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1. Introduction

As an established branch of mathematics, game theory [1,2]
analyzes strategic decision making of competing agents who find
themselves in conflict situations. Game theory finds extensive ap-
plications in social sciences, biology and engineering. Recent de-
velopments in quantum computing and quantum information the-
ory [3] have motivated efforts to recast classical game theory using
quantum probability amplitudes [4], leading to the birth of the
area of quantum games [5-37]. Quantum games have been pro-
posed [7] as a new way to approach quantum algorithms, including
speculation that nature may be playing quantum games at the
molecular level [38].

In the area of quantum games, a recently reported [31] prob-
abilistic approach constructs them from a set of non-factorizable
joint probabilities. It is a set that cannot be factorized in terms of
other more fundamental probabilities. The motivating idea being
that Bell's inequalities can be violated by a set of non-factorizable
probabilities, though this does not imply that any non-factorizable
set will violate the inequalities. As the violation of Bell’s inequal-
ities is considered a fundamentally quantum aspect, one is moti-
vated to have an approach to quantum games that constructs them
from the property of a probability set being non-factorizable. This
then provides greater mathematical generality for quantum games,
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providing accessibility without the formalism of quantum mechan-
ics.

The earliest quantization attempts [8] were focussed at the
two-player two-strategy (2 x 2) non-cooperative games. The play-
ing of a 2 x 2 game can be easily realized if players share a physical
system that involves 4 joint probabilities. This, for instance, will be
the case when players share two coins that can be put in head (H)
and tail (77) states. A referee gives each player a coin and asks
them to flip it to either the 7 or the 7 state. As no tossing but
only flipping actions are involved, it does not matter if the coins
are biased or not. After a players’ flipping (or not-flipping) actions
the coins can be found in an HH, H7, 7H, or 77 state, where
the first entry in each pair, is reserved for the state of Alice’s coin.
From a given 2 x 2 game table, the referee can then award players
their payoffs depending on the state of the two coins.

The probabilistic approach to quantum games developed in
Ref. [31] extends the playing of a 2 x 2 game towards the quantum
domain by considering two players who share a bigger physical
system that also involves coin tossing. Consider four biased coins
that two players share to play a 2 x 2 game according to the fol-
lowing arrangement. In a run, each player is given two coins and
she/he has to select one. The referee tosses the two selected coins
together and records the outcome. It can then be shown that the
players’ payoffs, in a mixed-strategy version of the 2 x 2 game, can
be expressed in terms of their strategic choices performed over
multiple runs and the relevant 16 factorizable joint probabilities.

In order to maintain the bilinear payoff structure of the 2 x 2
game, constraints are placed on joint probabilities. Allowing joint
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Table 1
General probability table.
Bob
S1 S5
S =
+1  pip2 | PsDs
S1
=1 p3ps | P78
Alice
+1  po p1o|P13 P14
So

=1 p11 p12 | P15 P16

probabilities to become non-factorizable, while they remain under
these constraints, ensures that the classical payoffs and the out-
come of the game are obtained when the probabilities become
factorizable.

In the present Letter, we introduce an extra condition requir-
ing that the considered joint probabilities are also symmetric both
when they are factorizable and non-factorizable. We argue that
this is a natural constraint to be included in a probabilistic ap-
proach to quantum games that builds them from non-factorizable
joint probabilities. We find that this constraint further narrows
down our focus in obtaining a quantum game from probabilistic
considerations only. We study quantum versions of the Prisoners’
Dilemma (PD) game, the Stag Hunt (SH) game, and the Chicken
game [1,2] within this approach that constructs them from not
only non-factorizable but also symmetric joint probabilities. We
investigate how non-factorizable and symmetric joint probabilities
permit new equilibria in these games. By introducing parameters
that present a measure of non-factorizability, we discuss a novel
way of obtaining a set of non-factorizable joint probabilities, which
allows us to identify factorizable, non-factorizable, and the quan-
tum domains.

2. An approach towards extending a 2 x 2 game

We begin with the table of sixteen joint probabilities as shown
in Table 1. For Alice and Bob we also have payoff matrices given
by

Bob Bob
S1 S) S1 S5

A=nliceSt [T ) popicet (P10 B2}
Sy \as ag Sy \bs by

giving Alice’s and Bob’s payoffs, respectively. Because we are con-
sidering games with symmetrical payoffs we have B = AT, where
T indicates transpose. This requires
bz =ay, by =as. (2)

b1 =a, by =as,

In a mixed-strategy game one has the strategy vectors X = (x, 1 —
x)T and y=(y,1—y)T, with x, y € [0, 1] giving the probabilities
for Alice and Bob to choose S; and S respectively. Payoff relations
in a mixed-strategy game are

Map(x, y) =X (A B)y, 3)

where subscripts A and B refer to Alice and Bob, respectively. In
this notation we can, for instance, have the pure strategy payoffs

ITA(Sq, 5’1) =1I14(1,1) = ay = I1g(1,1) etc. We represent strate-
gies x and y by numbers x and y respectively and note that the
strategy pair (x*, y*) is a Nash equilibrium (NE) when

Ma(x*, y*) — Ma(x, y*) >0,

Mp(x*, y*) — Mp(x*,y) > 0. (4)

A possible physical realization for playing this symmetric game
uses two coins in the following arrangement. The referee an-
nounces the association Sy, S} ~ 7 and S, S), ~7 and each play-
er’s strategy consists of secretly flipping his/her penny either to the
‘H or to the 7 state. The players then simultaneously return their
pennies to the referee. The referee observes the state of the two
coins and rewards the players. In the case of pure strategies the
referee can use the matrices (1) and in case of mixed strategies,
the players are rewarded according to the payoff relations (3).

As mentioned in the introduction, the referee can also have
a different arrangement that allows the playing the game using
four coins instead of two, as follows. S/he identifies the four coins
as S1,Sy; S’l, S’2 (note that S; and S, are no longer a player’s ac-
tions to put his/her penny in 7 or 7 state). In a run s/he gives
coins Si,S2 to Alice and coins S}, S, to Bob. Each player now
has to choose one out of the two coins so that the chosen pair
is one of the (S1,S}), (51,5%), (S2,5)), (52,5%). The players re-
turn the two chosen coins to the referee who tosses them together
and records the outcome. The referee then collects four coins (two
tossed and two untossed) and prepares them for the next run. In
this extended game, players’ payoff relations can now be defined
by making the association H ~ +1 and 7 ~ —1 and using the 16
joint probabilities p1, p2,..., p1s, as described in Table 1.

We write the payoffs relations as,

Ma(S1,S Z(a bipi,  Iap(S1,55) Z(a b)i-api.
Iy, 3 52 Z(a b)i_spi,
My(S2,83) = Z(a b)i—12pi. (5)

i=13

where ITg(S>, 5/1), for instance, corresponds when Alice selects her
S coin and Bob selects his S} coin over all the runs. In Eq. (5)
each of the four payoff relations give mixed-strategy payoffs of the
2 x 2 game. Over many runs, the players can also select a proba-
bility distribution over the available strategies and one can define

I1a (S1,S)) 11a (51, 5'2)) ®)
ITa B(S2,S}) 11aB(S2,S5)

where x € [0, 1] is the probability with which Alice selects coins
S1 and y € [0, 1] is the probability with which Bob selects coin S.
Egs. (6) give mixed-strategy payoffs in an extension of the orig-
inal 2 x 2 game. As discussed in Refs. [31,33,35], this extension
involving 16 joint factorizable probabilities can be considered a re-
expression of the classical game that transforms the original game
in such a way that a transition to the quantum game is achiev-
able by a consideration of non-factorizable joint probabilities. This
re-expressed game with factorizable probabilities is of course clas-
sically implementable and is not to be confused with the original
game from which it is derived.

Mapx,y)=x" <

2.1. Obtaining a symmetric game

Enforcing game symmetry, under the interchange of players, we
require HA(Si,S;) = IT3(S;,S)) and thus we note from Egs. (5)
that this is achievable if
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Table 2
Symmetric probability table.
Bob
S S5
+1 -1 41 -1
+1  p1p2| p5pe
S1
=1 pa2ps| P78
Alice —
+1  ps pr|p13 P14
S

—1  pe ps | P14 P16

Table 3
Symmetric normalised probability table. Here §; = p1 +
2p3, 82 = ps + pe + ps, and d3 = p13 + 2p1a.

Bob
s, s
+1 -1 +1 -1
+1  p1|p2 ps ‘pe
S -
-1 pa|l -4 1_02‘]78
Alice )
+1  p5|1— 02 p13‘p14
Sa
-1 ps|ps p14’1—53
D2 = D3, D5 = D9, Pe6 = P11,
P7 = D10, ps = p12, P14 = P1s. (7)

With this we produce Table 2 and notice that the table of probabil-
ities is now symmetric across the main diagonal. By including the
normalization constraint on each quadrant, we produce Table 3.
This arrangement for playing a 2 x 2 game with 16 joint proba-
bilities facilitates a transition to playing the same game using an
Einstein-Podolsky-Rosen (EPR) type setup [4,39-43]. In this setup,
Alice and Bob are spatially separated and are unable to communi-
cate with each other. In an individual run, both receive one half of
a pair of particles originating from a common source. In the same
run of the experiment, both choose one from two given (pure)
strategies. These strategies are the two directions in space along
which spin or polarization measurements can be made. Keeping
the notation for the coins, we denote these directions to be S,
Sy for Alice and S/, S/, for Bob. Each measurement generates +1
or —1 as the outcome, as it is the case with coins after their toss
in the four-coin setup. Experimental outcomes are recorded for a
large number of individual runs and payoffs are awarded according
to the directions the players choose over many runs (defining their
strategies), the matrix of the game they play, and the statistics of
the measurement outcomes.

When p; (1 <i< 16) are taken as the EPR probabilities, they of
course satisfy the normalization constraint, stating that the sums
S Y pi Yr2opi, and Y!8 5 p; are all equal to 1. EPR
probabilities also satisfy other constraints imposed by the require-
ments of causality, stating that Alice’s outcome of +1 or —1 (ob-
tained along S; or S3) is independent of whether Bob chooses S
or S}, and similarly Bob’s outcome of +1 or —1 (obtained along

Table 4

Symmetric normalised causal probability table. Here
84 = p1+ p2 — P5 + p13 + P14, 85 = —ps + p13 + P14,
and 86 = p1 + p2 — ps.

Bob
S1 Sy
+1 -1 +1 -1
g +1 p1| p2 ps| 6
Alic 1
T 1 pel1-6y 55‘1—54
+1 ps| 65 1013‘ P14
So
_1661_54 p151—53

5/1 or 5/2) is independent of whether Alice chooses S or Sy. This
can be written as

D1+ P3=p9+ D11,
b5+ p7=p13+ P15,

D1+ P2 =Dps5+ De,
DP9+ P1o=Dp13 + P14,
p3 + pa=p7+Ds, P11+ P12 = P15 + Pie,

P2 + pa=pio+ P12, Pe + pg = P14+ P16, (8)

which is also referred to as the causal communication constraint
[43]. These provide two more dependencies giving ps = p1 +
p2 — ps and pg = p14 + P16 — Ps-

Note that the causal communication constraints (8) are set into
two groups. The first group states that the probability of obtain-
ing a particular outcome (+1 or —1) on Alice’s side of the EPR
type apparatus is independent of which one of the two measure-
ments are performed on Bob’s side. Similarly, the second group
states that the probability of obtaining a particular outcome (+1
or —1) on Bob’s side of the EPR type apparatus is independent
of which one of the two measurements are performed on Alice’s
side. These constraints hold even when Alice and Bob share an
entangled state, and the non-factorizable probability sets we con-
sider below to construct quantum games always respect the causal
communication constraints. The causal communication constraint
is also sometimes referred to as ‘parameter independence’, ‘sim-
ple locality’, ‘signal locality’ or ‘physical locality’ and prevents the
acausal exchange of classical information between different parts
of a quantum system. This fundamental constraint is therefore
retained even for the cases when the probabilities become non-
factorizable.

Substituting these relations we finally obtain the probability ta-
ble for symmetric games given by Table 4 in terms of the five
independent variables p1, p2, ps, P13, P14-

If x, y € [0, 1] are defined to be the probability to select S; over
Sz and S} over S, by Alice and Bob respectively, then we have
Alice’s expected payoff given by

Ma(x, y) =xyI(S1, SY)
+x(1 = y)A(S1.55) + (1 =) yI1a(S2. S)

+ (1 =01 = y)4(S2, 53). 9)

Bob’s payoff is then obtained from above by interchanging x and y.
Substituting Egs. (5) and re-arranging we find

Ia(x, y) =xyA3zvs +x(A1v1 — Azv))
+ y{(@z —a1)vi + (a3 —as)va}
+aip13 + (a2 +a3)pia +aq(1 — p13 —2p14), (10)
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where A1 =a3 —ay, Ay =a4 —a and A3 = Ay — Aq with

vi=w, vo=u-+v, vi=u+w, (11)

where u = py; — ps5, v=p2 — p14 and w = p13 — p5. By symmetry
we also have for Bob
Hp(x,y) =xyAsvs +y(A1vi — Azvy)
+x{(az —a1)v1 + (a3 — ag)v2}
+a1p13 + (a2 +a3)p1a +as(1 — p13 — 2p1a). (12)
For a NE we need to satisfy the relations
Ha(x*, y*) — Ha(x. y*)
= (x* —x)[y*Asv3 + Ajvi — Ayv2] >0,
Mg (x*, y*) — Hp(x*, y)
= (y* — y)[x" A3v3 + Ajvi — Ayva] > 0. (13)

We thus have the NE defined for symmetric games with the three
variables vq, vy, v3.

2.2. When probabilities are factorizable

If the probability table is factorizable then we can write

py =17, p2=r(1-7),

p3=r'(A—r), ps=1-n(1-7r),

ps =15/, pe=r(1-5),

p7=s1-r, pg=1-n(1-5),

po =sr, pro=s(1-r),

pu=ra-s, pp=>0-9(1-r),

piz=ss’,  pu=s(1-5),

pis=s1-s), pie=01-9(1-5), (14)

where r,s,r’',s’ €[0,1] and r = p1 + p2 and s = p13 + p14. From
symmetry we have p, = p3 which immediately implies r =1’ and
also s=s' from p14 = p1s.

So we can now find from Eq. (11) vi = —s(r — s), vo = (r —
$)(1 —s) and v3 = (r — s)2. Substituting these results into Eq. (13)
gives the following conditions for the strategy pair (x*, y*) to be a
NE

Ma(x*, y*) — Ma(x, y*)

= (x" —x)(r —s)[As{y*r+ (1 - y*)s} — Az] >0, (15)
Mg (x*, y*) — Mp(x*, y)
= (y* —y)r —9[As{x*r+ (1 —x*)s} — Az] > 0. (16)

These are the defining equations for a NE when assuming symme-
try and factorizability.
For Alice, we have the payoff in the factorizable case

Ma(x, y) = xy As(r — )2 + x(r — 5)(A3s — A2)
+y(@r—s)(As3s+az —ay)
+ a4 —S(Ay — a3 + ag) + Ass? (17)

and a similar expression for Bob is obtained by exchanging x for y.

2.3. Obtaining the classical mixed strategy game

To achieve the classical payoff structure we see from the first
term in Eq. (17) that (r — s)2 = 1, which requires r=1 and s=0
to give the payoff

ITa(x,y) = a4 +x(az — aq) + y(as — aq)
+xy(a; —ay —as +ag), (18)

giving the required classical bilinear payoff structure, which has
associated NE given by

(x* —x)[A3y* — Az] > 0. (19)

2.3.1. Prisoners’ Dilemma

For the PD game we have Aq, Ay > 0 and hence |A3| < Aj.
This makes the term in the square bracket in Eq. (15) and Eq. (16)
to be always negative, hence we just require r > s if (x*, y*) =
(0, 0) is to exist as a NE. The condition r > s implies that the coins
are basically in a heads up state, which is obviously reasonable
because if we invert the coins before the game then we invert
the NE. This shows that symmetry and factorizability along with
the condition r > s will return the classical NE for the PD game.

2.3.2. Stag Hunt

For the SH game we have A3 > Ay >0 and A7 + A > 0 and
A3 > A1 + Ay. For mixed NE we require from Eq. (15) y*As(r —
s)+ As3s— Ay =0 or

Y =(42/A3—5)/(r—5s). (20)
Because, by definition, y* > 0 then this requires s < A/A3 and
similarly because y* <1 then [A; —sA3]/[A3(r—5)] <1 or Az <
Asr or

r> A/ As. (21)

To create the classical mixed NE in the classical game, we define
r=Ay/A3+ (1 — Ay/A3)g where g € (0,1] and s = A /A3(1 —h)
where h € (0, 1]. This gives us (Ay/A3 —s)/(r —s) = Ay/A3 or
hA/A3/(1—Ay/A3)g+ Ay /Ash) = Ay /A3 or that g = h. This re-
sult indicates that r and s are a proportional distance from Aj/As3.
This then gives that
1—r
S§=——.
Az/Ay —1

For the other NE, (x*, y*) = (0, 0), if we have y* =0 then we re-
quire from Eq. (15)

Ma(x*, y*) — Ma(x, y*)

= %(x* —X)(r —s)[Ass — A3] >0, (23)

and in order to return x* = 0 requires s < Ay/As. Also, if we have
y* =1 then we require

Ha(x*, y*) — Ha(x. y*)
= %(x* —X)(r —s)[Asr — A3] >0, (24)

and in order to return x* =1 requires r > A,/A3. Hence we find
three NE

(x*,¥%)=(0,0),

(x*, ¥%) = (A2/43, A2/ A3),

(x*y)=@1,1) (25)
conditional on Eq. (21) and Eq. (22). We know 0 < Ay/A3 < 1,

hence we can always find an r and an s to create this particular
classical game.

(22)
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2.3.3. Chicken game

For the Chicken game we have A3 = —(x¢ 4+ 8) <0 and A; =
—a <0and A1 =8 >0, where «, 8 > 0. The general condition for
NE is obtained from Eq. (15) as

%(X* —X)(r—)[-y @+ B —s5)—(@+p)s+a]>0. (26)

We can see that Ay/As = /(o + B) hence we will duplicate the
results of the previous SH game, obtaining the correct classical NE

(X", y*) = (1,0),

x*y*) = (a/(@+B),a/(@+p)),

(x*.y*)=(.1) (27)
provided r > /(¢ + B) and s= (1 —r)/{(¢ + B)/ox — 1}.

2.3.4. Discussion

We find a/(a 4 B) = Az/A3 = (a4 — @) /(a4 — ap — a3 + ay),
hence for the three games studied, if we select r such that (as —
a)/(as—az—asz+aq) <r <1 with s given by Eq. (22), in each case
we will return the classical NE for these three games when the
probability table becomes factorizable, although not the classical
bilinear payoffs. If we also require this payoff structure, then we
require the more restrictive constraint r=1 and s =0.

3. Extension towards non-factorizable joint probabilities
We have shown that factorizability along with symmetry and

the conditions r =1 and s =0 embeds the classical game within
the quantum game. If we enforce r = p; 4+ pp =1 in the general

quantum game, then we have p3 = p4 = 0 by normalization, but
by symmetry p, =0, and therefore p; =1, similarly for the rest
of the table. Hence this condition creates the table of factorizable
probabilities with p1 = pg = p11 = p1s = 1 and all other probabili-
ties zero.

However we can still create a non-factorizable set of probabil-
ities by inserting offset parameters from the starting position in
the Table 5. We now add extra parameters into Table 5 exploit-
ing any available degrees of freedom. For the upper left quadrant
because we are constrained by normalization, symmetry, and the
causal communication constraint, we only have available two de-
grees of freedom. This is utilized with the parameters a and b as
shown in Table 6. We then continue this process and we find that
we can add up to 5 independent parameters, a, b, c,d,e € % in the
range [—1,1]. In Table 6 n=a+b+e—c—d, and a, b, c,d, e cho-
sen such that each one of the 16 probabilities in Table 6 remains
in the range [0, 1].

From Table 6 and Eqgs. (11) we find

vi=-—s(r—s)—e€,

V3 = (r—s)2 — €3 (28)

Vo=(1-=35)(r—5s) —e,

and we can parameterize the NE in terms of the three parameters
€1=e—c,€3=a+b+d+e and €3 =a+2b — c + 2e. Substituting
v, V2, v3 into Eq. (13) we find
(X, y*) — Ma(x, y¥)

= (X>k - X)[y*A3V3 + A1vq — Asz]

= —X)(r—s)[A3{y*(r+ ﬂ)

r—s

Table 5
Factorizable probabilities. € €1 — €
+(1=y)s+—);— 2201+ . 29
Bob ( y>< r—s)} 2< r—s (29)
st A The corresponding inequality for Bob is then obtained by inter-
changing x and y. This gives us the general conditions for a NE in
+1 =1l +1 =1 the non-factorizable case. Note that if we set €; =€; =€3 =0 we
9 1, ‘ 1 recover our previous results in Egs. (15) and (16). It is also easily
g 9 r(l—r) s r(l-s) shown that this condition also implies that a=b=c=d=e=0
Alice L 2 d ill he f: izabl ff relati h i
—1r(1—7)|(1—7) s(1—7)|(1—7)(1—s) and so we will recover the factorizable payoff relation shown in
Eq. (17)
—_ 2 —_
Sy S ‘ Al =) 5 |S(1 5) 3.1. Non-factorizable game with classical embedding
—1rl-9)[1-s)(1—1) s(1—s)|(1 — s)?
The embedding of the classical game is obtained by taking r =1
and s =0, which from Eq. (29) gives the equation for NE
Table 6
Parameterizing non-factorizability.
Bob
51 S
S —1 +1 —1
+1 7r2—a—2b|r(1—7r)+b rs+e ‘r(l—s)—a—b—e
Alice 51 9
—1r(l—7r)+bl(1—7)*+a sA—r)+d+c—efl A—r)A—-5)+n
+1 sr+e sQ—r)+c+d—e s?+ec ‘ s(1—s)+d
Sa
—1r(l1—s)—a—-b—ec| (1—s5)(1—7)+n s(l—s)+d’(1—s)2—c—2d
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Table 7
Non-factorizable probabilities that embed the classical game.
Bob
S1 Sh
+1 —1 +1 —1
e ‘ l—a—b—e
Alice
-1 b a d+c—cla+b+e—c—d
+1 e ‘ ct+d—e
So
-1 1—a—b—e’a—|—b+e—c—d

Ha(x*, y*) — Ha(x. y*)

=" —x)[A3{y* (1 —e3) + 1} — A1 + €1 —€2)],
Mp(x*, y*) — Mp(x*. y)

=y —y)[as3{x M —e3) + 1} — 221 + €1 — €2)].

Thus we have obtained the general conditions for the NE for a non-
factorizable table of probabilities, which will embed the classical
game when it becomes factorizable. The payoff given by

(30)

Ma(x, y) = a4 +c(ay —ag) —d(2ag —az —asz) +xy As(1 — €3)
+x[(a2 —as)(1 — €2) + €1(a1 —a3)]
+y[(a3 —ag)(1 — &) + €1(a1 —a)]

and similarly for Bob.
These produce Table 7 and we see that we must have q, b, c,
d,e>0.

(31)

3.2. The CHSH inequalities

Cereceda [43] finds the CHSH sum of correlations [4] for any
set of local hidden variables satisfying the causal communication
constraint as

A=2(p1+pa+ps+ps+po+pi2+pia+pis—2). (32)
From Table 7, we can find
A=4(a—c+2e—1/2). (33)

Inspecting the table of probabilities, we note that a — c 4 2e — % S
[—1, 1], therefore, a range of possible A € [—4, 4] exist in agree-
ment with the expected range [43]. For example, using a = %
b=0¢=0 d=1 e=1, we find A=4. However, quantum
mechanics enforces extra restrictions on the joint probabilities
considered here that can arise, namely Cirel'son’s bound [44] of
A € [—2+/2,2+/2]. That is, for a physically realizable quantum
game, we will have extra restriction on the table of probabilities
la—c+2e—1/2|<1/v2. (34)
3.3. Quantum Prisoners’ Dilemma constructed from non-factorizable
joint probabilities

For PD, we usually take [8] a1 =3,a2=0,a3 =5,and a4 =1 in
matrices (1) and the strategy pair (x*, y*) = (0, 0) is a NE at which
both players receive the payoffs of 1. To find if non-factorizability

permits achieving (x*, y*) = (1,1) as a NE we note from Eq. (38)
that this requires

A3(l —e3+€1) — Axy(1+€1 —€) > 0. (35)

Here we refer to a result in Ref. [43] giving a set of non-
factorizable joint probabilities that saturates Cirel'son’s bound,
while maximally violating CHSH inequality. For this set we have
a=d=e=1(2++2)and b=c=§ — §(2++/2). This results in
1—€3+€1=0and 1+¢€; — e =0, and we have the situation of
non-factorizability giving (x*, y*) = (1,1) as a NE. From Eq. (31)
we find that the payoff for each player at this NE as
1
HA(1,1)=HB(1,1)=§(18+«/§)=2.42678, (36)
which is above the payoff of 1 to each player at the classical NE of
(x*, y*) = (0, 0) and is close to the Pareto optimum payoff of 3 for
each player.

3.4. Stag Hunt game with non-factorizable joint probabilities

From Eq. (30), we now have the mixed NE given by

V= A(l+e—€) &

) 37
Az 1—e€3 (37)

where we find (1+¢€ —€) e[-1,1], e €[-1,3] and 1 — €3 €
[—%, 1], so that any mixed NE we desire in the range [0, 1], as well
as returning to the classical NE when €7 = €; = €3 = 0. If we desire
to produce the non-classical NE of (x*, y*) =(0,1) and (x*, y*) =
(1, 0), then from Eq. (30) we have the conditions

MTA(1,0) — ITA(x,0) = (1 — x)(A3€1 — A2(1 + €1 — &)

>0,
M5(0,1) — M50, y) = (1 — y)(A3€1 — Ax(1 + €1 — €2)) >

0.

(38)
We have A3 > Ay > 0 for the SH game and so we can see that if
we select €1 > 1+¢€1 — €3, then we will have achieved this new NE.

This condition gives €3 >1 or a+b +d + e > 1. This is easily sat-
isfied, with b =d =1/2 with the other terms zero, for example.

3.5. Chicken game with non-factorizable joint probabilities

The Chicken game is defined with A,, A3 < 0 whereas the SH
game has Aj, Az > 0. Thus we can carry over the results from the
previous section, except that the NE will invert due to the extra
minus sign in Eq. (38).
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4. Discussion

Quantum versions of 2 x 2 games are developed considering
the peculiarities of a set of quantum mechanical joint probabilities.
The probability sets we consider consist of normalized probabilities
satisfying causal communication and the symmetry constraints.
Players are allowed classical strategies only and their payoff re-
lations are re-expressed in terms of the joint probabilities. This
allows a quantum game thus defined to reduce itself to the classi-
cal mixed-strategy game when the set of joint probabilities can be
factorized in terms of the factorization parameters r and s. Con-
straints on the parameters r and s are obtained with which this
reduction can be realized.

Non-factorizable sets of joint probabilities are introduced and
appropriate parameters €1, €3, and €3 describing non-factorizability
are identified. Quantum games are now constructed by retaining
the obtained constraints on the parameters r and s and allowing
non-factorizability parameters €1, €2, and €3 to take non-zero val-
ues. Two types of games are identified: Firstly, with €1, €3, €3 =0,
and r =1, s =0, we obtain the original classical mixed-strategy
game along with its bilinear payoff structure. Secondly, while en-
forcing r =1 and s = 0, but allowing non-factorizability parameters
€1, €2, €3 to take non-zero values, we obtain an extension of the
classical mixed-strategy game in which the full original classical
game, along with its bilinear payoff structure, remains embed-
ded when €1, €2, €3 = 0. We investigate PD within this setup to
find that when Cirel’son’s bound is maximally saturated, a non-
factorizable quantum game gives the NE of (x*,y*) = (1,1) at
which both players’ payoffs approach to their Pareto optimum
value. For the SH we observe that two new and non-classical NE of
(x*,y*)=(0,1), (1,0) can be realized with non-factorizable joint
probabilities. We demonstrate that our non-factorizable extension
of the classical game permits us to study situations that are not
even physically realizable. That is, the situations in which the cor-
responding CHSH inequality is violated beyond Cirel’son’s bound.
We then obtain a constraint, given by Eq. (34), that defines the
boundaries of what quantum mechanics can permit for the exten-
sion of the original classical 2 x 2 game.

Notice that the new parameters a, b, c,d and e are introduced
in order to give an idea of the extent of how much non-factorizable
a given table of joint probabilities is relative to the factorizable
situation. So as to obtain compact expression, the parameters
€1, €2, €3 are then introduced, each of which depends on a, b, c,d
and e. These extra parameters are added numerically to the r and
s parameters without affecting their meaning. It turns out that r
and s subsequently become redundant in our quantum game as
we set r=1 and s =0 in order to embed the classical game within
the quantum game.

The extension of game theory based on the considerations of
quantum mechanical joint probabilities attaining the peculiar char-
acter of being non-factorizable has already been investigated in
earlier publications [28,31,33,35]. The present manuscript’s con-
tribution consists in understanding how placing an extra symme-
try requirement on joint probabilities changes the role of non-
factorizability in the construction of quantum games. Using proba-
bilistic considerations only, this work explores quantum games that
are constructed using an EPR type setting. This approach gives a
more accessible perspective on the nature of quantum mechani-
cal joint probabilities and their potential exploitation in giving an
extension to game theory.

One important benefit of our approach is the extended perspec-
tive it provides, of looking at the quantum mechanical probabili-
ties, that is able to cover the classical factorizable, non-factorizable,
and even those situations that quantum mechanics does not allow,
within a single framework. Quantum mechanics is a probabilistic
theory and this Letter holds that probabilistic considerations per-

mit us to have a more clear vision and sense of what quantum
mechanics can achieve and what are its limits. From this view-
point we give an extension to game theory, while focussing on
purely probabilistic considerations. We observe that this extension
is general enough to show us the classical factorizable situations
as well as the situations that are beyond quantum mechanics.

Our entirely probabilistic approach towards quantum games
encompasses classical, quantum and also those hypothetical sit-
uations that cannot be realized quantum mechanically. We al-
low players the same sets of classical strategies so that this
scheme is not subjected to Enk and Pike type argumentation.
As an EPR type apparatus is used in the playing of the two-
player quantum games, their physical realization will involve per-
forming EPR type experiments. These experiments are agreed to
entail genuinely quantum features. The sets of joint probabili-
ties, whose non-factorizable property we use in constructing our
quantum games, are relevant to generalized EPR type experi-
ments.

The potential benefits of this approach consists of developing
an entirely probabilistic understanding of multi-party strategic sit-
uations. In these situations, quantum probabilities become crucial
in achieving one or the other outcome. The extension of game the-
ory advocated in this Letter, rather than being imaginary, is simply
a more generic framework, that allows us to consider, in entirely
probabilistic terms, that peculiar domain which resides beyond the
bounds of quantum mechanics. We find that, within our probabilis-
tic approach toward quantum games, this domain becomes more
easily identifiable, along with easily recognizable classical factoriz-
able and the quantum mechanical non-factorizable domains.
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