic

conductance [38]. Fig. 1(c), which is a log-linear plot,

shows the drain-source current characteristic of an NMOS

device, as a function of its gate-source voltage. The figure

shows the exponential dependence of the current to the

gate-source voltage, below the device threshold. It also

shows the quadratic dependence of the current to the gate-
source voltage, when the device operates in its above

threshold region.

The second reason is the low-power consumption of

transistors in their subthreshold regime, due to very low

subthreshold currents in the order of nano to pico

Ampères [see Fig. 1(c)]. Minimizing power consumption

is a main feature of neuromorphic circuits and it is crucial

for fulfilling the ultimate goal of realizing an artificial
brain scale intelligent system with billions of electronic

neurons and synapses. Due to these reasons, many synaptic

plasticity circuits, e.g., [20], [24], [30], [39], and [40],

exploit transistors in their subthreshold region of opera-

tion, in order to implement their desired neural dynamics

and consume as little power as possible.

B. Differential Pair (DP) and Operational
Transconductance Amplifier (OTA)

Differential pairs (DPs) are electronic components

widely utilized in neural analog circuit design [37], [41]. A

DP in its basic form consists of three transistors, two of

which are used for receiving the input voltages at their
gates and the other one for biasing the pair by a constant

current source [see Fig. 2(a)]. As shown in Fig. 2(c), a DP

sets a sigmoidal relationship between differential input

voltages and the currents flowing across each of the two

differential transistors. The sigmoidal function is crucial to

artificial neural networks and has been useful in describing

the activities of populations of neurons [42]. This makes

the differential pair an interesting and useful building
block for neuromorphic engineers. Differential pairs can

be used for various applications including spike integration

for a synapse circuit [43], and a rough voltage difference

calculator [27]. They are also the heart of operational

transconductance amplifiers (OTAs) which are another

essential component in electronic and neuromorphic

engineering.

The OTA is another essential building block not only in

neuromorphic engineering, but also in general analog

integrated circuit design [37], [41], [44]. It is usually used
to perform voltage mode computation and produces an

output as a current. This analog component is commonly

employed as a voltage-controlled linear conductor. However,

in its simplest form, the OTA is not really linear and usually

sets a sigmoidal function between differential voltage inputs

and the output current [see Fig. 2(c)]. In various VLSI

implementations of neuromorphic synapses and synaptic

plasticity rules, the OTA has been used in different roles [45].
In some cases, it has been used to act as an active resistor

when forming a leaky integrator [27], [46], and sometimes to

act as a low-cost comparator [27]. In addition, a number of

neuromorphic designers have carried out some changes to

the basic structure of the OTA [27], [45], [47] to increase its

symmetry, dynamic range, and linearity and at the same time

decrease the offset. In result, the OTA has greater stability

against noise and process variation, and gains better ability to
mimic the desired neural function [27], [30], [37], [47].

Fig. 2. (a) A basic DP circuit consists of three transistors. (b) The OTA

circuit converts the difference between its two input voltages to a

corresponding current at its output. This circuit has been extensively

used in the implementation of various neuromorphic devices [27],

[30], [37], [47]. (c) The DP sets a sigmoidal relationship between

differential input voltages and the currents flowing across each of the

two differential transistors. This is a useful behavior for implementing

similar sigmoidal behavior, observed in neural systems [37].
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C. Synaptic Potential and Leaky Integrator
(Decay) Circuits

When implementing any synaptic plasticity rules of

interest, there is always a need to implement some dynamics

to represent potential for potentiation and potential for

depression. These potentials start with the arrival of a spike,

and can lead to potentiation/depression in the synaptic

weight, if another spike arrives in the synapse before the

potential vanishes. Fig. 3 shows a circuit that has been
utilized to implement the required potentials in a number of

PSTDP and TSTDP circuits including [20], [24], and [40]. It

can also be utilized in implementing any synaptic plasticity

circuit, where there is a need for controllable decay

dynamics. This circuit that acts as a leaky integrator controls

both the amplitude of the generated potential signal as well

as its time constant. There is another instance of leaky

integrator, in which only time constant is controllable and
the required amplitude of the potentiation/depression should

be realized with another circuit/transistor in the plasticity

circuit. Two different arrangements of this leaky integrator

are shown in Fig. 4. In these circuits, the dawn of the signal

determined by the arrival of a spike, and the time constant is

controlled by the voltage applied ðVtauÞ to the gate of a

PMOS/NMOS transistor.

IV. NEUROMORPHIC IMPLEMENTATION
OF SYNAPTIC PLASTICITY RULES

The area of neuromorphic implementation of various synaptic

plasticity rules has been active for over a decade, and many

researchers and neuromorphic engineers have been involved

in hardware realization of various synaptic plasticity rules.

Below is a review of a variety of approaches for implementing

different synaptic plasticity rules discussed in Section II.

A. Pair-Based STDP Learning Circuits
Many pair-based STDP circuits have been implemented

by different groups and using various VLSI design

strategies in recent years [20]–[24], [39], [40], [46],

[48], [49]. A brief review of these VLSI circuits for PSTDP

is presented below.

One of the first designs for PSTDP, which is the

conventional form of timing-dependent plasticity, was first
proposed by Bofill-i-Pettit and Murray [20]. Fig. 5(a)

shows a version of this circuit. In this design, two

transistors (Mp and Md) that operate in their subthreshold

(weak inversion) region are utilized to control the amount

of current flowing into/out of the synaptic weight capacitor

CW . The voltages that control these transistors are Vpot

(potential for potentiation) and Vdep (potential for

depression). These potentials are produced by two
instances of the synaptic potential circuit presented in

Fig. 3. This design uses currents for controlling circuit bias

parameters that correspond to the PSTDP learning rule

parameters presented in (1).

Simulation results for generating STDP learning

window using this circuit are also presented in Fig. 5(b).

This figure demonstrates the exponential decay behavior in

the learning window, which is in accordance to the
exponential formula of PSTDP rule presented in (1). This

exponential behavior is reached by biasing Mp and Md, in

their subthreshold regions of operation. Since this circuit

is designed with transistors biased in the subthreshold

region, it is susceptible to process variation. In order to

study how sensitive this design is to the variation, we

performed 1000 Monte Carlo (MC) simulations [see

Fig. 5(c)], in which the threshold of all transistors in the
design independently underwent 3-sigma variations, i.e.,

the threshold of each transistor was able to change up to

Fig. 3. (a) Synaptic potential (decay) circuit. (b) Synaptic potential

module. The output of this module is a decay function, whose

time constant and amplitude are controlled by Itau and Iamp,

respectively. The decay starts once a pre/post spike arrives.

Fig. 4. Leaky integrator circuit for producing required decay dynamics

with adjustable time constants. (a) Leaky integrator for driving a PMOS

transistor. (b) Leaky integrator for driving an NMOS transistor.

(c) Leaky integrator module symbol.
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30 mV. This figure shows that device mismatch results in

deviations in the STDP learning window, from that of the

target design, but the LTP and LTD regions in the

window are well preserved.

Besides the mentioned VLSI designs for PSTDP, we

have designed other STDP designs such as the PSTDP

circuit given in [21]. This circuit is symmetric and has two
branches of transistors, as shown in Fig. 6(a). The upper

branch is responsible for charging the weight capacitor, if a

presynaptic spike precedes a postsynaptic one in a

determined time, and the bottom branch is for discharging

the capacitor if the reverse spike order occurs. The

potentiation and depression timings in this design are set

by two leaky integrators, in which their decays are set by

two bias voltages Vtp and Vtd, for potentiation and
depression time constants, respectively. In addition, the

amplitude of the potentiation and depression are set by VAþ

and VA� , respectively. Fig. 6(b) shows the STDP learning

window in an accelerated time scale. Fig. 6(b) shows chip

measurement results for STDP learning window, in

biologically plausible time constants for three different

synaptic time constants controlled by Vtp and Vtd [21]. Note

that this design utilizes two instances of the leaky
integrators shown in Fig. 4, for controlling the potentia-

tion and depression time constants of the potentials for

potentiation and depression.

Another PSTDP circuit that has been utilized in a VLSI

spiking neural network chip as part of the FACETS project

was proposed by Schemmel et al. [50]. In this design, the

STDP circuit that is local to each synapse has a symmetric

structure. The voltage potentials for potentiation or
depression correspond to the quantity of charge stored

on synaptic capacitors, which are discharged at a fixed rate,

determined by a set of three diode-connected transistors

working in their subthreshold region of operation to cause

an exponential decay to mimic the operation of a leaky

integrator. These capacitors later determine the amount of

change in the synaptic weight corresponding to the time

Fig. 5. (a) This PSTDP rule circuit that is a modified version of the design proposed in [20] is presented in [40]. (b) The exponential learning

window generated by Matlab and the PSTDP circuit under various process corners. Similar protocols and time constants to [19] were employed.

(c) The learning window variation for 1000 MC runs with 3-sigma transistor parameter variations from typical model parameters, generated

using a similar circuit to the one shown in (a).

Fig. 6. (a) PSTDP circuit presented in [21]. (b) The STDP learning

window generated by the PSTDP circuit shown in (a) was measured

from the multineuron chip presented in [21] in biologically plausible

time and under the PSTDP experimental protocol utilized in [59].

The figure shows the window for various potentiation and depression

time constants.
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difference between the presynaptic and postsynaptic

spikes.

Another PSTDP circuit was proposed by Arthur and

Boahen [51]. This symmetric analog design utilizes a static

random access memory (RAM) cell for storing a binary

state of the synapse weight, which is either high

(potentiated) or low (depressed). This circuit uses leaky
integrators, similar to those shown in Fig. 4, in order to

implement the required dynamics for the plasticity. Upon

the arrival of a spike, the plasticity potentials are

generated. They start decaying linearly thereafter, and if

a complementary spike arrives in their decay intervals, its

time difference with its complementary spike determines

the required level of potentiation or depression.

B. TSTDP Learning Circuits
As (2) shows, in order to implement the TSTDP rule,

similar circuit dynamics to those employed in PSTDP
circuits are needed. It is shown in [24], [52], and [53] that

TSTDP circuits are able to reproduce a similar learning

window to the one generated by the PSTDP circuit that is

shown in Fig. 5(b). Furthermore, it is shown that these

circuits are able to account for various biological

experiments including the triplet [14], [54], quadruplet

[54], and frequency-dependent pairing experiments [55],

while the PSTDP circuits clearly lack these abilities [39],
[40]. For further details, the reader is directed to [24]

and [53].

Although different TSTDP circuits have shown prom-

ising results in reproducing experimental data beyond the

capacity of PSTDP circuits [39], [40], a present limitation

is that they are not yet proven by fabrication [24], [53] and

are thus not further discussed here.

C. Spike-Driven Learning Circuits
The SDSP learning rule has been implemented in a

number of different analog circuits in VLSI [25], [26]. In

the SDSP rule as described in Section II-C, the dynamics of

the voltages produced in the neuron depends on the

membrane potential Vmem of the neuron. So the SDSP rule

changes the synaptic weight according to the time of

presynaptic and membrane potential of the postsyaptic

neuron. This membrane potential itself depends on the
frequency of postsynaptic spikes generated by the neuron.

Fig. 7 shows a brief view of the neuron and synapse

structure implemented in VLSI to realize the SDSP rule.

Fig. 7(b) shows that for implementing the SDSP synapse, a

differential pair integrator (DPI) [43] along with a

bistability circuit are the main components and the rest

of the required components are only needed once per

neuron. In addition, Fig. 7(c) demonstrates the neuron
soma circuit and the implemented synaptic plasticity

dynamics required for the SDSP rule.

D. LCP Learning Circuit
In addition to the spike-based and spike-timing-based

synaptic plasticity circuits mentioned so far, there is

another circuitry proposed by Mayr et al. [27] that uses a

hybrid learning rule composed of both timing and rate of

spikes to alter the synaptic weight. This phenomenological
rule was already introduced in Section II-D. For generating

the required exponential decay dynamics for both uðtÞ and

gðtÞ, an OTA-based design approach has been utilized.

Similar to the PSTDP design reported in [46], this design

exploits a balanced OTA with negative feedback, which

acts as a large resistor in the required leaky integrators.

However, this design uses an active source degeneration

Fig. 7. (a) Schematic diagram of a VLSI learning neuron with an array of SDSP synapses: multiple instances of synaptic circuits source in

parallel with their output currents into the I&F neuron’s membrane capacitance [56]. The I&F neuron integrates the weighted sum of the currents

and produces sequences of spikes in the output. (b) Synapse with presynaptic weight update module. An AER asynchronous logic block receives

input spikes and generates the pre and �pre pulses. An amplifier in a positive-feedback configuration forms a bistability circuit that slowly

drives the weight voltage VWi toward one of the two stable states Vwlow or Vwhi. The transistors driven by the pre and � pre pulses, together

with those controlled by theV0UP andV0DN signals, implement the weight update. The diff-pair integrator block represents a current-mode low-pass

filter circuit that generates an output synaptic current Isyn with biologically plausible temporal dynamics. This current is then sourced into the

Vmem node of the I&F circuit. (c) Neuron with postsynaptic weight control module. An I&F neuron circuit integrates the input synaptic

currents and produces a spike train at the output. A diff-pair integrator filter generates the VCa signal, encoding the neuron’s mean firing rate.

Voltage comparator and a current comparator circuits determine whether to update the synaptic weights of the afferent synapses, and whether to

increase or decrease their value.
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topology to further improve the dynamic range and
linearity of the integrator. These integrators are needed

for both membrane potential uðtÞ, which decays linearly

back to the resting potential after a postsynaptic pulse

duration is finished (hyperpolarization dynamic), as well

as the postsynaptic current gðtÞ, which decays exponen-

tially toward zero after a presynaptic spike arrival. The

time constants in these integrators can be tuned by

changing the resistance of the OTA-based resistor that in
turn can be altered by calibrating the leak bias current in

the design. Beside these exponential decay dynamics, the

rule needs subtraction and multiplication for changing the

synaptic weight. These functions are approximated using a

differential pair and its tail current [27].

E. Biophysical Learning Circuits
The two major biophysical designs available in the

literature, that are able to demonstrate both PSTDP and

BCM-like behavior, are the designs proposed in [29] and

[30]. The first design implements an elaborate biophysical

synaptic plasticity model, which is based on the general

biophysical processes taking place in the synapse (see

Section II-E). The presented synaptic plasticity circuit

utilizes current mode design technique in order to

implement the targeted biophysical rule that describes the
detailed dynamic of the synaptic ion channels [29], [47].

Recently, the same group has published another iono-

neuromorphic VLSI design which explores a similar

approach for implementing both spike-rate-dependent

plasticity (SRDP) and STDP using a unique biophysical

synaptic plasticity model as briefly explained in Section II-F.

Similar to their first design, they used current-mode

design technique to implement the required ion channel
dynamics [30].

These biophysical designs, similar to the design

presented in [27] and [46], utilized OTAs for implement-

ing part of their required dynamics, as well as to convert

voltage to current. The other circuit building blocks that

have been used in these designs include: DP for

implementing required sigmoidal function, current mirror

for copying some currents in the circuit were needed,
translinear current divider, and multiplier. The complexity

of the detailed biophysical rules implemented in these

circuits results in a larger number of transistors compared

to the mentioned implementation of phenomenological

rules shown in Section IV-A–IV-D.

V. CHALLENGES IN NEUROMORPHIC
ENGINEERING

Indeed, the main advantage of a hardware neuromorphic

system lies in its high degree of parallelism, which allows

the individual neuromorphic circuits to work on biological

time scales, in order to minimize power consumption [56].

However, this approach has its own challenges, such as

design process variation, interconnection, input–output

bandwidth, and large silicon area usage when considering
large-scale systems. Interestingly, the challenges and

constraints faced by neuromorphic engineers when

implementing synaptic learning as a main part of

neuromorphic systems are similar to the ones encountered

in biological learning, such as lack of longtime weight

storage [57], [58] and limited wiring. The main challenges

and obstacles one faces when implementing a large-scale

neuromorphic system are summarized below.

A. Power Consumption
We know that the brain consists of billions of neurons

and trillions of synapses, each of which consumes much

less power compared to their silicon counterparts [4].

Recently, new integrated neural circuitry with a low-

power structure has been proposed that consumes even

less power per spike compared to a biological neuron [45].
Although it is a big step toward having a low-power spiking

neural system, it is very naive to think we are close to a

neural system with a power consumption close to the

brain, since this work does not consider the interconnec-

tion and communication among spikes and its required

power. It also does not take into account the required

complexity in the neural and synaptic structures, which is

sometime necessary for specific applications. In addition,
the power consumption of a synapse or neuron heavily

depends on its model parameters and their values that can

change the weight modification pattern and at the same

time lead to high or low power consumption. The other

fact that should be considered is the spike pulse width

utilized in the neuromorphic design, that can have

significant effects on both functionality and power

consumption of the system.
Therefore, an effective approach for decreasing the

power consumption of a neuromorphic system is to

optimize the neuron and synapse circuit bias parameters,

as well as the structure of the spike pulses, in a way that

while having the required functionality, consumes the

minimum possible power. Beside these, one of the other

effective ways for implementing power-efficient circuits is to

minimize the number of active circuits (e.g., amplifiers) and
to use circuits that employ transistors operating deep in the

subthreshold domain. This approach allows the design of

circuits that operate with extremely low currents (below pA)

and low supply voltages. However, operating in the

subthreshold region of operation and using lower supply

voltages result in greater susceptibility to process variation.

B. Process Variation and Device Mismatch
Due to inevitable variations in device parameters when

fabricated in an integrated circuit technology, the resulting

devices and circuits most likely will deviate in function and

output when compared to their ideal response. Process

variations have a strong effect especially when designing

circuits biased in the subthreshold regime, because of the

variation in the transistor’s threshold voltage. Transistor
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mismatch is a challenge especially in designs including
current mirrors, DPs, and circuits that require an exact

matching between several components. Many of the

neuron, synapse, and learning circuits are implemented

in subthreshold. In addition, many of these designs employ

current mirrors and DPs. Therefore, these neural systems

are highly susceptible to process variations and device

mismatch [24], [27], [40], [60]. Various approaches have

been proposed to tackle the process variation and
mismatch problems. These include post-fabrication cali-

bration [24], [61], mismatch minimization techniques

employed at the circuit design stage [30], [47], and off-chip

event-based compensation strategies [62], [63]. Among

these approaches the mismatch minimization technique

utilizing wide-dynamic range devices [30], [47], as well as

the off-chip event-based compensation strategies [63] such

as the use of AER mappers and routers (e.g., probabilistic)
to redistribute events in a way to compensate for mismatch

effects, are the viable methods for reducing the effect of

mismatch in large-scale neuromorphic systems.

Contrary to large-scale neuromorphic systems, several

works such as [23], [25], [26], and [64] have demonstrated

that small-scale neuromorphic systems can successfully

perform learning tasks, even in the presence of the

unavoidable device mismatch. Giulioni et al. [26] have
demonstrated how the synaptic plasticity rule described in

Section II-C and the learning circuits described in

Section IV-C can perform robust classification of uncor-

related and even correlated patterns, when embedded in a

recurrent network of spiking neurons. In a recent paper

[64], the authors explicitly address the problem of device

mismatch of these analog plasticity circuits at the network

level: they trained an attractor network to express bistable
dynamics, and demonstrated how the learning is robust, in

spite of the small network size and the considerable

inhomogeneity of neuromorphic components. Similar

demonstrations exist for other circuit implementations.

For example, in [25], Mitra et al. present a network of

spiking neurons and plastic synapses and use it to

perform robust classification of binary patterns; in [23],

Bamford et al. demonstrate the proper operation of STDP
circuits, measuring the effect of mismatch in a full

network distributed across multiple chips.

While these examples demonstrate that both circuit

and network level solutions exist for obtaining robust

learning performance, in principle, the variability of

synaptic plasticity circuits could create imbalances in

potentiation and depression rates, leading most, if not all

synaptic weights in a network to fully depressed or fully
potentiated states. It is therefore important to carefully

assess the effect of mismatch when designing networks of

spiking neurons with learning circuits, and to carefully

choose the design strategy of the synaptic plasticity circuit,

which will depend on the adopted network architecture.

Although device mismatch is the most significant

source of variation in neuromorphic synaptic plasticity

circuits, other types of variations, i.e., supply voltage and
temperature variations, should also be considered, spe-

cially when large-scale neuromorphic systems are targeted.

C. Voltage and Temperature (VT) Variation
Voltage variations can arise due to supply voltage

fluctuations during device operation, while temperature

variations can arise due to both environmental factors and

due to the operation of the device itself, which can create
heat gradients on the surface of the chip. The effects of

these variations can be simulated by the CAD tools, with

different parameters in the transistor models (with

different so-called ‘‘corners,’’ within which the devices

operate correctly). An instance of a simulation that takes

into account these variations is shown in Fig. 5(b), where

the STDP learning window is produced for various device

corners, showing how in this case the circuit is robust to
these variations. Since there are three simultaneous

sources of variations in an analog VLSI system [i.e.,

parameter, voltage, and temperature (PVT)], these varia-

tions should be coupled together in order to explore the

various PVT variation corners, in which the device has its

best, typical, or worst characteristic. In addition to the

transistors, variations also affect the characteristics of the

interconnects that have their own corners. So device and
interconnects could have worst performance at different

corners. Considering these corners when designing the

targeted application is essential, as the design might be

dominated by device corners, interconnect corners, or a

mixture of both [65].

D. Silicon Real Estate
Silicon area occupation of neuromorphic systems is

related to the area used by each neuron and synapse, and to

the way they are connected together. Considerations on

the area required by the interconnects are listed in

Section V-E. Concerning the area required by the silicon

neuron and synapse designs, there are two main

approaches to consider. One is the biophysically realistic

approach that attempts to model in great detail the

biophysics of neurons and synapses, usually producing
large circuits, such as the design proposed in [29] and [30].

The other approach, which aims to implement the

phenomenology of the action potential generation me-

chanisms but sacrificing biological fidelity, usually pro-

duces more compact circuits [56]. Perhaps the most

critical component, however, is the synapse design, as in

learning architectures, most of the silicon real estate is

going to be consumed by these elements. If the synapses
have all the same type of (linear) temporal dynamics, it is

possible to exploit the superposition principle and use one

single shared (linear) temporal filter circuit to model the

temporal dynamics of many synapses [25]. The individual

synapse elements are therefore ‘‘only’’ required to

implement the weight update mechanism and transmit a

weighted pulse to the shared integrator. Naturally, the
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smaller the weight-update circuit, the larger the number of
synapses can be integrated in the same area. There are very

promising emerging technologies (e.g., based on 3-D VLSI

integration, 3-D VLSI packaging [66], and resistive RAMS)

that may offer ways of making extremely compact synapse

elements and (consequently) extremely dense synaptic

arrays [67], [68].

E. Interconnection and Routing
As in biology, wiring is a significant issue. If each

neuron in neuromorphic architectures were to use a

dedicated wire to target its destination synapses (as real

neurons use axons), then the area required by inter-

connects would dominate, and (given the essentially 2-D

nature of VLSI technology) it would be impossible to

design large-scale systems. Fortunately, it is possible to

exploit the very large differences in time scales between
typical neuron transmission times and silicon communi-

cation circuits. In this way, it is possible to time-multiplex

the action potentials generated by the silicon neurons and

share wires, creating therefore ‘‘virtual axons.’’ The most

common protocol that is used in the neuromorphic

community to accomplish this is based on the address–

event representation (AER) [69], [70]. In this represen-

tation, the action potentials generated by a particular
neuron are transformed into a digital address that

identifies the source neuron, and broadcast asynchronous-

ly on a common data bus. By using asynchronous arbiters

and routing circuits [71] it is therefore possible to create

large-scale neural networks with reconfigurable network

topologies. These networks can be distributed within the

same chip (e.g., among multiple neural cores [72]), or

across multiple chips [73], [74].

F. Electronic Design Automation for Large-Scale
Neuromorphic Systems

Although there are a number of neuromorphic systems

that deal with a relatively high number of analog neurons,

designing large-scale neuromorphic systems is still a very

complex task. One of the major obstacles on the way is the

lack of an electronic design automation (EDA) tool that
can facilitate the design procedure, while taking into

account the targeted design requirement. There are

promising recent accomplishments that exploit existing

EDA tool chains for automating the design of neuro-

morphic circuits (for example, for designing the asynchro-

nous logic circuits that make up the arbiters and routers

described above [75], [76]). However, there is a need for a

new generation of EDA tools that are optimized for
neuromorphic architectures with hybrid analog/digital

circuits, asynchronous logic circuits, and networks char-

acterized by very large fan-in and fan-out topologies.

G. Bias Generation for Neuromorphic Circuits
The complex behavior of neural circuits including

neurons and synapses is controlled by many parameters

including synapse potentiation and depression time
constants and amplitudes, neuron spiking thresholds,

spiking frequency adaptation, and refractory period

parameters. For controlling silicon neurons and synapses,

these parameters should be presented as small-scale and

high-accuracy voltages and currents to silicon neurons and

synapses. Generating these bias voltages and currents,

which usually span over a wide range, usually needs a

specific dedicated VLSI circuit that generates these values
in a programmable and reconfigurable manner. Fortunately,

there are a number of high-resolution, wide-dynamic range,

temperature-compensated analog programmable bias gen-

erator circuitries already available in the literature, which

can be used for synaptic plasticity circuits and systems [77],

[78]. Considering large-scale neuromorphic systems with a

large number of neurons and synapses, a bias sharing

technique for neurons and synapses that are in close
proximity is a practicable approach and has been utilized in

Stanford University Neurogrid chips [79] as well as in the

FACETS project [50].

The challenges mentioned in Sections V-A–V-G are

engaged with typical neuromorphic systems and are not

specific to synaptic plasticity circuits. However, a specific

challenge on the way of implementing required synaptic

plasticity rules and integrating them into network of
neurons is the synaptic weight storage method, which is

discussed in more details in Section V-H.

H. Synaptic Weight Storage and Stabilization
In neuromorphic architectures, synaptic weights are

usually represented as the amount of charge stored across a

weight capacitor [24]. However, this weight is not stable as

the charge on the capacitor leaks away thus slowly loosing
the synaptic weight value. This instability is due to the

leakage of the transistors connected to the capacitor.

Therefore, the synaptic weight cannot be preserved longer

than a few hundreds of milliseconds to a few seconds,

depending on the capacitance of the weight capacitor. For

this reason, early neuromorphic designs used large

capacitors [20], [23], [24], [45]. However, this takes up a

large portion of the precious silicon real estate, and is not
compatible with the goal of integrating large-scale neural

systems. Therefore, a number of other approaches have

been proposed, in order to address this challenge on the

way to realizing long-term plasticity in silicon. These

approaches are briefly reviewed as follows.

1) Accelerated-Time Synaptic Plasticity Circuits: A number

of neuromorphic designers have used a time-scaling
approach [24], [27], [50], [80], in which the circuits

used operate in accelerated time scales (e.g., 103 to 105)

compared to the timing of real neurons. An instance of an

accelerated neuromorphic system is the BrainScaleS

wafer-scale system [81]. The main advantages of this

approach are: 1) increased speed of emulating large-scale

neuromorphic systems that is useful for long experiments;
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and 2) a higher degree of density and integration, due to
smaller capacitors. On the other hand, main disadvantages

of this approach are: 1) the inability of the accelerated-

time system to be directly interfaced to sensors or to

directly interact with the environment; and 2) the high

bandwidth (and power) required for transmitting spikes

across chips.

2) Utilizing Reverse-Biased Transistors to Decrease Leak-
age: Using reverse-biased transistors in the path of

charging/discharging weight capacitors reduces leakage

currents and, therefore, increases the weight stability on

that capacitor. This approach was first proposed by

Linares-Barranco and Serrano-Gotarredona [82]. Recently,

it has been successfully exploited in [23] for storing

synaptic weight for a longer period of time in the order of

hundreds of milliseconds. In order to reverse-bias the
transistors in a circuit, as is proposed in [23], the Gnd and

Vdd are shifted a few hundreds of millivolts toward Vdd

and Gnd, respectively. By reducing the supply voltage

slightly or increasing the ground voltage level, the

transistor back gate will be in both cases at higher

voltages, resulting in an increase in the threshold voltage,

which leads to reduced leakage current. However, the

reverse biasing approach will not provide weight stability
in the long term. This is due to the strong relation

between the threshold voltage and the process corners,

which are affected by process variations during the time of

fabrication.

3) Digitizing the Synaptic Weight and Storing It in
Memory: This approach has been followed in a few ways.

In one of the pioneering works on neural networks
presented in 1989, the approach was to serially and

periodically refresh the analog weights stored on the

capacitor with the weight stored in the memory [84]. This

approach, however, needs digital-to-analog converters

(DACs) and analog-to-digital converters (ADC). Moradi

and Indiveri [35], [83] have used a single current-mode

DAC, available beside each neuron integrated circuit, in

order to convert 5-b digitally stored synaptic weights in
asynchronous SRAMs, to a current that drives the shared

synapse integrator, as shown in Fig. 8. Therefore, the

synaptic weights here are considered as virtual synapses

and their weights come into effect whenever they receive a

spike from the AER system [35], [83]. This approach

utilizes a time multiplexing technique and therefore only

uses one DAC per several synapse memory cells. A similar

approach of using virtual synapses with digitized synaptic
weights has been employed by other neuromorphic

engineers, in order to tackle both synaptic weight storage

and also reduce area usage [85]. In [86], Pfeil et al. discuss

the issue of digitizing weight on the PSTDP rule and show

that considering other constraints of neuromorphic de-

signs, increasing the weight storage resolution is not

necessarily useful for PSTDP.

4) Bistability Mechanism: Another approach for synaptic

weight stabilization is a bistability mechanism that is based

on the idea of having the long-term state of a synapse
either potentiated or depressed. For example, in the circuit

of Fig. 7(b), an amplifier with positive feedback is utilized

to drive the synaptic weight stored on the weight capacitor

and updated by the desired synaptic plasticity rule in the

short term, slowly either upward or downward depending

on the current value of the synaptic weight that is above or

below a predetermined threshold [21], [25], [87]. Analo-

gous approaches use digital circuits to store the binary
state (e.g., on SRAM cells [51]), or map and store the

weight on a multistage analog memory [88], [89]. In this

approach, the synaptic weight is updated continuously

when there are spikes, but as soon as there is no activity,

the weight is driven toward a high or low value, depending

whether the current synaptic weight is above or below a set

bistability threshold. The bistable nature of synaptic

weights has experimental support, as well as benefits
over the use of large weight capacitors, in large

neuromorphic systems [90], [91]. In addition, from a

theoretical perspective, it has been argued that the

performance of associative networks is not necessarily

degraded if the dynamic range of the synaptic efficacy is

restricted even into two stable states [92], [93]. Further-

more, bistable synapses can be implemented in a small

area compared to having large-scale capacitors for

Fig. 8. Schematic diagram of the programmable synapse circuit. The

top part of the diagram represents a DPI circuit which implements

the temporal dynamics. The bottom part of the diagram represents

the DAC that converts the SRAM 5-b weight into a corresponding

synaptic current. After [83].
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preserving the synaptic weights for longer periods of times

[21]. Due to these benefits, this technique is a suitable

approach to be used in all of our reviewed synaptic

plasticity circuits including the STDP and TSTDP circuits.

However, this approach has the limitation in being

volatile and will lose its state once the system is powered

down. Permanent storage of synaptic weights can be
achieved using nonvolatile memory elements, or special

devices and technologies, as discussed below.

5) Floating Gate: Floating gate (FG) technology is

another possible approach for nonvolatile storage of

synaptic weights. It has been exploited in neuromorphic

systems to implement Hebbian-based and STDP learning

rules [34], [94]. This storage technique leads to a compact
single transistor implementation of STDP [34], which

saves significant silicon area. However, this approach

requires extra circuitry to drive the tunneling and hot-

electron injection circuits for increasing or decreasing the

synaptic stored weight values.

6) Memristors: The memristor as the fourth circuit

element [95], [96] possesses invaluable characteristics
including nonvolatility, low power, and high density,

which are the features always being sought for implement-

ing large-scale neuromorphic systems. Therefore, memris-

tors represent a promising solution for solving the problem

of synaptic weight storage [68], [97]. Memristive arrays

can also be integrated with CMOS in order to form a

nonvolatile synapse circuit [97], [98]. These hybrid

CMOS/memristor synapse circuits then can be utilized
to implement both computational and detailed biophysical

synaptic plasticity learning rules that are quite useful for

neural computation. Although the memristors have

significant strengths, there are still no established

solutions for implementing reliable arrays of devices,

with well-controlled characteristics. There are still signif-

icant issues with the accuracy of device programming, the

device yield, and the device-to-device variations. These

issues are currently being addressed by many research

groups worldwide, hence presenting unique opportunities

for neuromorphic engineering and implementations.

VI. DISCUSSION

So far in this paper, with a circuit design approach, we

reviewed several synaptic plasticity rules and showed and

discussed single circuit implementations of these rules. We

also discussed several important challenges of neuro-

morphic engineering and counter approaches to tackle

those challenges. In the following parts of this paper, we

focus more on the system aspects of a neuromorphic

system. First, in this section, the use of the mentioned
synaptic plasticity rules and circuits in real neuromorphic

learning systems is discussed and the systems are analyzed

in terms of power consumption and silicon real estate.

Then, in Section VII, the applications of these neuro-

morphic systems in real-world engineering tasks are

reviewed and discussed. In addition, an example of an

effective neuromorphic system is mentioned, and it is

described how it learns to perform an engineering task.
Table 2 summarizes the key properties of some

neuromorphic systems for learning and synaptic plasticity

applications. Note that the estimated area and power

consumption data in this table only reflect the reported

data in the related papers. These numbers are dependent

on many parameters, including the synaptic plasticity rule

implemented, the synaptic plasticity parameters, the

weight storage techniques, and the network stimulation
pattern and protocols. Since, in some papers, the exact

power consumption and area requirement of the synapse is

not available, the total power and area of the chip are

divided by the number of synapses and neurons on the

chip, to calculate a rough value of the size and power

requirement of the synapse. Also, note that the calculated

estimated area for each synapse encompasses both the

Table 2 Synaptic Plasticity Circuits Comparison
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synapse circuit as well as its synaptic plasticity circuit,
which may be reported or implemented separately in the

related papers.

The feedforward network with STDP learning pre-

sented in [20] successfully implements the targeted

synchrony detection, but it consumes significant power

and occupies a large area. The high power consumption is

due to power hungry biasing current distribution network

designed to minimize mismatch between synapses. In
addition, the area of the designed STDP circuit is

significantly large due to huge capacitors of the order of

several pico-farads.

The implementation of an array of neurons with

bistable STDP synapses [21] is the next design that has

better power and size performance compared to the first

mentioned design [20]. Furthermore, this neuromorphic

system utilizes the AER communication protocol and,
therefore, is reconfigurable, in contrary to the hard-wired

network structure presented in [20]. The next two neural

networks with STDP synapses, mentioned in Table 2, are

also configurable. This feature helps the design to

customize its topology where there is a need for various

studies and applications, such as the designs in [21] and

[50], which have been used to show STDP learning

window, LTP, and LTD characteristics. In terms of silicon
real estate required for the STDP circuit, the design in [50]

has a compact structure that occupies an area of 50 �m2

for the STDP circuit and 100 �m2 for the synapse

including STDP, DAC, and memory cell for storing the

synaptic weight. Power consumption information for this

FACETS accelerated-time neuromorphic architecture is

not listed. The neuromorphic learning chip presented in

[51] also uses STDP and on-chip SRAM cells to store a
binary state of the synaptic weight updated by the STDP

circuit. Considering the number of neurons and synapses

in this architecture and the overall area of the chip

presented in [51], which is 10 mm2, this design that has

been used for learning patterns also has a compact synapse

size, on par with the FACETS project chip [50].

The next design reviewed in Table 2 is an adaptive

olfactory neural network with on-chip STDP learning
[46]. There is no power consumption information

available in the paper. In addition, the exact area occupied

by neurons and synapses on the chip has not been

reported. However, considering the die area of the

fabricated olfactory chip, the OTA-based synapse circuit

with STDP occupies an area larger than the area required

for the design mentioned in [50].

Tanaka et al. [22] developed an accelerated-time
neuromorphic chip with STDP learning in a Hopfield

network for associative memory. Although they used a

similar VLSI technology to the design presented in [50],

their implemented synapse takes up significantly larger

silicon area. The power consumption of the synapse

presented in this work is also 250 �W, which is high for

a synapse circuit compared to other designs presented in

Table 2. In another attempt for implementing STDP, Cruz-
Albrecht et al. designed a test low-energy STDP circuit and

have verified their design in terms of producing STDP

learning window and its power consumption [45]. The

STDP synapse presented in this work consumes only 37 pW

of power at 100 Hz. On the other hand, this design which

utilizes different OTAs for realizing an STDP learning

window, considering its 90-nm design technology, occu-

pies a large silicon area of 64 823 �m2.
Comparing to all previously mentioned STDP-based

learning circuits and systems, the neuromorphic learning

network presented in [99], with 256 neurons and 64 000

synapses, that only consumes 8 nW of power and occupies

roughly 13 �m2 per synapse in the UVT chip, is the most

efficient neuromorphic design. It is shown in [99] that this

design can be configured for various cognitive tasks such as

pattern recognition and classification as well as associative
memory.

Further to these designs, Bamford et al. developed a

weight-dependent STDP (W–STDP) circuit [23], which is

different from designs mentioned so far that implemen-

ted conventional form of STDP. They showed that the

W–STDP design can be implemented using the physical

constrains of CMOS transistors, and, therefore, their design

has an acceptable area and a low power consumption com-
paring to previous STDP designs. Another W–STDP design

is the single transistor synapse device proposed in [34]. This

device utilizes an FG transistor to implement W–STDP,

while the synaptic weight changes are stored in a nonvolatile

manner in the FG. It is shown that this device is able to

demonstrate LTP, LTD, and STDP behaviors, and is highly

scalable.

All neuromorphic systems mentioned so far have used
STDP as the learning mechanism in their networks.

However, as already mentioned, other synaptic plasticity

rules have also been implemented and tested in neuro-

morphic systems for applications and synaptic plasticity

experiment replications. One of the first designs that used

a different rule than STDP for a classification task was the

design presented in [25] that employs SDSP learning

algorithm for synaptic plasticity. The area of this design is
comparable to the area required for the STDP learning

rule, implemented in previous designs. The authors have

also shown the significant performance of the implemen-

ted neural network with SDSP learning in classifying

complex rate-based patterns [25].

Another neuromorphic system that implements a

different synaptic plasticity rule rather than STDP is the

design presented in [27] and [33]. This design implements
a BCM-like voltage-dependent rule called LCP (see

Section II-D) to replicate synaptic plasticity experiments

beyond STDP such as TSTDP [14] and frequency-

dependent STDP [55]. Considering the higher ability in

replicating synaptic plasticity experiments compared to

STDP, this circuit has higher complexity. However, the

presented design in [33] is in par with most of the STDP
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designs presented so far in both power and area
requirements.

There are also a few biophysical VLSI neuromorphic

designs available in the literature that take into account

details of synaptic plasticity phenomena and implement its

underlying mechanism with a high degree of similarity to

biological synapses, in silicon [29], [30]. This similarity

results in the specific ability of these synapses to account

for both SRDP and STDP experiments and replicate
intracellular dynamics of the synapse, where simple

previous synapses with STDP fail. It also leads to large

silicon area requirement for these circuits, while their

reported power consumption is reasonable comparing to

most of the other VLSI synaptic plasticity designs

presented in Table 2.

In addition to the custom made hardware systems that

opt to implement a specific type of learning (synaptic
plasticity) rule and use it in a specifically designed and

structured spiking neural network for an application or

neuromorphic research, general neural architectures, such

as the Spinnaker [100], can be instructed, using software,

to implement any desired spiking neural network (whether

simple or complex) with any learning rule of choice. In

Spinnaker, the targeted neural network is numerically

simulated in core processors and the synaptic weights are
stored in shared dynamic random access memory

(DRAM). This neural architecture utilizes asynchronous

design strategy for global routing in its design, so that the

power consumption of the design can potentially be

improved. It also uses low-power ARM processors and

DRAMs to reduce the power consumption of the system.

However, implementing a specific synaptic plasticity rule

in this general neural architecture consumes more power
than a typical custom VLSI design of that rule, due to its

software-based approach.

VII. APPLICATIONS OF NEUROMORPHIC
CIRCUITS WITH SYNAPTIC PLASTICITY

In order to implement a system with the capabilities close

to the brain, many neuromorphic engineers have been
following a bottom–up design strategy. Therefore, they

start with building basic blocks of the brain in silicon. One

of the main building blocks is the synapse that itself

includes the synaptic weight plasticity mechanism. This is

the main block that brings about learning, memory, and

computational properties of the neural system [101]. In

this section, we briefly discuss and review how VLSI

implementation of various synaptic plasticity rules can be
useful in learning and real-world applications. We also give

an example of an efficient learning network and show how

neurons and synapses in this network are able to learn and

in result perform a real-world task.

Since working with live creatures and measuring

experimental data from biological sources is time consum-

ing and challenging, maybe one of the first applications for

a neuromorphic system that contains both neurons and
synapses with any desired synaptic plasticity rule, is used

for experimental neuroscientists. They can use a neuro-

morphic system, which acts according to a desired synaptic

plasticity rule and neural combination, and therefore

experiment with various features and characteristics in

that system. For example, the biophysically inspired iono-

neuromorphic circuits proposed in [29] and [30] provides

useful insight into how the calcium level alters in the real
synapse.

Furthermore, since it is widely believed that synaptic

plasticity underlies learning and computational power in

the brain [101], [102], various mechanisms that have direct

or hypothetical relation to the synaptic plasticity experi-

ments are being used as the learning part of a spiking

neural network, to perform various cognitive and machine

learning tasks [11], [25], [103].
It is known that the spiking behavior and the activity of

the presynaptic and postsynaptic neurons cause the

synapses in the network to adapt themselves to these

activities (i.e., learn). These activities that are coded in the

form of spikes represent the input to the network. It is,

therefore, absolutely essential to first have the correct

spike coding structure to effectively represent data to the

neural network, and then it is critical to adapt the synapses
in a proper way, which is efficient for learning the current

type of inputs to the network. This means that the learning

mechanism, i.e., the synaptic plasticity rule, can heavily

depend on the structure of input to the network, which in

turn depends on the application. Sometimes neuroscien-

tists modify a rule or even combine a number of rules to

use them for their intended applications. It means that

after a careful study of the nature of the input and the
required process to reach the desired output, they decide

on the structure of the learning method.

The study presented in [104] shows an example of a

learning method that couples STDP and spike frequency

adaptation (SFA) for updating synaptic weights, to enable

the learning in a perceptron-like structure. This work

proposes an effective platform for sensory guided proces-

sing, where two sources of auditory and visual sensory
inputs result in changes in the perceptron neuron spiking

activity. It is shown that visual inputs can act as a teacher

in their used perceptron learning mechanism, while

auditory inputs are used for updating the synaptic weights

and learning the input auditory patterns [104]. Another

example is the neuromorphic architecture developed for

object recognition and motion anticipation using a

modified version of STDP [105].
In another study, TSTDP which is a modified version of

pair-based STDP is used to generate receptive field

development, which is a well-known feature of the rate-

based BCM rule [12]. Gjorgjieva et al. showed that TSTDP

can learn up to third-order spatio–temporal correlations,

which is of importance in neural coding applications [106]

where the PSTDP rule lacks this capability, even though it
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is also able to account for the BCM rate-based rule under
specific assumptions [49], [107]. This is useful for

developing direction and speed selectivity in the visual

cortex [12]. Therefore, this rule appears to be useful for

pattern classification applications.

The previous three examples show that depending on

the needs for the application, and with mathematical and

computational analysis, modification to synaptic plasticity

rules can be useful for performing tasks, which cannot be
carried out with the simple form of the plasticity rules such

as STDP, SFA, and BCM. Therefore, the nature and needs

of an application and its inputs have a direct impact on the

synaptic plasticity mechanism and hence on its VLSI

implementation.

Perhaps the conventional form of STDP, which is

according to the formulation shown in [13] and is in

agreement with PSTDP experiments in [19], is the most
examined type of synaptic plasticity rule that has been

exploited for learning, in various applications ranging from

topographic mapping formation [108] to pattern recogni-

tion [10], to data set classification [103]. The pair-based

STDP has been also utilized for many learning tasks,

including receptive field development through cortical

reorganization [109], object recognition and motion anti-

cipation [105], unsupervised learning of visual features [9],
learning cross-modal spatial transformations [110], object

recognition [11], odor data classification [111], associative

memory type of learning using STDP [22], temporal

synchrony detection [20], and associative memory, as well

as variability and noise compensation tasks [51]. Although

some of these learning applications, such as the last five

mentioned works, have been successfully implemented as

part of a neuromorphic system, many of the other synaptic
plasticity rules that have been modeled based on biological

experiments performed in vivo and in vitro are yet to be

explored by neuromorphic engineers for other applications.

Examples of these plasticity rules that have not been

explored for any application are the hybrid rules proposed in

[8], [17], and [112], as well as the biophysical-based rule

proposed in [18], [29], and [30]. In addition to the spike-

timing-based rules, other spike-based rules such as the SDSP
rule [16] are shown to be useful in other applications such as

supervised learning for real-time pattern classification [25].

In general, when considering implementing learning

(synaptic plasticity) circuits for specific applications such

as robotics, neuroprostheses, brain–machine interfaces,

neural computation, and control, a number of design

aspects should be taken into account, including: 1) the

nature of inputs to the system that should be learned; 2) the
level of complexity the implemented system and application

can afford; 3) the use of most appropriate synaptic plasticity

rule, in terms of VLSI implementation complexity and

performance in processing input neuronal data, which can

account for the required level of performance for the

targeted application; and 4) the possible need for modifying

the structure of available synaptic plasticity rules for a better

performance, lower implementation complexity, or input
data processing. As an example, here we review a

neuromorphic learning network and answer the above

mentioned questions about it.

As already discussed, one of the most effective

implementations of a VLSI SNN capable of learning to

preform a real-world task is the design presented in [99].

This neuromorphic system is composed of 256 neurons

and 256� 256 synapses, in a crossbar array structure to be
used for various applications, including an associative

memory task. The above mentioned questions are

answered regarding this system.

1) The input to this system can be set as 256 spike

trains, each one corresponding to a neuron in the

network. These 256 spike trains encode the

information embedded in the input pattern and

present it to the network of neurons. The network
changes its weights according to a PSTDP

algorithm, in the training phase, when patterns

are presented to the network for learning. In the

test phase, the neurons are presented with a

partial version of the original pattern, and the

network through its weights reflects the learned

complete pattern, as output spikes.

2) The complexity of the targeted task and the
number of patterns that can be learned using this

neuromorphic system is directly related to the

complexity of the network, i.e., its reconfigur-

ability and neuron and synapses count. Since in

the present network only 256 neurons with binary

synapses are used, as the results in [99] show, the

network can only learn 0.047 patterns per neuron

in an associative memory task. It is also shown
that, if synapses with 4-b precision are used

instead of binary synapses, the learning capacity of

the hardware network increases up to 0.109

patterns per neuron.

3) The spiking network implemented in this work

has a highly reconfigurable structure with on-chip

probabilistic PSTDP learning, thanks to its cross-

bar architecture and transposable synapse SRAM
cells, which make PSTDP possible. Therefore, it

can realize various network topologies and per-

form different cognitive tasks. Obviously, for

implementing more complex tasks and learning

a high number of patterns, a large-scale network

with high-precision synapses is needed. Since this

design is a basic building block for a scalable

neuromorphic system, this extension can be
carried out easily. The performance of the

associative memory task presented for this

network (see [99]) shows that, for this applica-

tion, simple binary PSTDP synapses integrated

with digital integrate and fire neurons are enough.

4) In addition to the main chip that contains 64 000

probabilistic binary PSTDP synapses and 256
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neurons, three different variants of this chip were
investigated to follow different targets such as

area, power consumption, and learning capability.

It is shown that the system with higher learning

capability consumes the highest amount of power

and occupies the largest silicon real estate among

all designs.

In addition to this digital event-driven synchronous

neuromorphic learning network that can be scaled up for
various real-time learning tasks, in another work, IBM

scientists have proposed a similar digital event-driven

neuromorphic synaptic core [72], but this time they

utilized asynchronous operation to decrease the active

power of the system, and also implemented learning off-

chip. This system has been successfully used in various

applications, including pattern recognition and autoasso-

ciative memory. It also shows a one-to-one correspondence
with a neural programming model that makes it possible to

realize any type of learning task that can be modeled in

software [72]. The questions mentioned above can be

answered for this other neuromorphic learning circuit

along the same line as the first discussed design [99].

It is worth mentioning that the IBM neuromorphic

learning network, presented in [99], utilized digital silicon

neurons and binary silicon synapses. Therefore, this
neuromorphic learning system is not technically subject

to device mismatch. However, as already mentioned in

Section V-B, when designing a network of analog learning

circuits, the device mismatch can lead to inhomogeneity in

synaptic plasticity circuits across the network, which may

result in an imbalance in potentiation and depression

rates, which can affect the learning performance of the

system in any targeted application. Hence, a careful
assessment of the effect of mismatch while designing

neuromorphic learning systems is essential [60].

The reviewed VLSI implementations of synaptic

plasticity rules for various applications show that the

current neuromorphic VLSI designs are far behind the

conventional machine-learning systems that can be

implemented on hardware or software and easily outper-

form neuromorphic systems in many aspects from
performance to design complexity. However, since learn-

ing in neuromorphic systems builds upon the extraordi-

nary learning capabilities of the brain, the research in this

area is useful for deciphering the mystery of brain-like

learning, which can pave new avenues for science and

engineering and revolutionize human life.

VIII . CONCLUSION

Synaptic plasticity is believed to be responsible for

acquiring computational capabilities, learning, and mem-

ory in the brain. One should understand the underlying

mechanisms of the plasticity rules and their computational

role before utilizing them for learning and processing in

real-world applications. Recent advances in VLSI technol-

ogy, combined with progresses in experimental neuro-
science and neuromorphic circuit design techniques, have

led to useful implementations of these rules in hardware.

However, most of these implementations can only be

applied to demonstrate proofs of principles. To success-

fully apply neuromorphic circuits in real-world applica-

tions, potentially replacing or enhancing some of the

conventional technology and approaches being used today,

requires the development of large-scale neuromorphic
systems that go beyond single chip, or single core solutions

[113]. One of the most challenging tasks that needs to be

addressed to achieve this is therefore the interchip, or

intermodule communication. Currently, both single-wafer

and multicore or multichip solutions based on asynchro-

nous logic are being investigated [73], [75], [114]. In

addition promising emerging technologies such as 3-D

VLSI could provide efficient solutions to this problem.
Another open challenge that is hindering progress in the

design of large-scale neuromorphic systems is the lack of

appropriate EDA tools to assists neuromorphic designers in

the design, verification, and testing phases. As already

mentioned, currently there are several promising design

automation tools for generating asynchronous logic circuits

that are helpful for designing interconnecting circuits in

large-scale neuromorphic systems, but further developments
for mixed analog/digital design tools is needed. The area

requirement for synaptic weight storage is another challenge

for large-scale neuromorphic systems. This can be addressed

with the use of newly developed resistive memory elements,

which are integrable with CMOS technology, occupy small

area, and consume little power. However, these resistive

elements are susceptible to variations and suffer from low

yields, which should be effectively addressed before utilizing
them in large-sale systems.

All these and other mentioned challenges are currently

being addressed by an active and enthusiastic research

community. The small group of neuromorphic engineers

that was once limited to a dozen research laboratories

around the world in the mid-1990s is now flourishing, with

many more groups spread around the whole globe, and

with increasing support from both research funding
organizations and strong industrial microelectronic

groups. In general, with the many efforts and initiatives

that are being started in the field of neuromorphic

engineering, the future of this field is very promising,

and the ongoing research on implementations of learning

mechanisms in neuromorphic systems is likely to lead to

systems that can be used in real-world applications in the

near future. h
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‘‘Spike-timing-dependent plasticity: A
comprehensive overview,’’ Front. Synaptic
Neurosci., vol. 4, no. 2, 2012, DOI: 10.3389/
fnsyn.2012.00002.

[7] J. Lisman and N. Spruston, ‘‘Questions about
STDP as a general model of synaptic
plasticity,’’ Front. Synaptic Neurosci., vol. 2,
no. 140, 2010, DOI: 10.3389/fnsyn.2010.
00140.

[8] C. Mayr and J. Partzsch, ‘‘Rate and
pulse based plasticity governed by local
synaptic state variables,’’ Front. Synaptic
Neurosci., vol. 2, no. 33, 2010, DOI: 10.3389/
fnsyn.2010.00033.

[9] T. Masquelier and S. J. Thorpe,
‘‘Unsupervised learning of visual features
through spike timing dependent plasticity,’’
PLoS Comput. Biol., vol. 3, no. 2, 2007,
DOI: 10.1371/journal.pcbi.0030031.

[10] T. Masquelier, R. Guyonneau, and
S. J. Thorpe, ‘‘Spike timing dependent
plasticity finds the start of repeating patterns
in continuous spike trains,’’ PLoS One, vol. 3,
no. 1, 2008, DOI: 10.1371/journal.pone.
0001377.

[11] T. Masquelier and S. J. Thorpe,
‘‘Learning to recognize objects using waves
of spikes and spike timing-dependent
plasticity,’’ in Proc. Int. Joint Conf. Neural
Netw., 2010, DOI: 10.1109/IJCNN.2010.
5596934.

[12] J. Gjorgjieva, C. Clopath, J. Audet, and
J. Pfister, ‘‘A triplet spike-timing-dependent
plasticity model generalizes the
Bienenstock-Cooper-Munro rule to
higher-order spatiotemporal correlations,’’
Proc. Nat. Acad. Sci., vol. 108, no. 48,
pp. 19383–19388, 2011.

[13] S. Song, K. Miller, and L. Abbott,
‘‘Competitive Hebbian learning through
spike-timing-dependent synaptic plasticity,’’
Nature Neurosci., vol. 3, pp. 919–926, 2000.

[14] R. Froemke and Y. Dan,
‘‘Spike-timing-dependent synaptic
modification induced by natural spike
trains,’’ Nature, vol. 416, no. 6879,
pp. 433–438, 2002.

[15] J. Pfister and W. Gerstner, ‘‘Triplets of spikes
in a model of spike timing-dependent
plasticity,’’ J. Neurosci., vol. 26, no. 38,
pp. 9673–9682, 2006.

[16] J. Brader, W. Senn, and S. Fusi, ‘‘Learning
real-world stimuli in a neural network with
spike-driven synaptic dynamics,’’ Neural
Comput., vol. 19, no. 11, pp. 2881–2912,
2007.

[17] C. Clopath and W. Gerstner, ‘‘Voltage and
spike timing interact in STDPVA unified
model,’’ Front. Synaptic Neurosci., vol. 2,
no. 25, 2010, DOI: 10.3389/fnsyn.2010.
00025.

[18] H. Z. Shouval, M. F. Bear, and L. N. Cooper,
‘‘A unified model of NMDA
receptor-dependent bidirectional synaptic
plasticity,’’ Proc. Nat. Acad. Sci. USA, vol. 99,
no. 16, pp. 10831–10836, 2002.

[19] G. Bi and M. Poo, ‘‘Synaptic modifications in
cultured hippocampal neurons: Dependence
on spike timing, synaptic strength, and
postsynaptic cell type,’’ J. Neurosci., vol. 18,
no. 24, pp. 10464–10472, 1998.

[20] A. Bofill-I-Petit and A. Murray, ‘‘Synchrony
detection and amplification by silicon
neurons with STDP synapses,’’ IEEE Trans.
Neural Netw., vol. 15, no. 5, pp. 1296–1304,
Sep. 2004.

[21] G. Indiveri, E. Chicca, and R. Douglas,
‘‘A VLSI array of low-power spiking neurons
and bistable synapses with spike-timing
dependent plasticity,’’ IEEE Trans. Neural
Netw., vol. 17, no. 1, pp. 211–221, Jan. 2006.

[22] H. Tanaka, T. Morie, and K. Aihara,
‘‘A CMOS spiking neural network circuit
with symmetric/asymmetric STDP
function,’’ IEICE Trans. Fund. Electron.
Commun. Comput. Sci., vol. E92-A, no. 7,
pp. 1690–1698, 2009.

[23] S. Bamford, A. Murray, and D. Willshaw,
‘‘Spike-timing dependent plasticity with
weight dependence evoked from physical
constraints,’’ IEEE Trans. Biomed. Circuits
Syst., vol. 6, no. 4, pp. 385–398, Aug. 2012.

[24] M. R. Azghadi, S. Al-Sarawi, D. Abbott, and
N. Iannella, ‘‘A neuromorphic VLSI
design for spike timing and rate based
synaptic plasticity,’’ Neural Netw., vol. 45,
pp. 70–82, 2013.

[25] S. Mitra, S. Fusi, and G. Indiveri, ‘‘Real-time
classification of complex patterns using
spike-based learning in neuromorphic VLSI,’’
IEEE Trans. Biomed. Circuits Syst., vol. 3,
no. 1, pp. 32–42, Feb. 2009.

[26] M. Giulioni, M. Pannunzi, D. Badoni,
V. Dante, and P. Del Giudice, ‘‘Classification
of correlated patterns with a configurable
analog VLSI neural network of spiking
neurons and self-regulating plastic
synapses,’’ Neural Comput., vol. 21, no. 11,
pp. 3106–3129, 2009.

[27] C. Mayr, M. Noack, J. Partzsch, and
R. Schuffny, ‘‘Replicating experimental spike
and rate based neural learning in CMOS,’’ in
Proc. IEEE Int. Symp. Circuits Syst., 2010,
pp. 105–108.

[28] C.-C. Lee, ‘‘Kinetic modeling of amyloid
fibrillation and synaptic plasticity as memory
loss and formation mechanisms,’’
Ph.D. dissertation, Dept. Chem. Eng.,
Massachusetts Inst. Technol., Cambridge,
MA, USA, 2008.

[29] Y. Meng, K. Zhou, J. Monzon, and C. Poon,
‘‘Iono-neuromorphic implementation of
spike-timing-dependent synaptic plasticity,’’
in Proc. Annu. Int. Conf. IEEE Eng. Med. Biol.
Soc., 2011, pp. 7274–7277.

[30] G. Rachmuth, H. Shouval, M. Bear, and
C. Poon, ‘‘A biophysically-based
neuromorphic model of spike rate- and
timing-dependent plasticity,’’ Proc. Nat. Acad.
Sci. USA, vol. 108, no. 49, pp. E1266–E1274,
2011.

[31] N. Iannella and S. Tanaka, ‘‘Synaptic efficacy
cluster formation across the dendrite via
STDP,’’ Neurosci. Lett., vol. 403, no. 1–2,
pp. 24–29, 2006.

[32] N. Iannella, T. Launey, and S. Tanaka, ‘‘Spike
timing-dependent plasticity as the origin
of the formation of clustered synaptic
efficacy engrams,’’ Front. Comput. Neurosci.,
vol. 4, no. 20, 2010, DOI: 10.3389/fncom.
2010.00021.

[33] C. Mayr, J. Partzsch, M. Noack, and
R. Schuffny, ‘‘Live demonstration:
Multiple-timescale plasticity in a
neuromorphic system,’’ in Proc. IEEE Int.
Symp. Circuits Syst., May 2013, pp. 666–670.

[34] S. Ramakrishnan, P. Hasler, and
C. Gordon, ‘‘Floating gate synapses with
spike-time-dependent plasticity,’’ IEEE
Trans. Biomed. Circuits Syst., vol. 5, no. 3,
pp. 244–252, Jun. 2011.

[35] S. Moradi and G. Indiveri, ‘‘A VLSI network
of spiking neurons with an asynchronous
static random access memory,’’ in Proc.
IEEE Biomed. Circuits Syst. Conf., 2011,
pp. 277–280.

[36] M. R. Azghadi, S. Moradi, and G. Indiveri,
‘‘Programmable neuromorphic circuits
for spike-based neural dynamics,’’ in Proc.
11th IEEE Int. New Circuit Syst. Conf., 2013,
DOI: 10.1109/NEWCAS.2013.6573600.

[37] S.-C. Liu, T. Delbruck, J. Kramer, G. Indiveri,
and R. Douglas, Analog VLSI: Circuits and
Principles. Cambridge, MA, USA: MIT
Press, 2002.

[38] A. G. Andreou, K. A. Boahen,
P. O. Pouliquen, A. Pavasovic, R. E. Jenkins,
and K. Strohbehn, ‘‘Current-mode
subthreshold MOS circuits for analog VLSI
neural systems,’’ IEEE Trans. Neural Netw.,
vol. 2, no. 2, pp. 205–213, Mar. 1991.

[39] M. R. Azghadi, O. Kavehei, S. Al-Sarawi,
N. Iannella, and D. Abbott, ‘‘Novel
VLSI implementation for triplet-based
spike-timing dependent plasticity,’’ in Proc.
7th Int. Conf. Intell. Sensors Sensor Netw. Inf.
Process., 2011, pp. 158–162.

[40] M. R. Azghadi, S. Al-Sarawi, N. Iannella, and
D. Abbott, ‘‘Efficient design of triplet
based spike-timing dependent plasticity,’’ in
Proc. IEEE Int. Joint Conf. Neural Netw., 2012,
DOI: 10.1109/IJCNN.2012.6252820.

[41] R. Douglas, M. Mahowald, and C. Mead,
‘‘Neuromorphic analogue VLSI,’’ Annu. Rev.
Neurosci., vol. 18, pp. 255–281, 1995.

[42] H. R. Wilson and J. D. Cowan, ‘‘Excitatory
and inhibitory interactions in localized
populations of model neurons,’’ Biophys. J.,
vol. 12, no. 1, pp. 1–24, 1972.

[43] C. Bartolozzi and G. Indiveri, ‘‘Synaptic
dynamics in analog VLSI,’’ Neural Comput.,
vol. 19, no. 10, pp. 2581–2603, 2007.

[44] B. Razavi, Design of Analog CMOS
Integrated Circuits. New York, NY, USA:
McGraw-Hill, 2002.

[45] J. M. Cruz-Albrecht, M. W. Yung, and
N. Srinivasa, ‘‘Energy-efficient neuron,
synapse and STDP integrated circuits,’’ IEEE
Trans. Biomed. Circuits Syst., vol. 6, no. 3,
pp. 246–256, Jun. 2012.

[46] T. Koickal, A. Hamilton, S. Tan, J. Covington,
J. Gardner, and T. Pearce, ‘‘Analog VLSI
circuit implementation of an adaptive
neuromorphic olfaction chip,’’ IEEE Trans.
Circuits Syst. I, Reg. Papers, vol. 54, no. 1,
pp. 60–73, Jan. 2007.

[47] G. Rachmuth and C.-S. Poon, ‘‘Transistor
analogs of emergent iono-neuronal
dynamics,’’ HFSP J., vol. 2, no. 3,
pp. 156–166, 2008.

[48] K. Cameron, V. Boonsobhak, A. Murray, and
D. Renshaw, ‘‘Spike timing dependent
plasticity (STDP) can ameliorate process
variations in neuromorphic VLSI,’’
IEEE Trans. Neural Netw., vol. 16, no. 6,
pp. 1626–1637, Nov. 2005.

[49] M. R. Azghadi, S. Al-Sarawi, N. Iannella, and
D. Abbott, ‘‘Design and implementation of
BCM rule based on spike-timing dependent
plasticity,’’ in Proc. IEEE Int. Joint Conf.

Rahimi Azghadi et al. : Spike-Based Synaptic Plasticity in Silicon: Design, Implementation, Application, and Challenges

734 Proceedings of the IEEE | Vol. 102, No. 5, May 2014



Neural Netw., 2012, DOI: 10.1109/IJCNN.
2012.6252778.

[50] J. Schemmel, A. Grubl, K. Meier, and
E. Mueller, ‘‘Implementing synaptic
plasticity in a VLSI spiking neural network
model,’’ in Proc. Int. Joint Conf. Neural Netw.,
2006, DOI: 10.1109/IJCNN.2006.246651.

[51] J. V. Arthur and K. Boahen, ‘‘Learning in
silicon: Timing is everything,’’ in Advances in
Neural Information Processing Systems 17.
Cambridge, MA, USA: MIT Press, 2006,
pp. 75–82.

[52] M. Azghadi, S. Al-Sarawi, N. Iannella, and
D. Abbott, ‘‘A new compact analog VLSI
model for spike timing dependent plasticity,’’
in Proc. IFIP/IEEE 21st Int. Conf. Very Large
Scale Integr., Oct. 2013, pp. 7–12.

[53] M. Azghadi, S. Al-Sarawi, N. Iannella, and
D. Abbott, ‘‘Tunable low energy, compact
and high performance neuromorphic circuit
for spike-based synaptic plasticity,’’ PLoS
ONE, vol. 9, no. 2, 2014, DOI: DOI: 10.1371/
journal.pone.0088326.

[54] H. Wang, R. Gerkin, D. Nauen, and
G. Bi, ‘‘Coactivation and timing-dependent
integration of synaptic potentiation and
depression,’’ Nature Neurosci., vol. 8, no. 2,
pp. 187–193, 2005.
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P. Dudek, P. Häfliger, S. Renaud,
J. Schemmel, G. Cauwenberghs, J. Arthur,
K. Hynna, F. Folowosele, S. Saighi,
T. Serrano-Gotarredona, J. Wijekoon,
Y. Wang, and K. Boahen, ‘‘Neuromorphic
silicon neuron circuits,’’ Front. Neurosci.,
vol. 5, no. 73, 2011, DOI: 10.3389/fnins.
2011.00073.

[57] J. E. Lisman, ‘‘A mechanism for memory
storage insensitive to molecular turnover:
A bistable autophosphorylating kinase,’’
Proc. Nat. Acad. Sci. USA, vol. 82, no. 9,
pp. 3055–3057, 1985.

[58] D. H. O’Connor, G. M. Wittenberg, and
S. S.-H. Wang, ‘‘Graded bidirectional
synaptic plasticity is composed of switch-like
unitary events,’’ Proc. Nat. Acad. Sci. USA,
vol. 102, no. 27, pp. 9679–9684, 2005.

[59] H. Markram, J. Lübke, M. Frotscher, and
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