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The well-known refinement of the Nash Equilibrium (NE) called an Evolutionarily Stable Strategy (ESS)
is investigated in the quantum Prisoner’s Dilemma (PD) game that is played using an Einstein–Podolsky–
Rosen type setting. Earlier results report that in this scheme the classical NE remains intact as the unique
solution of the quantum PD game. In contrast, we show here that interestingly in this scheme a non-
classical solution for the ESS emerges for the quantum PD.

© 2009 Elsevier B.V. All rights reserved.
1. Introduction

In the area of quantum games [1–38], a result from a recent
paper [28] shows that, in the quantization scheme based on per-
forming generalized Einstein–Podolsky–Rosen–Bohm (EPR–Bohm)
experiments [39–44], the two-player quantum game of Prison-
er’s Dilemma (PD) does not offer a new Nash Equilibrium (NE1)
[45,46], which is different from the classical NE of the game in
which both players play the strategy of defection. This quantiza-
tion scheme constructs the quantum PD in two steps:

(1) The players’ payoff relations are re-expressed in terms of
joint probabilities corresponding to generalized EPR–Bohm exper-
iments involving a bipartite system shared between two players.
In a run each player receives one part of the system while having
two observables both of which are dichotomic. A player’s strat-
egy is defined to be entirely classical that consists of a linear
combination (with real and normalized coefficients) of choosing
between his/her two observables. The scheme embeds the classi-
cal game within the quantum game by placing constraints on joint
probabilities. These constraints guarantee that for factorizable joint
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probabilities the classical game emerges along with its particular
outcome.

(2) As a set of joint probabilities that violates Bell’s inequality
must always be non-factorizable, the corresponding quantum game
is constructed by retaining the constraints on joint probabilities,
obtained in the last step, while they can now be non-factoriz-
able.

By constructing quantum games from non-factorizable joint
probabilities, which a quantum-mechanical apparatus can provide,
this quantization scheme avoids state vectors and brings out the
essence of quantum games without referring to quantum mechan-
ics — an important consideration in developing the present ap-
proach to quantum games. Game theory finds applications in a
range of disciplines [47] and we believe that more accessible ap-
proaches to quantum games remain in need of development.

It turns out that in this quantization scheme the constraints on
joint probabilities obtained for the game of PD, which embed the
classical game within the quantum game, come out to be so strong
that the subsequent permitting joint probabilities to become non-
factorizable cannot change the outcome of the game. The quantum
PD game that is played in this framework, therefore, generates an
outcome identical to the one obtained in the classical game in
which both players defect. This finding motivates us in the present
Letter to investigate if non-factorizable joint probabilities can bring
out some non-classical outcome for a refinement of the NE in the
PD game, while not affecting the NE itself.
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In this Letter we show that surprisingly this indeed is the case.
That is, with an EPR–Bohm type setting for playing a quantum
game a set of non-factorizable joint probabilities is able to produce
a non-classical outcome in the quantum PD game to a well-known
refinement on the set of symmetric Nash equilibria — called an
Evolutionarily Stable Strategy (ESS) [48–50]. This contrasts inter-
estingly with the reported result [28] that for the same game,
non-factorizable joint probabilities are unable to produce a non-
classical outcome for a NE and the classical NE remains intact as
the unique solution of the quantum PD game.

Using the quantization schemes of Eisert et al. [5] and Mari-
natto and Weber [11], the game-theoretic concept of an ESS was
originally investigated in the area of quantum games by Iqbal
and Toor in a series of papers [12,14,17,20,24] and was reviewed
by Iqbal and Cheon in a book chapter [33]. The present Letter
addresses the issues raised in these publications using the new
approach towards constructing quantum games recently proposed
by Iqbal and Cheon [28], which exploits non-factorizable property
of quantum-mechanical joint probabilities in the construction of
quantum games.

In a recent paper [36] we have investigated a quantum ver-
sion of the Matching Pennies game played in this quantization
scheme to find that non-classical NE emerge in this game for sets
of (quantum-mechanical) joint probabilities that maximally violate
CHSH form of Bell’s inequality [43]. The present Letter considers
the PD game in this quantization scheme and explores the fate
of a well-known refinement of the NE concept in relation to joint
probabilities becoming non-factorizable.

2. Evolutionarily stable strategy

An ESS is the central solution concept of evolutionary game
theory [49,50] (EGT). In EGT genes are considered players in sur-
vival games and players’ strategies are the behavioral characteris-
tics imparted by genes to their host organism, while the payoff to a
gene is the number of offspring carrying that gene [50]. The play-
ers’ strategies (which the players genes play until the biological
agents carrying those genes die) and their payoffs become related
as host organisms having favourable behavioral characteristics are
better able to reproduce than others.

Referring to a pool of genes, the notion of an ESS considers a
large population of players (genes) in which players are matched in
random pair-wise contests. We call the two players in an interac-
tion to be player 1 and player 2. Each player can play the strategy
S or the strategy S ′ in a pair-wise interaction and the payoff ma-
trix for the game is given as

Player 1
S
S ′

Player 2

S S ′(
(a1,b1) (a2,b2)

(a3,b3) (a4,b4)

)
, (1)

where the two entries in the bracket are player 1’s and player 2’s
strategies, respectively. For example, player 1’s payoff is Π1(S, S) =
a1 when both players play the strategy S . It is found useful to
define

A =
(

a1 a2

a3 a4

)
, B =

(
b1 b2

b3 b4

)
(2)

to be player 1’s and player 2’s payoff matrices, respectively. We
write players’ payoffs as Π1,2(x, y) where subscripts 1 or 2 refer
to the players and x and y in bracket are player 1’s and player 2’s
strategies, respectively.

An ESS deals with symmetric games in which

Π1(x, y) = Π2(y, x) and Π1(y, x) = Π2(x, y) (3)
saying that, for example, player 1’s payoff when she/he plays x
and player 2 plays y, is same as the player 2’s payoff when she/he
plays y and player 1 plays x, where x and y can be either S or S ′ .
In words, in a symmetric game a player’s payoff is determined by
the strategy, and not by the identity, of a player.

For a symmetric game using subscripts in payoff relations be-
comes redundant as Π(x, y) denotes payoff to an x-player against
a y-player. This allows not to refer to players at all and to de-
scribe Π(x, y) as the payoff to x-strategy against the y-strategy.
The game given by the matrix (1) is symmetric when A = B T . The
game of PD is a symmetric game, which is defined by the con-
straint a3 > a1 > a4 > a2.

Assume that, in random pair-wise contests, the strategy x is
played by a number of players whose relative proportion in the
population is ε whereas the rest of the population plays the strat-
egy x� . EGT defines the fitnesses [49,50] of the strategies x and x�

as

F (x) = εΠ(x, x) + (1 − ε)Π(x, y),

F (x�) = εΠ(x�, x) + (1 − ε)Π(x�, x�), (4)

in terms of which the strategy x� is called an ESS when F (x�) >

F (x), i.e.

εΠ(x�, x) + (1 − ε)Π(x�, x�) > εΠ(x, x) + (1 − ε)Π(x, x�). (5)

Since ε � 1, the terms containing ε can be ignored effectively. So
F (x�) > F (x) implies Π(x�, x�) > Π(x, x�). If, however, Π(x�, x�) =
Π(x, x�), we need to consider the terms containing ε . In this case,
F (x�) > F (x) requires that Π(x�, x) > Π(x, x). We then define an
strategy x� to be evolutionarily stable iff for all strategies x �= x�

either

(1) either Π(x�, x�) − Π(x, x�) > 0 or if

(2) Π(x�, x�) = Π(x, x�), then Π(x�, x) − Π(x, x) > 0. (6)

This definition shows that an ESS is a symmetric NE [49,50] sat-
isfying an additional stability property. The stability property en-
sures that [50] if an ESS establishes itself in a population, it is able
to withstand pressures of mutation and selection. Using a game-
theoretic wording, an ESS is a refinement on the set of symmetric
Nash equilibria and, though being a static solution concept, it de-
scribes dynamic evolutionary situations.

3. ESS in prisoner’s dilemma when joint probabilities
are factorizable

We consider game-theoretic solution-concept of an ESS in
quantum-mechanical regime by observing that quantum mechan-
ics can make only probabilistic predictions and any setup for a
quantum game must have a probabilistic description. That is, when
a quantum game is constructed using joint probabilities, even the
so-called one-shot game must first be translated into some ap-
propriate probabilistic version before one considers its quantum
version. This translation permits us, in the following step, to in-
troduce (quantum-mechanical) joint probabilities (that may not be
factorizable) and to find if and how such probabilities can change
the outcome of the game.

To achieve this in view of the ESS concept, we consider an
EPR–Bohm type setting [28] consisting of a bipartite dichotomic
physical system that the two players share to play the game (1).
This system can be described by the following 16 joint probabili-
ties pi with 1 � i � 16:

pi = Pr(π1,π2;a,b)

with i = 1 + (1 − π2) + 2
(1 − π1) + 4(b − 1) + 8(a − 1), (7)
2 2
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where π1 is player 1’s outcome, that can have a dichotomic value
of +1 or −1, obtained when she/he plays the strategy S or S ′ . We
associate S ∼ 1 and S ′ ∼ 2 that then assigns a value for a. Simi-
larly, π2 is player 2’s outcome, that can have a dichotomic value
of +1 or −1, obtained when she/he plays the strategy S or S ′ . The
same association S ∼ 1 and S ′ ∼ 2 then assigns a value for b. For
example, the joint probability corresponding to the situation when
player 1’s outcome π1 is +1 when she/he plays S ′ (i.e. a = 2),
while player 2’s outcome π2 is −1 when she/he plays S (i.e. b = 1),
is obtained from (7) as p10.

We now define players’ payoff relations when they play the
game (1) using this (probabilistic) physical system to which the
16 joint probabilities (7) correspond,

ΠA,B(x, y) =
(

x

1 − x

)T (
ΠA,B(S, S) ΠA,B(S, S ′)
ΠA,B(S ′, S) ΠA,B(S ′, S ′)

)(
y

1 − y

)
,

(8)

where

ΠA,B(S, S) =
4∑

i=1

(a,b)i pi,

ΠA,B(S, S ′) =
8∑

i=5

(a,b)i−4 pi,

ΠA,B(S ′, S) =
12∑

i=9

(a,b)i−8 pi,

dΠA,B(S ′, S ′) =
16∑

i=13

(a,b)i−12 pi . (9)

Here T indicates transpose and x and y are the probabilities, de-
finable over a large number of runs, with which Alice and Bob
choose the strategies S and S ′ , respectively. Joint probabilities are
normalized, i.e.

4∑
i=1

pi = 1 =
8∑

i=5

pi,

12∑
i=9

pi = 1 =
16∑

i=13

pi . (10)

A Nash equilibrium strategy pair (x�, y�) is then obtained from the
inequalities:

ΠA(x�, y�) − ΠA(x, y�) � 0, ΠB(x�, y�) − ΠB(x�, y) � 0, (11)

and a symmetric game, defined by the conditions (3), is obtained
when

ΠA(S, S) = ΠB(S, S), ΠA(S, S ′) = ΠB(S ′, S),

ΠA(S ′, S) = ΠB(S, S ′), ΠA(S ′, S ′) = ΠB(S ′, S ′). (12)

As it is reported in Ref. [28], in case joint probabilities are factor-
izable one can find r, s, r′, s′ ∈ [0,1] such that [28]

p1 = rr′, p2 = r(1 − r′), . . . , p8 = (1 − r)(1 − s′),

p9 = sr′, p10 = s(1 − r′), . . . , p16 = (1 − s)(1 − s′), (13)

and the Nash inequalities (11) are reduced to [28]

(ŗ − ş)T A
{

y�(ŗ′ − ş′) + ş′}(x� − x) � 0,{
x�(ŗ − ş)T + şT }

B( ŗ′ − ş′)(y� − y) � 0, (14)

where

ŗ =
(

r
1 − r

)
, ş =

(
s

1 − s

)
,

ŗ′ =
(

r′
1 − r′

)
, ş′ =

(
s′

1 − s′
)

.

When joint probabilities are factorizable, the conditions (12) to
obtain a symmetric game can be shown to reduce to A = B T and
the payoff relations (8) are then simplified to

Π(x, y) =
(

x
1 − x

)T (
Π(S, S) Π(S, S ′)
Π(S ′, S) Π(S ′, S ′)

)(
cy

1 − y

)
, (15)

where

Π(S, S) = ŗT Mŗ′, Π(S, S ′) = ŗT Mş′,

Π(S ′, S) = şT Mŗ′, Π(S ′, S ′) = şT Mş′, (16)

and M = A = B T . The second inequality in (11) is ΠB(x�, y�) −
ΠB(x�, y) � 0 that becomes ΠA(y�, x�) − ΠA(y, x�) � 0 for a sym-
metric game. Comparing it to the first inequality in (11) gives
x� = y� and x = y and the definition of a symmetric NE is reduced
simply to Π(x�, x�) − Π(x, x�) � 0.

Evaluating the two parts of the ESS definition (6) from a sym-
metric game payoff relations (15) we find

Π(x�, x�) − Π(x, x�) = (x� − x)(x�Δ1 + Δ2),

Π(x�, x) − Π(x, x) = (x� − x)(xΔ1 + Δ2) (17)

where Δ1 = Π(S, S) − Π(S ′, S) − Π(S, S ′) + Π(S ′, S ′) and Δ2 =
Π(S, S ′) − Π(S ′, S ′). Now Δ1 and Δ2 are evaluated using (16) as

Δ1 = (r − s)(r′ − s′)Ω1 and Δ2 = (r − s)(s′Ω1 − Ω2), (18)

where Ω1 = a1 − a2 − a3 + a4 and Ω2 = a4 − a2. Recall that PD is
defined by the constraints a3 > a1 > a4 > a2 and we have Ω2 > 0,
which asks for a natural association of the strategy of defection
in PD to the strategy x� = 0 played in the present setting. When
both players play this strategy we obtain from Eq. (15) Π(0,0) =
Π(S ′, S ′), which is the payoff to each player in the classical
game when they both defect. With this association Eqs. (17) give
Π(0,0) − Π(x,0) = −xΔ2 and Π(0, x) − Π(x, x) = −x(xΔ1 + Δ2),
which correspond to the first and second parts of the ESS defini-
tion (6), respectively. For this strategy if we take

s′ = Ω2/Ω1, r − s = r′ − s′, (19)

then the two parts of the ESS definition are reduced to

Π(0,0) − Π(x,0) = 0,

Π(0, x) − Π(x, x) = −x2(r − s)2Ω1. (20)

As Ω1 = Ω2 − Ω3, where Ω3 = (a3 − a1), for PD both
Ω2,Ω3 > 0. As Ω2 > 0 and s′ = Ω2/Ω1 is a probability we re-
quire the constraint 1 > Ω2/Ω1 > 0, so Ω1 > Ω2 > 0, from which
one obtains Ω2 > Ω3, i.e.

a4 − a2 > a3 − a1 (21)

along with this, of course, we also have a3 > a1 > a4 > a2. The ex-
tra requirement (21) defines a subset of the games that are put
under the name of a generalized PD. For this game the result (20)
states that the strategy x� = 0 is not an ESS, though it is a sym-
metric NE, when joint probabilities are factorizable, in the sense
described by (13), and have the constraints (19) imposed on them.

4. Obtaining the quantum game

There can be several different possible routes in obtaining a
quantum game. The general idea is to establish correspondence,
as a first step, between classical feature of a physical system and
a classical game in the sense that classical game results because
of those features. In the following step, the classical feature are
replaced by quantum feature, while the obtained correspondence
in the first step is retained. One then looks at the impact which
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the quantum feature has on the solution/outcome of the game
under consideration. As the mentioned correspondence can be es-
tablished in several possible ways, there can be many different
routes in obtaining a quantum game.

To consider ESS in quantum PD we translate playing of this
game in terms of factorizable joint probabilities, which is achieved
in the previous section. We then find constraints on these proba-
bilities ensuring that the classical game remains embedded within
the quantum game, which is achieved by Eq. (19). For factoriz-
able joint probabilities Eqs. (13) hold that permit us to translate
the constraints (19) in terms of joint probabilities. In the follow-
ing step, the joint probabilities are allowed to be non-factorizable,
while they continue to be restricted by the obtained constraints.

Joint probabilities pi become non-factorizable when one cannot
find r, s, r′, s′ ∈ [0,1] such that pi can be expressed in terms of
them, i.e. as given in (13). The same payoff relations (8), therefore,
correspond to the quantum game, whose parts are given by (9),
and players’ strategies remain exactly the same.

We require that the constraints (19), when they are re-
expressed using (13) in terms of joint probabilities pi , remain
valid while pi are allowed to be non-factorizable. We notice that
Eqs. (13) allow re-expressing the constraints (19) in terms of pi as

r = p1 + p2, r′ = p1 + p3,

s = p9 + p10, s′ = p5 + p7, (22)

and the constraints (19) take the form

p5 + p7 = Ω2/Ω1,

p1 + p2 − p9 − p10 = p1 + p3 − p5 − p7. (23)

At this stage we refer to the analysis of joint probabilities
in generalized EPR–Bohm experiments by Cereceda [44] reporting
that eight out of sixteen joint probabilities can be eliminated using
the normalization constraints (10) and the causal communication
constraints given as follows:

p1 + p2 = p5 + p6, p1 + p3 = p9 + p11,

p9 + p10 = p13 + p14, p5 + p7= p13 + p15,

p3 + p4 = p7 + p8, p11 + p12 = p15 + p16,

p2 + p4 = p10 + p12, p6 + p8 = p14 + p16. (24)

The constraints (10), (24), of course, do hold for factorizable
joint probabilities that are given by Eqs. (13). Cereceda expresses
probabilities p2, p3, p6, p7, p10, p11, p13, p16 in terms of probabil-
ities p1, p4, p5, p8, p9, p12, p14, p15 as

p2 = (1 − p1 − p4 + p5 − p8 − p9 + p12 + p14 − p15)/2,

p3 = (1 − p1 − p4 − p5 + p8 + p9 − p12 − p14 + p15)/2,

p6= (1 + p1 − p4−p5−p8 − p9 + p12 + p14 − p15)/2,

p7 = (1 − p1 + p4 − p5 − p8 + p9 − p12 − p14 + p15)/2,

p10 = (1 − p1 + p4 + p5 − p8 − p9 − p12 + p14 − p15)/2,

p11 = (1 + p1 − p4 − p5 + p8 − p9 − p12 − p14 + p15)/2,

p13 = (1 − p1 + p4 + p5 − p8 + p9 − p12 − p14 − p15)/2,

p16 = (1 + p1 − p4 − p5 + p8 − p9 + p12 − p14 − p15)/2, (25)

and the payoff relations (8) now involve only eight ‘independent’
probabilities.
5. ESS in quantum prisoner’s dilemma

For the strategy of defection (x� = 0) in the quantum game with
payoff relations (8), the ESS definition (6) and Eqs. (17) give

Π(0,0) − Π(x,0) = x
{
Π(S ′, S ′) − Π(S, S ′)

}
, (26)

which is equated to zero so that the strategy x� = 0 remains a
symmetric NE in the quantum game, as it is the case in the game
when joint probabilities are factorizable, and which is described by
Eqs. (20). With setting Π(S ′, S ′) = Π(S, S ′) the second part of the
ESS definition (6), which is evaluated in (17), reduces itself to

Π(0, x) − Π(x, x) = x2{Π(S ′, S) − Π(S, S)
}
. (27)

With Cereceda’s analysis and using Eqs. (25), setting Π(S, S ′)−
Π(S ′, S ′) = 0 results in

p1 + p5 + p8 + p12 + p14 + p15 = 1 + p4 + p9,

p4 + p5 + p8 + p9 + p14 + p15 = 1 + p1 + p12, (28)

and under the constraints (28) the strategy x� = 0 then remains
a symmetric NE even for non-factorizable joint probabilities. Also,
using Eqs. (25) the constraints (23) can be re-expressed in term of
‘independent probabilities’ as

1 − p1 + p4 + p5 − p8 + p9 − p12 − p14 + p15 = Ω2/Ω1,

p5 + p12 = p8 + p9, (29)

which allows us to arbitrarily eliminate probabilities p1 and p12
from the constraints (28) to re-express them as

p5 + p15 = Ω2/Ω1, p8 + p14 = 1 − Ω2/Ω1. (30)

Using Eqs. (25), while considering the strategy x� = 0 for the
second part of the ESS definition (27) becomes

Π(0, x) − Π(x, x) = x2{Ω3(p1 − p9) + Ω2(p12 − p4)
}
, (31)

which simplifies further when we eliminate p1 and p12 using (29)
and afterwards eliminate p14 and p15 using (28) to obtain

Π(0, x) − Π(x, x) = x2(p8 + p9 − p4 − p5)Ω1. (32)

As Ω1 > 0, the strategy x� = 0 thus becomes an ESS if

p8 + p9 > p4 + p5, (33)

and when joint probabilities pi satisfy constraints (29), (28), along
with the constraints given by normalization and causal communi-
cation.

6. Discussion

The game-theoretic solution concept of an ESS is investigated
within a quantization scheme that constructs quantum games from
the non-factorizable property of quantum-mechanical joint prob-
abilities. Neither entanglement nor violation of Bell’s inequality
[41,43] is used explicitly in this construction.2

Eq. (32) shows that probabilities p4, p5, p8, p9 can be taken
to be ‘independent’ as, out of the remaining four probabilities, the

2 As a set of joint probabilities that violates Bell’s inequality must be non-
factorizable, a non-classical solution of a game played in this scheme can emerge
even when there is no entanglement and the quantum state under consideration is
separable. This is understandable as a direct link between violation of Bell’s inequal-
ity and separability of a quantum state is established only for pure states via Gisin’s
theorem [51]. A separable mixed state may still violate a Bell’s inequality, which
will correspond to a set of non-factorizable joint probabilities. This is also consis-
tent with reported results [52] showing, for example, that a quantum game can
have a solution in the so-called “pseudo-classical domain”, in which Bell’s inequal-
ity is not violated. These domains exist between fully classical and fully quantum
domains — where Bell’s inequality is violated.
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probabilities p14 and p15 are obtained from (30) and probabilities
p1 and p12 are obtained from (29). The remaining eight probabili-
ties p2, p3, p6, p7, p10, p11, p13, p16 are then obtained from (25).
The scheme used to obtain a quantum game assumes that a set of
non-factorizable joint probabilities, which satisfies normalization
(10) and the causal communication constraint (24) can always be
generated by some bipartite quantum state (pure or mixed) pro-
vided that the set does not violate CHSH form of Bell’s inequality
beyond Cirel’son’s limit [53].

A natural question here is to ask if Bell’s inequality is violated
by requiring p8 + p9 > p4 + p5, which makes the strategy of defec-
tion (x� = 0) an ESS. To answer this we consider probabilistic form
[44] of CHSH version of Bell’s inequality [43] expressed as −2 �
Δ � 2 where Δ = 2(p1 + p4 + p5 + p8 + p9 + p12 + p14 + p15 − 2).
We insert values for p1, p12, p14, p15 using (29), (30) to obtain

Δ = 2(2p4 + p9 − 1). (34)

Now, comparing (34) to (33) shows that the violation of the CHSH
inequality is not essential for the strategy of defection to be an ESS
for a set of non-factorizable probabilities, when for a factorizable
set of probabilities this strategy is non-ESS and a symmetric NE
only.

To summarize, a non-classical solution for an ESS in the quan-
tum PD game has been shown to emerge due to joint probabilities
that are non-factorizable. An ESS offers a stronger solution concept
than a NE and we consider the situation in which the same NE,
consisting of the strategy of defection on behalf of both players,
continues to exist in both the classical and the quantum versions
of the PD game, which correspond to situations of joint proba-
bilities being factorizable and non-factorizable, respectively. It is
shown that non-factorizable quantum joint probabilities can bring
evolutionary stability to the strategy of defection via the 2nd part
of the ESS definition (6).
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