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We investigate the stochastic resonance phenomenon in a discrete Hopfield neural network for 
transmitting binary amplitude modulated signals, wherein the binary information is represented by 
two stored patterns. Based on the potential energy function and the input binary signal amplitude, 
the observed stochastic resonance phenomena involve two general noise-improvement mechanisms. 
A suitable amount of added noise assists or accelerates the switch of the network state vectors to follow 
input binary signals more correctly, yielding a lower probability of error. Moreover, at a given added 
noise level, the probability of error can be further reduced by the increase of the number of neurons. 
When the binary signals are corrupted by external heavy-tailed noise, it is found that the Hopfield neural 
network with a large number of neurons can outperform the matched filter in the region of low input 
signal-to-noise ratios per bit.

© 2019 Elsevier B.V. All rights reserved.
1. Introduction

The concept of stochastic resonance, proposed by Benzi [1] in 
bistable physical models [2–4], expresses the possibility for ran-
dom noise to activate the interwell transitions between the min-
ima of the potential energy and in this way improve the syn-
chronized response to a weak periodic signal. Gradually, the phe-
nomenon of stochastic resonance was observed and extended to 
aperiodic signals [5] and suprathreshold (non-weak) signals [6,
7], and various models, wherein the noise-enhanced effect occurs, 
evolved from a single system [3,4,8–11], parallel or coupled nonlin-
ear subsystems [5,6,12–14], neural networks [15–21], to complex 
systems [22–26]. Among these studies, the constructive role of 
noise in Hopfield neural networks [28–37] attacks the greatest at-
tention. Schonfeld [15] first found that the presence of a mild noise 
level can improve the performance of the noisy Hopfield neural 
network characterized by the probability of error. Motivated by 
perceptual bistability involved in the interpretation of ambiguous 
figures, Riani and Simontto [16] observed that the Hopfield neu-
ral network exhibits a maximum signal-to-noise ratio (SNR) at a 
non-vanishing optimum noise level in the framework of stochastic 
resonance [1,4]. Beyond the deterministic periodic stochastic res-
onance effects in a recurrent neural network with Hopfield-type 

* Corresponding author.
E-mail address: fabing.duan@gmail.com (F. Duan).
https://doi.org/10.1016/j.physleta.2019.126143
0375-9601/© 2019 Elsevier B.V. All rights reserved.
memory [18], Katada and Nishimura [38] explored the effective 
responses of the double-well or multi-well model to the aperiodic 
signals stored by different patterns. Given fixed connection weights 
and topology of networks, Pavlović et al. [39] showed that, based 
on the stability intervals associated with the desired and undesired 
states, the “Bad-Good” error of the binary Hopfield neural network 
can be enhanced for an optimal range of noise levels. Actually, the 
application of Hopfield neural networks to signal transmission has 
been adequately investigated as a suboptimal scheme at a lower 
computational cost [41–44].

In this paper, we investigate the stochastic resonance effect in a 
discrete Hopfield network for transmitting binary amplitude mod-
ulated signals, as shown in Fig. 1. The considered Hopfield neural 
network stores two N-dimensional fundamental memory vectors 
as patterns to be memorized, and the synaptic weight matrix W
of the network is defined by the outer-product of the two stored 
patterns [27,28]. The binary digits are mapped onto the stored 
patterns with a weak modulated amplitude in a finite bit inter-
val. Without the added noise components in each neuron, the 
network state vector cannot develop into the corresponding at-
traction basins established by the fundamental memory vectors, 
because the modulated amplitude is too weak or the bit inter-
val is too short. Under these circumstances, the decoded scheme 
will yield error bits, and the probability of bit error of the Hop-
field neural network is considerably high. When a suitable amount 
of noise is added into each neuron, it is observed that the net-
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Fig. 1. Block diagram representation of a discrete Hopfield neural network with synaptic noise components ηi(t) in the ith neuron for transmitting binary signals represented 
by two stored patterns ξ0 and ξ1. Here, A is the modulated amplitude, Tb is the bit interval, and z−1 indicates the function of a unit delay.
work state vector can reach the attraction basins associated with 
the stored patterns, resulting in a much lower probability of bit 
error. This typical behavior of stochastic resonance effect in a dis-
crete Hopfield neural network for transmitting binary signals will 
be investigated in detail. Moreover, as the number of neurons in 
the network increases, the probability of error of the network can 
be further lowered at a given added noise level. Another situa-
tion is when the binary amplitude modulated signal is already 
corrupted by external noise, and the prior information of binary 
digits is lost. In this situation, we can map the bipolar amplitude 
modulated signals onto the fundamental memory vector and its 
inverted (spurious) vector to the network. Under this condition, 
we also compare the performance of the Hopfield neural network 
with that of the matched filter for decoding the binary informa-
tion, especially in certain external heavy-tailed non-Gaussian noisy 
environments.

2. Discrete Hopfield network model

Consider a discrete Hopfield neural network model consisting of 
N mutually connected neurons, as shown in Fig. 1. Let xi(t) denote 
the state of the neuron i at the time t , and the N neurons are 
assumed to be updated synchronously at the next time t + 1 as 
[18,28,38]

xi(t + 1) = tanh[β(vi(t) + si(t) + ηi(t))], (1)

where β is the slope parameter, the local field vi(t) =∑N
j=1 wij x j(t) − θi , the synaptic weight from neuron i to neuron 

j is wij , θi is the activity threshold of the neuron i, the input 
signal is si(t) and the mutually independent synaptic noise com-
ponents ηi(t) are with zero mean and the same variance σ 2

η for 
i, j = 1, 2, · · · , N , as shown in Fig. 1. Then, the network state vector 
is given by x(t) = [x1(t), x2(t), · · · , xN (t)]� . Since the state xi sat-
isfies −1 ≤ xi ≤ 1 in Eq. (1), then N × 1 dimensional fundamental 
memory vectors ξμ(μ = 0, 1), as stored patterns to be memorized 
by the network, have the ith element ξμ

i = ±1.
We randomly choose the two patterns ξμ(μ = 0, 1) out of the 

2N possible patterns, and suppose the two stored patterns ξ 0 and 
ξ1 are almost orthogonal [27,28,40], i.e.

1

N
(ξ0)�ξ1 � 0 . (2)

Then, according to Hebb’s rule of the outer product [27,28], we 
construct the N × N synaptic-weight matrix

W = 1

N

1∑
ξμ(ξμ)� (3)
μ=0
with wij as its i j-th element.
As in Fig. 1, the information-carrying digits 0 and 1 with prior 

probabilities P (0) and P (1), respectively, are modulated as the pat-
terns Aξ0 and Aξ1 that last over the time intervals jTb ≤ t <

( j + 1)Tb for j = 0, 1, 2, · · · . Here, A is the modulated amplitude 
and Tb is the bit interval. Define the potential energy function of 
the Hopfield neural network as

e(x) = 1

2
x(t)�Wx(t) − 1

β

N∑
i=1

ln
[

coshβ
(

Wx(t) − θ + Aξμ
)]

(4)

with the threshold vector θ = [θ1, θ2, · · · , θN ]� . The potential en-
ergy function of Eq. (4) has one global minimum or multiple local 
minima of the energy that correspond to the equilibria of the net-
work state vector x. Setting ∂e(x)/∂x to be zero and for sufficiently 
large time steps, we can find the equilibria x∗ by the nonlinear 
equation

x∗(T ) = tanh[β(Wx∗(T ) − θ + Aξμ)]
for μ = 0 or 1. For instance, consider the network consisting of 
N = 2 neurons, and the two stored patterns are taken as ξ0 =
[1, 1]� and ξ1 = [1, −1]� . It is seen in Fig. 2 (a) that, for the 
modulated amplitude A = 0.02 and the slope parameter β = 1.2, 
the potential energy function e(x) has three local minima and 
one global minimum. Here, the modulated binary signal is taken 
as Aξ1 and holds for a sufficiently large time. In this case, there 
are four equilibria x∗ that locate at the valley bottoms, as shown 
in Fig. 2 (a). Correspondingly, the modulated amplitude A = 0.02
is said to be subthreshold in agreement with the mechanism of 
stochastic resonance. Given an initial state vector x(0) and without 
the assistance of noise, the network state vector x will converge 
to the corresponding equilibrium that captures the initial vector 
x(0). For instance, for trajectories 1 and 2, as the time step t in-
creases, the network state vectors x start from two initial vectors 
x(0), and approach different equilibria x∗,1 = [−0.6076, −0.6956]�
and x∗,2 = [0.6956, −0.6956]� , respectively, as shown in Fig. 2 (a). 
When the modulated amplitude A = 0.1, the potential energy 
function has only one global minimum, as shown in Fig. 2 (b). In 
this case, the modulated amplitude A is suprathreshold. For dif-
ferent initial vectors x(0), network state vectors x approach the 
same equilibrium x∗ = [0.7876, −0.7876]� (see trajectories 3 and 
4), as the evolution of the network state vector lasts for quite a 
long time. Therefore, the potential energy function in Eq. (4) of 
the Hopfield neural network is analogous to that of the bistable 
system [1,4], and as we are going to show the occurrence possibil-
ity of noise-improved effects for transmitting binary signals.

During this signal transmission process, there are two impor-
tant problems that need to be solved: one is the network state 
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Fig. 2. Potential energy function e(x) of a Hopfield neural network with N = 2 neurons for the modulated binary signal Aξ1 with (a) the subthreshold amplitude A = 0.02, 
(b) the suprathreshold amplitude A = 0.1, the slope parameter β = 1.2 and all activity thresholds θi = 0. The color bar represents the value of e(x). (For interpretation of the 
colors in the figure(s), the reader is referred to the web version of this article.)

Fig. 3. Probability of error Pe in Eq. (8) as a function of the added noise level ση for N neurons in the Hopfield neural network with (a) the subthreshold amplitude A = 0.02
and the bit interval Tb = 10, and (b) the suprathreshold amplitude A = 0.1 and the bit interval Tb = 3. The added noise ηi(t) are mutually independent of each other and 
accord to the zero-mean Gaussian distribution. Other parameters are the same as in Fig. 2.
vector x(t) might not approach the expected pattern ξμ for sub-
threshold (weak) modulated signals, because the equilibria x∗ are 
multiple, as illustratively shown in Fig. 2 (a). The other one is that, 
even as the modulated amplitude A is non-weak (suprathreshold) 
(e.g. see Fig. 2 (b)), x(t) does require a sufficiently large time t to 
converge to the sole equilibrium of x∗ , and can not switch cor-
rectly to follow the variety of input signals in a finite bit interval 
Tb . To answer these questions, a quantity of the overlap between 
the network state vector x(t) and the stored pattern ξμ is defined 
as

mμ(t) = 1

N
x(t)�ξμ (5)

to measure how x(t) is close to the stored pattern ξμ for μ = 0
and 1. From Eq. (5), the N-dimensional space V of the state vector 
x(t) can be divided into two subsets V 0 and V 1 as

V 0 = {x|m0(t) ≥ m1(t)}, V 1 = {x|m0(t) < m1(t)}, (6)

where V 0 indicates the attraction basin of the stored pattern ξ0, 
conversely for V 1. As in Fig. 2, when the modulated pattern Aξμ

is fed into the network, the network state vectors x(t) will, in the 
statistical sense, mainly fall into the attraction basin Vμ that de-
pends on Aξμ for μ = 0, 1. Then, at the sampling times t = jTb

for j = 1, 2, · · · and due to the mutually orthogonal stored pat-
terns ξμ , we can decode binary digits by observing which subset 
Vμ the network state vector x(t) falls into. It is equivalent to com-
pute the overlaps mμ( jTb) of Eq. (5) to decode binary digits as

m0( jTb)
0
≷
1

m1( jTb). (7)

Using this decision rule of Eq. (7), we have the decoded binary 
digits and the probability of error

Pe = P (0)P (1|0) + P (1)P (0|1), (8)

where the probability of error bits P (1|0) denotes the decoded 
digit to be 1 when the input digit is 0, and conversely for P (0|1). 
We will find that the addition of a suitable amount of noise will 
induce or expedite the convergence process of x(t) into the sub-
set Vμ , resulting in a nonmonotonic behavior of the probability of 
error Pe explained as the stochastic resonance effect in Hopfield 
neural networks.

3. Stochastic resonance effects in Hopfield neural networks

Fig. 3 shows the behaviors of the probability of error Pe in 
Eq. (8) as a function of the added noise level ση for N neurons 
in the Hopfield network. For both subthreshold (weak) amplitude 
A = 0.02 and suprathreshold (non-weak) amplitude A = 0.1, it 
is seen in Figs. 3 (a) and (b) that, as the added noise level ση

increases, the probability of error Pe gradually decreases to a mini-
mum at an optimal but non-zero level of ση , and then increases for 



4 L. Duan et al. / Physics Letters A 384 (2020) 126143
Fig. 4. Probability of error Pe as a function of parameters (Tb, ση) for (a) the subthreshold amplitude A = 0.02 and (b) the suprathreshold amplitude A = 0.1 in the Hopfield 
neural network with N = 50 neurons. The color bar represents the value of Pe . The added noise and other parameters are the same as in Fig. 2.

Fig. 5. Overlap mμ(t) for the subthreshold amplitude A = 0.02 and bit interval Tb = 10 at added noise levels (a) ση = 0 and (b) ση = 0.6. Other parameters are the same as 
in Fig. 2.
large noise levels. This is the stochastic resonance effect in Hop-
field neural networks that occurs for both weak and non-weak 
modulated amplitudes. Moreover, as the neuron number N in-
creases, the minimum of Pe obtained at the optimal noise level 
also gradually decreases. The reason is that, under this condition, 
the transmission power ε = N A2Tb of the binary signal and the in-
put SNR per bit N A2Tb/σ

2
η also increase with the neuron number 

N . Thus, it is seen in Fig. 3 that the Hopfield neural network with 
larger neuron number N presents a lower probability of error Pe

at a given added noise level ση .
However, when the bit interval Tb varies, the probability of 

error Pe will exhibit different behaviors for subthreshold and 
suprathreshold modulated amplitudes. Fig. 4 illustrates the results 
of Pe in Eq. (8) as a function of the bit interval Tb and the added 
noise level ση for amplitudes A = 0.02 and 0.1 in the Hopfield 
neural network with N = 50 neurons. It is seen in Fig. 4 (a) that, 
upon the increase of bit interval Tb , the minimum probability 
of error Pe decreases due to the increased transmission power 
ε = N A2Tb . But, no matter how long the bit interval Tb is, the 
probability of error Pe at the added noise level ση = 0 is always 
about 0.5. For the suprathreshold amplitude A = 0.1, it is shown 
in Fig. 4 (b) that there is a critical bit interval T c

b = 12. When the 
bit interval Tb ≥ T c

b , the initial probability error Pe at ση = 0 is 
zero. These interesting results will be interpreted as follows.

From the observations in Figs. 4 (a) and (b), we argue that 
the stochastic resonance effect contains the classical mechanism 
of an amplitude effect, in which a small input signal receives as-
sistance from noise to reach the assigned attraction basin of the 
network. This explanation can be further explained by Fig. 5 (a) 
for N = 2 × 103 neurons in a Hopfield neural network. For the 
subthreshold modulated amplitude A = 0.02 and without the ad-
dition of noise, as shown in Fig. 5 (a), the overlap m1(t) is always 
larger than the overlap m0(t), because the network state vector 
x(t) always falls into the subset V 1 that is the attraction basin 
of the stored pattern ξ1. Without the help of noise (ση = 0), the 
network state vector x(t) can not escape from this attraction basin 
and then we obtain the overlap inequality m1( jTb) ≥ m0( jTb). This 
inequality does not vary at each sampling times t = jTb , and leads 
to one half error digits and the probability of error Pe ≈ 0.5 at 
ση = 0, even the input modulated signal Aξ1 lasts for a longer bit 
interval Tb (see Fig. 4 (a)). It is seen in Fig. 5 (b) that, at an op-
timal added noise level ση = 0.6, the overlap mμ(t), assisted by 
the added noise, alternates over time according to the modulated 
vectors Aξμ for μ = 0 and 1. Although the addition of noise to 
the network randomizes the output states of neurons and reduces 
the values of mμ(t), it forms improved decision according to the 
overlap inequalities m1( jTb) ≷m0( jYb) of Eq. (7), leading to an im-
proved probability of error Pe , as shown in Fig. 3 (a).

Furthermore, the stochastic resonance effect is also a temporal 
effect, as shown in Fig. 3 (b), in which a non-weak input signal re-
ceives assistance from noise to switch correctly to follow the vari-
ability of the binary information carried in each of the successive 
bit intervals. This explanation is illustrated in Fig. 6 for a Hopfield 
neural network with N = 2 × 103 neurons. For the suprathreshold 
amplitude A = 0.1 and without the added noise (ση = 0), the out-
put state vector of the network can not reach the attraction basin 
that corresponds to the modulated vector Aξμ in such a short bit 
interval of Tb = 3, as shown in Fig. 6 (a). Specially, at time t = 15, 
two same digits 0 join together and the state vector of the network 
x(t) is much closer to the modulated vector Aξ 0, rather than Aξ1. 
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Fig. 6. Overlap mμ(t) for the suprathreshold amplitude A = 0.1 and bit interval Tb = 3 at added noise levels (a) ση = 0 and (b) ση = 0.9. Other parameters are the same as 
in Fig. 2.
Besides this special case, the overlaps almost accord with the rela-
tion m1( jTb) ≥ m0( jTb), and the probability of error Pe is usually 
larger. When an optimal amount of noise (ση = 0.9) is added to 
the network, the overlaps mμ(t), accelerated by the added noise, 
will capture the variability of input binary modulated vectors Aξμ

more correctly in each bit interval Tb , as shown in Fig. 6 (b). There-
fore, the probability of error Pe is much lower at the optimal noise 
level ση = 0.9, as indicated in Fig. 3 (b). It is also noted that, for a 
sufficient large bit interval Tb and without the added noise ση = 0, 
the output state vector x(t) of the network can reach the attraction 
basin that corresponds to the modulated vector Aξμ , and the over-
laps accord well with the relation m1( jTb) ≥ m0( jTb), as shown 
in Fig. 4 (b). In this case, the addition of noise to neurons is un-
necessary. Of course, for both modulated amplitudes A = 0.02 and 
0.1, too much added noise will completely randomize the overlaps 
mμ(t) and results in the wrong relation m1( jTb) ≷m0( jTb). Then, 
for a large added noise level ση , the decoding rule yields more dig-
its decoded in error and a higher probability of error Pe , as shown 
in Figs. 3 and 4.

In practice, we often encounter such a situation: the infor-
mation-carrying digits 0 and 1 are mapped on the bipolar pulse-
amplitude modulated waveforms −A or +A in each bit interval, 
but are corrupted by external white noise υ(t) with the standard 
derivation συ . Under this circumstance, the noisy input becomes 
I(t) = ±A +υ(t) and the prior information of digits represented by 
±A is hidden by the noise. Thus, two selected patterns ξ 1 and ξ0

cannot be assigned to the modulated amplitudes ±A. Fortunately, 
when the neuron thresholds θi = 0, the spurious state vectors −ξμ

are also stable [27,28]. This conclusion can be also demonstrated 
by replacing ξμ and x(t) with −ξμ and −x(t) in Eqs. (1) and (4). 
This also inspires us to reform the decoding scheme in Fig. 1 as 
follows: mapping digits 0 onto −Aξμ and digits 1 onto +Aξμ , 
wherein the decision rule of Eq. (7) is still applicable. For instance, 
we take the modulated amplitude A = 0.1, the bit interval Tb = 4
and the standard derivation of the external Gaussian noise υ(t) is 
συ = 0.1. Then, the input SNR per bit of the noisy input I(t) can 
be calculated as R in = 10 log10(A2Tb/σ

2
υ ) = 6.02 dB. It is seen in 

Fig. 7 that, as the added noise level ση increases, the probability 
of error Pe also has a minimum at an optimal non-zero value of 
ση for different numbers N of neurons. The addition of noise to 
the network is still useful to the improvement of the probability of 
error at a non-zero optimal noise level. However, due to the exter-
nal noise υ(t), the initial input SNR per bit R in is given. Then, the 
probabilities of error Pe approach to each other asymptotically for 
very large neuron numbers N , as shown in Fig. 7 (e.g. N = 103 and 
2 × 103), even with the help of the added noise η(t).

From the above analysis of the probability of error, we note 
that the Hopfield neural network can be viewed as a receiver for 
Fig. 7. Probability of error Pe versus the added noise level ση for different neurons 
numbers N . Here, the modulated amplitude A = 0.1, the bit interval Tb = 4, and the 
standard derivation of external noise is συ = 0.1. Other parameters are the same as 
in Fig. 2 (b).

decoding the transmitted binary signals. On the other hand, for 
detecting a known signal in additive white Gaussian noise, it is 
well known that the optimal detector is the matched filter or linear 
correlation receiver given by

( j+1)T b∑
n= jTb

A I(t)
1
≷
0

( j+1)T b∑
n= jTb

−AI(t), (9)

with the probability of error defined by

Pe = Q (
√

R in) = Q
(√

A2Tb/σ 2
υ

)
, (10)

where Q (x) = ∫ ∞
x exp(−t2/2)/

√
2πdt [45]. Due to its simplic-

ity for both practical implementation and theoretical analysis, 
the matched filter is very often exploited for detection, even 
when it is no longer optimal for detecting known signals in 
non-Gaussian noise. For these reasons the matched filter repre-
sents a meaningful reference that we shall use for comparison 
with the Hopfield neural networks under study. Specifically, con-
sider the generalized Gaussian noise υ(t) with its distribution 
fυ(x) = c1 exp

(−c2 |x/συ |α)
/συ , where the exponent α > 0, c1 =

α
2 �

1
2 ( 3

α )/�
3
2 ( 1

α ), c2 = [�( 3
α )/�( 1

α )] α
2 , and �(x) is the gamma func-

tion [45]. This non-Gaussian noise model is often used to mimic 
practical noisy environments wherein signals and systems are op-
erated. As the exponent α varies, we can conveniently consider a 
spectrum of densities ranging from the Gaussian (α = 2) to those 
with relatively much faster (α > 2) or slower (α < 2) rates of 
exponential decay of their tails [46]. For a given R in, we add N
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Fig. 8. Minimum probability of error Pe of the Hopfield network with 2 × 103

neurons as a function of the input SNR per bit R in = 10 log10(A2 Tb/σ 2
υ ). For com-

parison, the probability of error Pe of the matched filter is also plotted. Other 
parameters are the same as in Fig. 7.

mutually independent Gaussian noise ηi(t) into the Hopfield neu-
ral network with N neurons, and tune the added noise level ση

optimally to obtain the minimum probability of error Pe , as shown 
in Figs. 3 and 7. For different noise types of υ(t) with exponents 
α = 0.5, 1, 2 and 10, the minimum probability of error Pe is plot-
ted as a function of the input SNR per bit R in. For comparison, 
the probability of error Pe of the matched filter in Eq. (10) is also 
plotted. It is seen in Fig. 8 that, for α = 0.5, the Hopfield neu-
ral network, compared with the matched filter, provides a lower 
probability of error as the input SNR per bit is less than 3 dB. 
This comparison results demonstrate the superiority of the Hop-
field neural network with a large number of neurons for transmit-
ting the binary signals buried in the heavy-tailed background noise 
υ(t) (α = 0.5). Thus, we expect that the performance of the Hop-
field neural network is worthy of being further studied for more 
rigorous noisy environments.

4. Conclusion

In this paper, we study stochastic resonance effects in a discrete 
Hopfield neural network for transmitting binary amplitude modu-
lated signals. The potential energy function of the Hopfield neural 
network, similar to that of the well-known bistable system model, 
has multiple minima or only one minimum that is determined by 
the built-in stored patterns of the network. Thus, stochastic res-
onance effects in a discrete Hopfield neural network involve two 
general mechanisms: When the amplitude is small, the network 
state vectors, in the statistical sense, converge to the minimum 
equilibria with the help of added noise, leading to an improved 
probability of error. For modulated signals with large amplitudes, it 
is found that the addition of noise into the neurons of the network 
can accelerate the convergence process of the network state vector, 
and makes the network state vectors switch more correctly to fol-
low the variability of the binary signal in successive bit intervals. In 
addition, when the bipolar binary amplitude modulated signals are 
corrupted by the external noise, the designed transmission scheme 
of discrete Hopfield neural networks is also valid by mapping bi-
nary digits onto one stored pattern and its spurious state. Finally, 
we discuss the performance improvement of Hopfield neural net-
works in the heavy-tailed non-Gaussian noise background.

Some interesting open questions arise. For instance, the multi-
stability and mono-stability of the potential energy function de-
pend on a critical amplitude Ac that needs to be theoretically 
determined. We also note that the binary information here is car-
ried in the two stored patterns, but not in the memory contained 
in the temporal sequencing of these state vectors. Therefore, we 
can extend the binary signal transmission scheme to the M-ary 
signal case, wherein the multiple stored patterns represent M-ary 
digits in the considered Hopfield neural networks. Another inter-
esting question is for which type of background noise the Hop-
field neural networks are an approximatively optimum receiver for 
transmitting information-carrying signals and yields a much lower 
probability of error than that of the matched filter, and which kind 
of added noise yields the lowest probability of error in this case? 
In addition, the transmission process of Fig. 1 is a case of syn-
chronized communication. Then, the bit interval Tb at which digits 
are emitted must be known at the decision, and the state vec-
tors x( jTb) are sampled at each end time of bit intervals. Then, if 
the network dynamics requires a large delay of the convergence of 
the state vector x(t) to the correct attraction basin, this decision 
rule will lead to some wrong bits, and the designed transmission 
scheme denoted by Fig. 1 needs to be improved. These questions 
deserve to be further investigated.
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