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Abstract

We study the effective resistance of small-world resistor networks. Utilizing recent analytic results for the propagator of the Edwards–Wilkinson
process on small-world networks, we obtain the asymptotic behavior of the disorder-averaged two-point resistance in the large system-size limit.
We find that the small-world structure suppresses large network resistances: both the average resistance and its standard deviation approaches a
finite value in the large system-size limit for any non-zero density of random links. We also consider a scenario where the link conductance decays
as a power of the length of the random links, l−α . In this case we find that the average effective system resistance diverges for any non-zero value
of α.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Resistor networks have been widely studied since the 70’s
as models for conductivity problems and classical transport in
disordered media [1–4]. Related studies on fuse networks have
been investigated on random percolating lattices with various
applications to breakdown processes in condensed matter and
materials systems, ranging from brittle fracture to dielectric
breakdown [5–10].

Recent research on complex networks [11–13] has turned to
focus on dynamics on networks with applications to synchro-
nization in natural and artificial systems [14–19], and transport
phenomena [20–23]. Interesting recent studies have examined
the tradeoffs between redundancy and pleiotropy [24], and cen-
tralized versus decentralized design [25], in complex networks.
Finding the resistance between any two points on a complex

* Corresponding author.
E-mail address: korniss@rpi.edu (G. Korniss).
0375-9601/$ – see front matter © 2005 Elsevier B.V. All rights reserved.
doi:10.1016/j.physleta.2005.09.081
network is tractable and builds upon early mesh-resistance tech-
niques [26]. Estimating the strength of collaborative ties be-
tween nodes in collaboration networks [27] and quantifying the
centrality of a node in weighted networks can also be modeled
by resistor networks [28]. While resistor networks have been
employed to study and explore community structures in social
networks [28–30], they have not been investigated as prototyp-
ical models for transport phenomena in complex networks until
very recently [31–33]. The work by López et al. [31] revealed
that in scale-free (SF) networks [11,34] anomalous transport
properties can emerge, displayed by the power-law tail of dis-
tribution of the network conductance.

Here we investigate the effective system resistance of small-
world (SW) networks [35–37]. Our results, in part, are based on
recent calculations [38–41] of the disordered averaged propaga-
tor of the Edwards–Wilkinson (EW) [42] process extended to a
SW network. The EW process on a network can be thought of
in terms of a synchronization paradigm in a noisy environment.
As a linear approximation, it also serves as the simplest model
for generic causally-constrained queuing networks [43], such
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as manufacturing supply chains, e-commerce based services fa-
cilitated by interconnected servers [44], and certain distributed
parallel schemes on computer networks [19,45]. In the con-
text of the latter, it was shown [19] that when extending the
original short-range connections to a SW-like network (essen-
tially, by adding a small density of random links on top of a
regular graph), the spread between completion times of tasks
performed on different nodes of a computer network remains
bounded, rather than diverging over time. Further, an infini-
tesimal extra “cost” is sufficient to achieve this reduction. An
important measure of efficiency is the spread (or “width”) of
task-completion landscapes in such processing networks (larger
spread corresponds to longer delays and poorer efficiency). It is
evident that this measure—the width of the EW landscape on a
network—is identical to the average resistance (characterizing
transport efficiency) of the same network. While this connec-
tion between the network propagator and the network resistance
[2,46,47], just like the one between random walks and network
resistance [48–50], is well known, it has not been exploited to
study transport efficiency of SW networks. Further, the connec-
tion between the average spread of an EW steady-state land-
scape and the resistance of the same network gives some insight
in treating synchronization and transport efficiency on the same
footing. Namely, understanding the effects of the SW links in
suppressing the diverging long-wavelength modes of the net-
work propagator, originally present in regular lattices.

Our main result is that in SW networks, the average sys-
tem resistance becomes finite for an arbitrarily small density of
random links, governed by the same behavior of the network
propagator which is responsible for suppressing “rough” syn-
chronization landscapes [19,38].

2. The Edwards–Wilkinson process on a network

The EW process in a synchronization context on a network,
is given by the Langevin equation

(1)∂thi = −
N∑

j=1

Aij (hi − hj ) + ηi(t),

where hi(t) is the general stochastic field variable on a node
(such as fluctuations in the task-completion landscape in cer-
tain distributed parallel schemes on computer networks [19,38])
and ηi(t) is a delta-correlated noise with zero mean and vari-
ance 〈ηi(t)ηj (t

′)〉 = 2δij δ(t − t ′); δij is the Kronecker delta and
δ(t − t ′) is the Dirac delta. Here, Aij = Aji > 0 is the effective
coupling between the nodes (Aii ≡ 0). Defining the network
Laplacian, Γij = δij

∑
l Ail − Aij , we can rewrite Eq. (1)

(2)∂thi = −
N∑

j=1

Γijhj + ηi(t).

For the steady-state equal-time two-point correlation function
one finds

(3)Gij ≡ 〈
(hi − h̄)(hj − h̄)

〉 = Γ̂ −1
ij =

N−1∑
k=1

1

λk

ψkiψkj ,
where h̄ = (1/N)
∑N

i=1 hi and 〈· · ·〉 denotes an ensemble av-
erage over the noise in Eq. (2). Here, Γ̂ −1 denotes the inverse
of Γ in the space orthogonal to the zero mode. Also, {ψki}Ni=1
and λk , k = 0,1, . . . ,N − 1, denote the kth normalized eigen-
vectors and the corresponding eigenvalues, respectively. The
k = 0 index is reserved for the zero mode of the Laplacian on
any network: all components are identical of this eigenvector
and λ0 = 0. The last form in Eq. (3) (the spectral decompo-
sition of Γ̂ −1) is useful for exact numerical diagonalization
purposes. As one can see from Eq. (3), G is the inverse of the
coupling matrix Γ in the space orthogonal to the zero mode of
the Laplacian. In particular, the average spread or width in the
synchronization landscape becomes

(4)
〈
w2〉 =

〈
1

N

N∑
i=1

(hi − h̄)2
〉
= 1

N

N∑
i=1

Gii = 1

N

N−1∑
k=1

1

λk

.

For large networked systems, the above observable is typically
self-averaging 〈w2〉 � [〈w2〉], where [· · ·] denotes the average
over the network disorder. Thus, if one is able to calculate the
disorder-averaged propagator [Gij ], it provides the scaling be-
havior of the average spread of the synchronization landscape
in the limit of N → ∞.

3. The two-point resistance of a network

The stationary currents and voltages in any network of resis-
tors are governed by Kirchhoff’s and Ohm’s laws

(5)
∑
n

Amn(Vm − Vn) = Im,

where Amn is the conductance of the link between node m and
n, and Im is the net current flowing into the network at node m.
Note that Im is zero, unless node m is connected to an external
terminal. Connecting the network to a “battery” with a fixed
voltage drop V through nodes i and j as the input and output
terminals, yields

(6)
∑
n

ΓmnVn = I (δmi − δmj ),

where Γmn is the same network Laplacian as introduced ear-
lier in the context of the EW process [Eq. (2)], associating the
link conductance with the coupling matrix there. Here, I is
the magnitude of the current entering and leaving the system
at node i and node j , respectively. Solving for the voltages is
well defined in the subspace orthogonal to the zero-mode of the
network Laplacian; the right-hand side vector of Eq. (6) is in
that subspace. Hence, introducing the voltages measured from
the mean V̂m = Vm − V̄ , where V̄ = (1/N)

∑N
m=1 Vm, and em-

ploying Γ̂ −1 one has

(7)

V̂m =
∑
n

Γ̂ −1
mn In =

∑
n

Γ̂ −1
mn I (δni − δnj ) = I (Gmi − Gmj),

where G is the same network propagator discussed in the pre-
vious section in the context of the EW process on networks
[Eq. (3)]. Applying the above equation to the voltage differ-
ence across node i and node j to which the battery is attached,
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one finds

(8)V = Vi − Vj = V̂i − V̂j = I (Gii + Gjj − 2Gij ).

For the equivalent two-point resistance between node i and j

one finally obtains

Rij ≡ V

I
= Gii + Gjj − 2Gij

(9)=
N−1∑
k=1

1

λk

(
ψ2

ki + ψ2
kj − 2ψkiψkj

)
,

where the last form in Eq. (9) is, again, useful for exact nu-
merical diagonalization purposes. Looking at Eq. (9), one can
realize that the two-point resistance of a network between node
i and j is the same as the steady-state height-difference corre-
lation function of the EW process on the network

(10)
〈
(hi − hj )

2〉 = Gii + Gjj − 2Gij = Rij .

The height-difference correlation function is a standard observ-
able in surface-growth phenomena, extensively studied in the
past two decades [51], so many of the answers for regular resis-
tor networks can be obtained directly by looking at the equiv-
alent EW model on a d-dimensional substrate. For example, in
an infinite one-dimensional system, the resistance between two
nodes, separated by a distance |i − j |, diverges with the sepa-
ration as Rij = R(|i − j |) � |i − j | [46,47,51]. Another trivial,
but insightful, relationship between the EW process and the re-
sistor network can be obtained by summing up Eq. (10) over all
i 
= j pairs, yielding

(11)R̄ ≡ 1

N(N − 1)

∑
i 
=j

Rij = 2
〈
w2〉,

i.e., the average system resistance of a given network is twice
the steady-state width of the EW process on the same network.

4. Effective resistance of simple SW networks

First, we consider “simple” SW resistor networks, where
the conductance of each link is identical, with unit value, for
simplicity. When studying network-transport phenomena for
systems where physical links are subject to strong cost and geo-
metric constraints, this can be unrealistic and cost-prohibitive.
For others, e.g., modeling information flow in social networks
[28–30,52], this can be an acceptable starting point, since
“long-range” connections do not necessarily degrade the infor-
mation carrying capacity and the efficiency (e.g., influence) of
that link. We start with a one-dimensional ring with N nodes
(i.e., impose periodic boundary conditions), and add a “ran-
dom” link to each pair of nodes, independently for each pair,
with probability p/N . In addition to the two nearest-neighbor
connections, now each node, on average has p random links,
so p is the density of random links. The resulting network is
essentially an Erdős–Rényi (ER) network [53] on top of a one-
dimensional graph. This SW construction slightly differs from
the original Watts–Strogatz one [35] where random links are in-
troduced through “rewiring”. The resulting network, however,
has the same universal properties in the small-p, large-N limit
[54,55], and is also more amenable to analytic approximations.

The coupling matrix for the differences of the relevant vari-
ables [Eqs. (1) and (5)] then becomes

(12)Aij = δi,j−1 + δi,j+1 + Jij ,

where the matrix elements Jij are quenched random variables;
Jij = 1 with probability p/N and Jij = 0 with probability (1 −
p/N). The corresponding Laplacian then can be written as

(13)Γij = 2δi,j − δi,j−1 − δi,j+1 + δij

∑
l

Jil − Jij .

Eqs. (12) and (13), with Jij defined above, correspond to identi-
cal (unit) conductance for each existing connection in the resis-
tor network. Our numerical scheme relied on the exact numeri-
cal diagonalization of the SW network Laplacian Γ in Eq. (13)
[56]. Our analytic results, asymptotically exact in the large
system-size limit, are straightforward applications of those of
the EW propagator on SW networks [38–41].

Averaging over the network-disorder restores translational
invariance, hence the disorder-averaged two-point function
[Gij ] = [G(|i −j |)] will only depend on the underlying Euclid-
ean distance between the nodes. These correlation functions
have been calculated using disorder-averaged self-consistent
perturbation theory [38–41]. For the disorder-averaged two-
point function for small p values, in the infinite system-size
limit one finds [38–41]

(14)
[
G(l)

] � 1

2
√

Σ
e−√

Σl,

where Σ ∼ p2 is an effective mass generated by the random
links for simple SW networks [38,55]. Then, using Eq. (9), for
the average resistance on a SW network between two nodes
separated by a distance l, we obtain

(15)
[
R(l)

] = 2
([

G(0)
] − [

G(l)
]) � 1√

Σ

(
1 − e−√

Σl
)
,

approaching a finite value in the limit of infinite separation,
liml→∞[R(l)] = Σ−1/2 ∼ p−1. In contrast, on a regular one-
dimensional ring, the resistance between two nodes separated
by a distance l diverges in a power-law fashion, R(l) � l, as
can be seen by taking the Σ → 0 limit in Eq. (15) or by direct
calculations on regular lattices [46,47]. Further, the average re-
sistance is finite for an arbitrarily small but non-zero p in the
limit of N → ∞,

(16)R̄ � [R̄] = 2
[〈
w2〉] = 2

[
G(0)

] � 1√
Σ

∼ p−1,

in strong contrast with average resistance for a regular network
diverging as R̄ � N/6. Eqs. (15) and (16) are the central re-
sults of our Letter. They capture the average resistance between
nodes separated by a distance l and the average system resis-
tance for SW networks with a small but non-zero density of
random links, respectively. Results from exact numerical diag-
onalizations, shown in Figs. 1 and 2, up to systematic finite-size
effects, agree very well with the above predictions.
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Fig. 1. Disorder-averaged (a) two-point function and (b) two-point resistance as a function of the separation l in simple SW networks for p = 0.10 and three system
sizes. The solid line in (a) and (b) corresponds to the exponential decay and saturation given by Eqs. (14) and (15), respectively.

Fig. 2. (a) Average resistance vs the density of random links. The straight solid line indicate the asymptotic infinite system-size behavior [Eq. (16)]. (b) Average
resistance vs the system size in simple SW networks. The straight solid line corresponds to the behavior of the one-dimensional regular network (ring), [R̂] � N/6.
In addition to the above asymptotic results, valid in the in-
finite system-size limit, we also constructed the scaling form
[57], capturing the finite-size effects, e.g., for the average re-
sistance [40,58]. From the above it is clear that in addition to
the linear system size N , there is one other length scale in
the problem for non-zero p values, ξ = 1/

√
Σ ∼ p−1. This

length scale is, in fact, the average distance between nodes
which have random links emanating from them. For p = 0 (the
limit of a regular one-dimensional network) [R̄] ∼ N , while for
p 
= 0, in the infinite system-size limit, it approaches a constant,
[R̄] � 1/

√
Σ = ξ ∼ p−1 [Fig. 2(a) and (b)]. Thus, the finite-

size behavior of the average resistance can be expressed as

(17)[R̄] = Nf (ξ/N),

where f (x) is a scaling function such that

(18)f (x) ∼
{

x if x 
 1,

const if x � 1.

The scaled numerical data, [R̄]/N vs ξ/N [Fig. 3], shows good
collapse, as suggested by Eq. (17).

We also studied the probability distribution of the effective
resistance of the network [Fig. 4]. The overall distribution is
shown in Fig. 4(a). Further, we constructed the distribution of
Fig. 3. Scaled average resistance in simple SW networks according to Eq. (17).
The straight solid line corresponds to the asymptotic behavior of the scaling
function for small arguments [Eq. (18)].

the effective network resistance between two nodes separated
by a distance l, P(R|l) [4], indicating that they converge to a
limit distribution for l → ∞ [Fig. 4(b) and (c)]. These results
imply that for SW networks, both small and large effective re-
sistance values are strongly (at least exponentially) suppressed
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Fig. 4. (a) Network resistance probability distributions (histograms) for
p = 0.10 and for three system sizes. (b) Network resistance probability dis-
tributions (histograms) for nodes separated by a distance l, for various l values
for N = 4000. (c) Behavior of the average [R(l)] and the standard deviation
[�R(l)] of the distributions shown in (b).

about the average. This is in strong contrast with the behav-
ior of SF resistor networks [31], where large resistance values
are strongly suppressed, but the probability of small values de-
cays only in a power-law fashion; hence a power-law tail in
the conductance distribution occurs for large g ≡ 1/R values.
This finding for SF networks implies [31], that there exist a few
nodes (“hubs”) in the system that, if selected as the input and
output nodes, can support anomalously large transport through
the network. This phenomenon is absent (as one can expect) in
Fig. 5. Comparison of the network conductance distribution with that of the BA
scale-free network model with the same average degree 〈k〉 = 6 (BA network
with m = 3 (see footnote 1), and SW network with p = 4.0.)

SW networks, just like in completely random (ER) networks
[31] related to the exponential tail of the degree distributions
of these networks. In Fig. 5 we compare the conductance dis-
tributions for the SW and the Barabási–Albert (BA) [34]1 SF
network, with the same average degree and uniform link con-
ductance. At this point we note that while anomalously large
conductances are absent in SW networks, they are more effi-
cient, on average, in supporting transport between two arbitrary
pairs of nodes, i.e., [R]SW < [R]SF, and [g]SW > [g]SF. In com-
parison, for the two networks shown in Fig. 5 with the same
average degree and uniform link conductance, the average net-
work resistance and conductance values are [R]SW � 0.472,
[R]SF � 0.572, and [g]SW � 2.28, [g]SF � 1.93, respectively.
In real-life complex networks with SF structure, however, the
link conductances are typically weighted [22], ultimately lead-
ing to better performance for SF networks [31].

5. Effective resistance of SW networks with
distance-dependent conductances

Now we consider the more general case where the conduc-
tances of the random (possibly long-range) links decay with the
underlying spatial distance between the nodes they connect in
a power-law fashion: Jij = 1/|i − j |α with probability p/N

and Jij = 0 with probability (1 − p/N) in Eq. (12). Keep-
ing the density of the random links, p, fixed (at a non-zero
value) and taking the large system-size limit, corresponds to
the limit of fixed density of weak links at large scales. Then
one can argue that, to leading order, mean-field scaling holds
[39–41,58,59]. Focusing on the 0 � α � 1 regime, we find that
the average link strength, decaying as [Jij ] = (p/N)|i − j |−α ,

1 For the BA scale-free model [34] (growth and preferential attachment), each
new node is connected to the network with m links, resulting in an average
degree of 2m in the large-N limit.
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Fig. 6. Average system resistance of SW networks with distance-dependent
conductances as described in the text, for p = 1.0 for different α values. The
solid line segments are the measured slopes for α 
= 0, with their values shown
in the legends; these values should be compared to α/2, the exponent of the
leading-order perturbative results [Eq. (19)].

gives rise to a system-size dependent effective mass ΣN �
(N/2)−αp/(1 − α) and consequently

(19)[R̄] � Σ
−1/2
N ∼ Nα/2.

Thus, the average system resistance diverges with the system
size for an arbitrarily small but non-zero value of α. Fig. 6 sup-
ports this picture, but also indicates that corrections beyond the
mean-field approximation are important and noticeable for the
range of system-sizes that were accessible via numerical meth-
ods. In fact, an analysis of the naive perturbative approach [39]
reveals that although higher-order corrections are becoming
progressively smaller as N increases, their prefactor is singular
for certain values of α [58]. Given these subtleties, the devia-
tions [Fig. 6] from the predicted asymptotic scaling Eq. (19) are
reasonable.

For the interested reader, familiar with the diagrammatics of
[38], we present a brief analysis of the higher order corrections.
The mean-field gives a self-energy of order N−α . There are
some corrections for finite N to Eq. (15), but the most important
higher-order ones (higher order in powers of N−1 compared to
the mean-field) are corrections to the self-energy. The leading
order correction to the mean-field involves diagrams in which
a single link appears twice; these diagrams involve summing
over the length of the link and are multiplied by the strength of
the link squared: |i − j |−2α . For α < 1/2, this sum diverges for
large N and gives rise to corrections to the mean-field Σ , so that
Σ0 = p(N/2)−α/(1 − α) is the mean-field value and the lead-
ing correction is Σ = p(N/2)−α/(1 − α) − p[(N/2)−2α/(1 −
2α)]/√Σ0 + · · · . Using this correction to Σ , the corrections
to the resistance are of order N0, and thus for α < 1/2 may be
significant compared to the value in Eq. (19). The coefficient of
these corrections becomes singular at α = 1/2 and for α � 1/2,
the self-energy Σ becomes non-local and acquires a momen-
tum dependence, which may be shown to change the form of
the higher-order corrections.
Also note that this behavior is very different from that of the
case where the strength (conductance) of the random links is
uniform, but the probability of connecting two nodes, separated
by a distance l, decays as l−α [39,40,60]. There exists a finite
region, 0 < α < 2, where the propagator, hence in the context
of this Letter, the average system resistance, remains finite in
the limit of N → ∞. In the present case, where the link-length
distribution is uniform, but the link strength decays as l−α , the
average system resistance is finite only for α = 0.

This contrasting behavior between the two different “l−α”
implementations of the random links (strength vs probability)
is in accord with recent studies on phase transition on SW net-
works. Interacting systems often exhibit mean-field-like phase
transitions [59,61–67], even for an arbitrarily small but non-
zero density of random links added to a one-dimensional reg-
ular graph. However, in the case of the strength of the random
links decaying in the above l−α fashion, for the Ising model on
SW networks, it was shown [68] that no phase transition occurs
at any finite temperature for any non-zero α.

6. Summary and outlook

We obtained the scaling behavior of the effective resistance
of SW networks. For uniform link conductances, we found that
for an arbitrary small density of random links, the average sys-
tem resistance is finite, and the two-point resistance, as function
of the distance between the nodes, saturates exponentially fast
to the same finite value. When the link conductance decays with
the distance as l−α , the average network resistance diverges
with the number of nodes as Nα/2.

Ultimately, one is interested not only in the global trans-
port or flow characteristics of the network, but also in their
effect on the local “components”, capacity limitations, and pos-
sible global network failures. In the context of resistor net-
works, the question of voltage landscapes in the network, or
more specifically, the voltage-drop distribution across the links,
can be addressed. Such a study can reveal the most vulnerable
links/connections to be “blown” when increasing the overall
load in the network. In particular, studying the properties of
the extreme (largest) voltage-drops across the links in the net-
work carries information on the weakest links of the network,
and in turn, provides solutions from a system-design viewpoint.
Fuse networks have been intensively studied on random perco-
lating lattices with various applications to breakdown processes
in condensed matter and materials systems, ranging from brit-
tle fracture to dielectric breakdown [5–10]. Future work will
address these questions from a general complex network vul-
nerability viewpoint [69–71].
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