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In an ad hoc suboptimal detector, the benefits of non-Gaussian noise to narrowband weak signal detection
are demonstrated. Particularly, for a noise envelope with a Rice distribution, we can improve the detector
performance by tuning threshold parameter but keeping noise level, or increasing the noise level for a
fixed threshold. It is verified that, under certain circumstances, the optimal detection probability achieved
by tuning noise level is superior to that obtained by optimizing the detector threshold.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

In long-range communication and radar systems, the receiver
bandwidth is sufficiently narrow that only the frequency compo-
nents centered on a carrier frequency can pass. In this context,
narrowband noise refers to possessing a bandwidth that is suffi-
ciently narrow relative to the carrier frequency [1–4]. For detecting
weak narrowband signals, the generalized Neyman–Pearson crite-
rion leads to an asymptotic locally optimum detector on the basis
of a known noise distribution [1–4]. When a priori knowledge of
noise is absent or the noise intensity is time-varying, a number of
ad hoc correlation detectors can be practically employed, which can
provide comparable robust performance relative to the locally opti-
mum detector in a variety of underlying noise environments [1–4].
Although an ad hoc detector is suboptimal to the corresponding
locally optimum one, recent research results show that there is
an opportunity for exploiting noise benefit, i.e. stochastic reso-
nance [5–19]. The essential feature of stochastic resonance is the
performance enhancement of nonlinear systems by an appropriate
non-zero noise level [5–19]. In the field of signal detection, noise-
enhanced low-pass known signal detection has been frequently
reported [6–15,20–22]. In these studies, the low-pass signal has
a power spectrum concentrated around zero, and its bandwidth is
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much smaller than the cut-off frequency. Noise is assumed to have
a wide frequency band, i.e. broadband noise. It is clearly shown
[9–15,20–22] that noise, as an optional approach, can improve the
detection performance of suboptimal but practical nonlinear detec-
tors.

In this letter, we focus on the benefits of non-Gaussian noise
to narrowband weak signal detection in an ad hoc hard-limiter
correlation detector. Three noise envelope distributions, of gener-
alized Rayleigh, Hall and Rice models, are observed to possess the
potential ability of improving the detector performance. In particu-
lar, for the Rice distribution model of noise envelope, the detector
performance can be enhanced by two methods. One is by tuning
threshold parameter, while the noise level is fixed. The other way
is by increasing noise level for a fixed threshold parameter. We
prove that the maximum detection probability achieved by tun-
ing noise level is superior to that obtained by tuning the detector
threshold. This advantageous result further confirms the potential
capability of noise in performance improvement in the context of
nonlinear signal processing.

2. Narrowband signal detection model

Consider the observation model of a known narrowband signal
observed in additive noise [1–4]

X(t) = θν(t) cos
[
2π f0t + φ(t)

] + W (t), (1)
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where ν(t) and φ(t) are known amplitude and phase modula-
tions, and θ is the overall signal strength. The carrier frequency
is f0, and the noise process W (t) is assumed to be stationary,
zero-mean, bandlimited white noise with a constant power spec-
tral density over a frequency band ( f0 − B/2, f0 + B/2) and zero
outside (B � f0). The narrowband noise process W (t) can be ex-
pressed as [1]

W (t) = W I (t) cos(2π f0t) + W Q (t) sin(2π f0t) (2)

with its inphase and quadrature components W I (t) and W Q (t), re-
spectively. Assume sI (t) = ν(t) cos φ(t) and sQ (t) = −ν(t) sin φ(t),
the observation model of Eq. (1) can be also represented as

X(t) = XI (t) cos(2π f0t) + X Q (t) sin(2π f0t) (3)

with the inphase component XI (t) = θ sI (t) + W I (t) and the
quadrature component X Q (t) = θ sQ (t) + W Q (t). Given a set of
samples of observation Xi , i = 1,2, · · · ,n, we are interested of
testing θ = 0 versus θ > 0, formulated by binary hypotheses on
the joint probability density function

H0: f I Q (XI , X Q ) =
n∏

i=1

f I Q (XIi, X Q i), for θ = 0, (4)

H1: f I Q (XI , X Q ) =
n∏

i=1

f I Q (XIi − θ sIi, X Q i − θ sQ i),

for θ > 0, (5)

where the inphase and quadrature samples W Ii and W Q i form
a set of statistical independent random vectors governed by the
common bivariate joint probability density function f I Q [1–4].

Based on generalized Neyman–Pearson criterion [1–4], the lo-
cally optimum detector takes a test statistic TLO representing the
maximum derivative of the logarithm of the joint probability den-
sity function f I Q at θ = 0. Therefore, the locally optimum test
statistic TLO is given by [1–4]

TLO(XI , X Q ) = d

dθ

[
ln

n∏
i=1

f I Q (XIi − θ sIi, X Q i − θ sQ i)

]∣∣∣∣∣
θ=0

≈
n∑

i=1

sIi

[− ∂
∂ XIi

f I Q (XIi, X Q i)

f I Q (XIi, X Q i)

]

+
n∑

i=1

sQ i

[− ∂
∂ X Q i

f I Q (XIi, X Q i)

f I Q (XIi, X Q i)

]
. (6)

Furthermore, assume the observation envelope Ri =
√

X2
I i + X2

Q i

and phase variable Φi = arctan(XIi/X Q i) at the i-th sampling time.
An interesting noise model is with a circularly symmetric bivari-
ate density function under the hypothesis H0, i.e. f I Q (xI , xQ ) =
h(R). Then, the noise envelope distribution can be expressed as
f R(R) = 2π Rh(R), and the phase Φ is uniformly distributed over
[0,2π ] with fΦ(Φ) = 1/(2π). With circular symmetry, the locally
optimum test statistic TLO of Eq. (6) becomes

TLO(XI , X Q ) =
n∑

i=1

−sIi
X Ii

Ri

h′(Ri)

h(Ri)
− sQ i

X Q i

Ri

h′(Ri)

h(Ri)

=
n∑

i=1

gLO(Ri)[sIi X Ii + sQ i X Q i], (7)

with the derivative h′(R) = dh(R)/dR and the locally optimum
nonlinearity gLO(R) = −h′(R)/[Rh(R)], which is a sufficient statis-
tic under the assumptions of weak signal limit and large sample
size [1–4].

However, the structure of the locally optimal nonlinearity
gLO(R) in Eq. (7) is determined by the noise probability distri-
bution and also the noise level. Then, for some practical signal
processing tasks, the locally optimal nonlinearity may be too com-
plex to be implemented, and also cannot be established for an
unknown noise distribution [1,4,15]. Therefore, this provides an
opportunity for the suboptimal nonlinearity to improve the de-
tectability by the SR effect. Thus, we consider the test statistic of a
generalized narrowband correlation detector given by

T (XI , X Q ) =
n∑

i=1

g(Ri)(sIi X Ii + sQ i X Q i)

=
n∑

i=1

Ri g(Ri)
[
sIi cos(Φi) + sQ i sin(Φi)

]
, (8)

where the characteristic g(R) is an ad hoc piecewise nonlinear-
ity being a function of the observation envelope R [1,4]. Since the
phase Φ is uniformly distributed over [0,2π ], then under the hy-
pothesis H0, the expectation

E[T |H0] =
n∑

i=1

ER
[

Ri g(Ri)
]
EΦ

[
sIi cos(Φi) + sQ i sin(Φi)

] = 0 (9)

and the variance

var[T |H0] =
n∑

i=1

ER
[

R2
i g2(Ri)

]
EΦ

{[
sIi sin(Φi) + sQ i cos(Φi)

]2}

= ER
[

R2 g2(R)
] n∑

i=1

(
s2

I i + s2
Q i

)
/2

= nP 2
s ER

[
R2 g2(R)

]
, (10)

where ER [·] = ∫ ∞
0 · f RdR , EΦ [·] = ∫ 2π

0 · fΦdΦ and the average sig-
nal power P 2

s = ∑n
i=1(s2

I i + s2
Q i)/(2n). Under the hypothesis H1 and

for weak signal strength θ → 0, the joint distribution can be ex-
panded to the first-order as

f I Q (xIi − θ sIi, xQ i − θ sQ i)

≈ h(Ri) − θh′(Ri)
[
sIi cos(Φi) + sQ i sin(Φi)

]
. (11)

Then, the expectation E[T |H1] can be approximated as

E[T |H1] ≈ −θER
[

Rg(R)h′(R)/h(R)
] n∑

i=1

EΦ

{[
sIi sin(Φi)

+ sQ i cos(Φi)
]2}

= −θnP 2
s ER

[
Rg(R)h′(R)/h(R)

]
, (12)

and the variance var[T |H1] ≈ var[T |H0] [1–4].
Therefore, in the asymptotic case of θ → 0 and n → ∞, the test

statistics T , according to the central limit theorem, both converge
to Gaussian distributions under hypothesis H0 and H1. For a fixed
false alarm probability P f , the decision threshold γ can be de-
termined. When the test statistic T (XIi, X Q i) > γ , the hypothesis
H1 is accepted. Fig. 1 illustrates the structure of the generalized
narrowband correlation detector for hypothesis H1 versus hypoth-
esis H0. Thus, the detection probability Pd [1–4] can be computed
as

Pd = Q
[

Q −1(P f ) −
√

nθ2 P 2
s

√
ξ(T )

]
, (13)

with Q (x) = ∫ ∞
x exp[−t2/2]/√2π dt and its inverse function

Q −1(x). Here, the total signal power is nθ2 P 2
s for the observation
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