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Hard-threshold nonlinearities are of significant interest for neural-network information processing due to 
their simplicity and low-cost implementation. They however lack an important differentiability property. 
Here, hard-threshold nonlinearities receiving assistance from added noise are pooled into a large-scale 
summing array to approximate a neuron with a noise-smoothed activation function. Differentiability 
that facilitates gradient-based learning is restored for such neurons, which are assembled into a feed-
forward neural network. The added noise components used to smooth the hard-threshold responses have 
adjustable parameters that are adaptively optimized during the learning process. The converged non-
zero optimal noise levels establish a beneficial role for added noise in operation of the threshold neural 
network. In the retrieval phase the threshold neural network operating with non-zero optimal added 
noise, is tested for data classification and for handwritten digit recognition, which achieves state-of-the-
art performance of existing backpropagation-trained analog neural networks, while requiring only simpler 
two-state binary neurons.

© 2021 Elsevier B.V. All rights reserved.

1. Introduction

Neural networks with threshold or hard-limiting activation functions have attracted a lot of interest in past decades as they allow 
low-cost hardware implementation [1–7]. However, gradient-based learning algorithms are not applicable for training these networks as 
the threshold function is nondifferentiable with zero gradients [1–7]. A number of learning methods have been proposed for training 
these kinds of threshold neural networks, such as replacing the threshold activation functions with smoothed ones [2,4,5,8], randomizing 
weights with smooth distribution functions [1,3,7] and using extreme machine learning [6,8]. Of special interest is the noise-modulated 
neural network designed by Ikemoto et al. [8] as an application of the suprathreshold stochastic resonance (SSR) mechanism, wherein an 
optimal amount of deliberately added noise not only facilitates threshold network learning during the training process, but also benefits 
the network in terms of function approximations and regression problems at run time [8]. However, the determination of the optimal 
noise remains unsolvable, and a manual grid search on the noise level is employed [8].

Thus, how to successively adjust the noise level during threshold neural network training, as well as making adjustments to the 
weights by the backpropagation algorithm, become critical questions to be solved [9]. Notably, the SSR effect in a large-scale network 
can result in large information gains significantly greater than is attainable in a single threshold element [10–12]. It is emphasized that 
SSR differs from the subthreshold stochastic resonance—in the case of SSR, a single threshold device is subjected to a weak signal that is 
smaller than the threshold level, and SSR occurs regardless of whether the input signal is entirely subthreshold or suprathreshold (larger 
than the threshold level) [10–13]. When the number of threshold elements increases to infinity, the asymptotic behavior can be seen as 
an ensemble-averaging operation on the threshold element with respect to the added noise distribution. This distinguishing feature of 
the asymptotic behavior of SSR was first theoretically analyzed in order to obtain the most efficient signal-to-noise ratio amplifier [14]. 
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Fig. 1. Block diagram representations of (a) training the feedforward neural network with the noise-smoothed activation functions Eη[gk(·)] (k = 1, 2, . . . , K ) in the hidden 
layer and Eξ [gm(·)] (m = 1, 2, . . . , M) in the output layer, and (b) the pattern classification testing experiments operated by injecting noise components ηkt into threshold 
elements gk(·) and noise components ξmt into threshold elements gm(·) for t = 1, 2, . . . , T .

Later, this asymptotic feature was incorporated in constructing the noise-enhanced estimators [12,15–17], detectors [18–22] and noise-
modulated neural network [8,23–25]. Recently, a visual perception algorithm combined with stochastic resonance has also been proposed 
to choose a suitable spiking threshold for spiking neural networks [26].

Note that each neuron in feedforward threshold neural networks approximates a noise-smoothed function when it consists of a suf-
ficiently large number of threshold elements. Then, each neuron in the designed neural network becomes a differentiable function of 
both the noise level and the network parameters, and the gradient-based backpropagation learning algorithm can be executed for training 
the threshold neural network. We here argue that the noise level in different layers of the threshold network, as well as the connected 
weights, undergoes adjustment in accordance with the steepest descent of the cost function. After a certain number of training epochs, the 
trained weights and the converged non-zero noise levels are employed to establish the threshold neural network for the testing session. 
It is emphasized in testing that noise-smoothed activation functions of the neural network are replaced with a finite number of threshold 
elements that are activated by mutually independent noise components. Since these noise components in a layer have the same non-zero 
noise level, then the mechanism of SSR is the key to implementing the trained threshold neural network in the testing experiments. The 
testing results of data classification and handwritten digit recognition, including the implementation on the threshold neural network, 
validate the realizability and practical utility of the proposed gradient-based backpropagation learning algorithm.

2. Large-scale threshold neural network

2.1. Threshold network and noise-smoothed activation functions

Let us consider a feedforward neural network with a single hidden layer as illustrated in Fig. 1, which has an input vector x =
[x1, x2, . . . , xN ]� in the input layer, K neurons in the hidden layer and M neurons in the output layer. The K × N matrix W I contains the 
weights of the connections between the hidden neurons and inputs, and the M × K weight matrix W o connects the output and hidden 
layers. Each neuron is composed of the classic SSR model of a summing array of threshold elements [10], and the k-th neuron in the 
hidden layer has T identical threshold elements denoted by

gk(u) =
{

1, u ≥ θk,

0, u < θk
(1)

with the same threshold parameter θk as shown in Fig. 1. It is noted that these threshold elements in Eq. (1) have a common input 
[W I](k)x, but are activated by T mutually independent Gaussian noise components ηkt for t = 1, 2, . . . , T , respectively. Here, [W I](k) de-

notes the k-th row of the weight matrix W I , and ηkt have the common probability density function (PDF) fη(η) = exp(−η2/2σ 2
η )/

√
2πσ 2

η

and the same noise level ση . Then, the output hk of the k-th neuron in the hidden layer is given by

hk = 1

T

T∑
gk

(
[W I](k)x + ηkt

)
. (2)
t=1

2
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Then, the K × 1 output vector of the hidden layer can be expressed as h = [h1, h2, . . . , hK ]� . Similarly, the m-th neuron in the output layer 
is expressed as

ym = 1

T

T∑
t=1

gm

(
[W o](m)h + ξmt

)
, (3)

where T threshold elements gm(·) have the same threshold θm , [W o](m) is the m-th row of the M × K weight matrix W o be-
tween the output layer with the hidden one, and T mutually independent Gaussian noise components ξmt having common PDF 
fξ (ξ) = exp(−ξ2/2σ 2

ξ )/
√

2πσ 2
ξ and the same noise level σξ . Then, the M × 1 output vector of the designed neural network becomes 

y = [y1, y2, . . . , yM ]� .

2.2. Backpropagation algorithm based on SSR

It is noted that the classical backpropagation algorithm [1–5,8] cannot be directly applied to training the threshold neural network, 
since these functions in Eqs. (1)–(3) are non-differentiable at zero and have zero gradients at the non-zero domain. Aiming to train the 
threshold neural network, we here consider a large-scale summing array with T → ∞. Using the scale transformation of η0 = η/ση , we 
asymptotically represent the neuron output hk as

hk = lim
T →∞ hk = Eη

[
gk

(
[W I](k)x + η

)]
=

∫
gk

(
[W I](k)x + η

)
fη(η)dη

=
∞∫

θk−[W I](k)x
ση

1√
2π

exp
(
−η2

0

2

)
dη0. (4)

Let h = [h1, h2, . . . , hK ]� and ξ0 = ξ/σξ , the neuron output ym also asymptotically converges to

ym = lim
T →∞ ym = Eξ

[
gm

(
[W o](m)h + ξ

)]
=

∫
gm

(
[W o](m)h + ξ

)
fξ (ξ)dξ

=
∞∫

θm−[W o](m)h
σξ

1√
2π

exp
(
−ξ2

0

2

)
dξ0. (5)

It is seen that the outputs hk in Eq. (4) and ym in Eq. (5) become differentiable, and the backpropagation algorithm is applicable to the 
training of the neural network. However, it is noted that, besides the weight matrices and the threshold parameters, two new parameters 
of noise levels ση and σξ are introduced and need to be updated in the on-line training process.

Let S = {x(�), d(�)}L
�=1 denote the training set, which consists of L samples x(�) and L desired classifications d(�) for training the 

network in the way of supervised learning. Here, the loss function is chosen as the total cross entropy

Htot =
L∑

�=1

H(�) =
L∑

�=1

M∑
m=1

−
{

dm(�) ln
[

ym(�)
] + [

1 − dm(�)
]

ln
[
1 − ym(�)

]}
, (6)

where the cross entropy H(�) measures the log-likelihood between the network output vector y = [y1, y2, . . . , yM ]� and the desired 
classification d = [d1, d2, . . . , dM ]� at the �-th training epoch [27,28]. Compared with the quadratic cost of the mean square error (MSE), 
the cross entropy function is much more sensitive to the error between the network output and the desired output, and tends toward 
zero as the neuron gets better at computing the desired output for all training inputs.

Using Eqs. (4)–(6), the partial derivative of H(�) with respect to the noise level σξ of the output layer can be computed as

∂H(�)

∂σξ

=
M∑

m=1

∂H(�)

∂ ym(�)

∂ ym(�)

∂σξ

=
M∑

m=1

[ 1 − dm(�)

1 − ym(�)
− dm(�)

ym(�)

]θm − [W o](m)h√
2πσ 2

ξ

exp
[
− (θm − [W o](m)h)2

2σ 2
ξ

]
.

(7)

Similarly, we have partial derivatives

∂H(�)

∂θm
= ∂H(�)

∂ ym(�)

∂ ym(�)

∂θm

=
[ dm(�)

ym(�)
− 1 − dm(�)

1 − ym(�)

] 1√
2πσ

exp
[
− (θm − [W o](m)h)2

2σ 2

]
, (8)
ξ ξ

3
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Algorithm 1: Backpropagation learning based on SSR.

Input: Training set {x(�), d(�)}L
�=1, initial weight matrices W I(0), W o(0) and the initial noise levels ση(0), σξ (0), the epoch number P , the learning rate α.

Output: Trained parameter 
 ∈ {[W o]mk, [W I]kn, ση, σξ , θk, θm }.
1 for training epoch p = 1 → P do
2 Htot ← 0;
3 for training example � = 1 → L do
4 hk(�) ← Eη

[
gk

([W I](k)(� − 1)x(�) + η
)]

;

5 ym(�) ← Eξ

[
gm

(
[W o](m)(� − 1)h(�) + ξ

)]
;

6 H(�) ← − ∑M
m=1

{
dm(�) ln [

ym(�)
] + [

1 − dm(�)
]

ln
[
1 − ym(�)

]}
;

7 
(�) ← 
(� − 1) − α
∂ε(�)

∂


∣∣∣

=
(�−1)

;

8 Htot ← Htot +H(�).
9 end

10 
(0) ← 
(L);
11 end

∂H(�)

∂[W o]mk
= ∂H(�)

∂ ym(�)

∂ ym(�)

∂[W o]mk

=
[ 1 − dm(�)

1 − ym(�)
− dm(�)

ym(�)

] hk√
2πσξ

exp
[
− (θm − [W o](m)h)2

2σ 2
ξ

]
, (9)

∂H(�)

∂ση
=

K∑
k=1

M∑
m=1

∂H(�)

∂ ym(�)

∂ ym(�)

∂hk

∂hk

∂ση

=
K∑

k=1

M∑
m=1

[ 1 − dm(�)

1 − ym(�)
− dm(�)

ym(�)

] [W o]mk√
2πσξ

exp
[
− (θm − [W o](m)h)2

2σ 2
ξ

]
×θk − [W I](k)x√

2πσ 2
η

exp
[
− (θk − [W I](k)x)2

2σ 2
η

]
, (10)

∂H(�)

∂[W I]kn
=

M∑
m=1

∂H(�)

∂ ym(�)

∂ ym(�)

∂hk

∂hk

∂[W I]kn

= xn√
2πση

exp
[
− (θk − [W I](k)x)2

2σ 2
η

] M∑
m=1

[ 1 − dm(�)

1 − ym(�)
− dm(�)

ym(�)

]
×[W o]mk√

2πσξ

exp
[
− (θm − [W o](m)h)2

2σ 2
ξ

]
(11)

and

∂H(�)

∂θk
=

M∑
m=1

∂H(�)

∂ ym(�)

∂ ym(�)

∂hk

∂hk

∂θk

=
M∑

m=1

[ dm(�)

ym(�)
− 1 − dm(�)

1 − ym(�)

] [W o]mk√
2πσξ

exp
[
− (θm − [W o](m)h)2

2σ 2
ξ

]
× 1√

2πση

exp
[
− (θk − [W I](k)x)2

2σ 2
η

]
, (12)

where [W o]mk is the weight that neuron m in the output layer applies to the k-th hidden unit hk , and [W I]kn denotes the weight 
connecting the hidden unit hk with the n-th element xn of the input vector x.

Combining Eqs. (7)–(12), we can write the learning rule of parameters 
 ∈ {σξ , [Wo]mk, [WI]kn, ση, θk, θm} as


(�) = 
(� − 1) − α
∂H(�)

∂


∣∣∣

=
(�−1)

(13)

for the �-th training epoch and the learning rate α > 0. To summarize the modified backpropagation learning algorithm for the considered 
threshold neural network, the pseudo code of the algorithm is shown in Algorithm 1.

3. Training and testing results of the threshold network

3.1. Data pattern classification

The proposed backpropagation algorithm indicated in Eq. (13) is applied to a classical data classification problem [28], as shown in 
Fig. 2. There is a pair of regions A and B facing each other in an asymmetrically arranged manner, which represents two data patterns. 
4
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Fig. 2. Results of the computer experiment on the backpropagation algorithm applied to the feedforward threshold network for data classification. The training data are with 
distance d = −6, radius r = 10 and width w = 6 [28]. The decision boundary is determined by finding the coordinates x1 and x2 of the input vector x, for which the response 
ym of the output neuron exceeds 0.5 for classifying the input vector x into the region A, and otherwise, the input belongs to the region B.

Fig. 3. Learning curves of (a) the total cross entropy Htot and (b) the added noise levels σξ and ση for training the feedforward neural network to the data classification 
problem indicated in Fig. 2.

Two regions have the identical radius r = 10 and width w = 6, and the data are uniformly scattered over each region. The data points are 
represented by the coordinates x1 and x2 that form the input vector x of the neural network. The vertical distance d = −6 separates two 
regions with respect to the x2 axis, and the smaller d means the larger area the two regions overlap, resulting into a difficult nonlinear 
separability problem [28]. The coordinate x2 distributes in region A over [0, 13] and in region B over [−7, 6] when d = −6, so that the 
two classes overlap for x2 ∈ [0, 6].

For training the feedforward threshold neural network in Fig. 1 by the backpropagation algorithm of Eq. (13), we consider the training 
samples consisting of 103 pairs of data points, i.e. one point picked from the region A and another point picked from the region B. Before 
entering into the network, the coordinates x1 and x2 are both normalized by

x̃n(�) = xn(�) − ∑L
� xn(�)/L

max{|xn(�)|} , n = 1,2. (14)

Here, the feedforward threshold network is with N = 2 input neurons receiving the normalized coordinates ̃x1 and ̃x2, respectively, K = 20
hidden neurons hk and M = 1 output neuron y1. The learning rate in Eq. (13) is α = 0.1, the initial noise level ση(0) = σξ (0) = 0.8, and 
the initial weight matrixes W I(0) and W o(0) are uniformly distributed in the interval [−0.1, 0.1]. It is seen in Fig. 3 (a) that the learning 
curve of the total cross entropy Htot reaches convergence as Htot(50) = 2.05 effectively in about 50 epochs of training. Moreover, it 
is shown in Fig. 3 (b) that the noise levels ση(100) = 0.87 and σξ (100) = 0.23 converge to non-zero values respectively, which also 
demonstrates the benefits of noise to the training of the feedforward threshold network. Since the neuron output ym ∈ [0, 1] in Eq. (3), 
the decision boundary is determined by finding the coordinates x1 and x2 of the input vector x, for which the response ym of the output 
neuron exceeds 0.5 for classifying the input vector x into the region A, and otherwise, the input belongs to the region B, as shown in 
Fig. 2.

In the testing experiments, the trained feedforward threshold network is employed with the converged parameters 
 ∈ {[Wo]mk, [WI]kn,

θk, θm} obtained after the 100 training epochs. However, the neuron outputs hk of Eq. (2) in the hidden layer and the output ym of Eq. (3)
in the output layer are calculated with a finite number of T threshold elements, respectively. It is noted that the added Gaussian noise 
components ηkt in hk are mutually independent and with the common level ση(100) = 0.87, and the mutually independent Gaussian 
noise components ξmt in ym have the common level σξ (100) = 0.23 for t = 1, 2, . . . , T . For different numbers T , the testing results of 
classification errors Nerror in a testing set of 2 × 103 pairs of data points are experimentally obtained for 102 trials, represented by an 
error rate of Nerror/2000 percent, as shown in Fig. 4. It is shown in Fig. 4 that, when the number of threshold elements T ≥ 450, the 
error rate reaches zero, which is better than the error rate 1% obtained by the network with the same size of N × K × M = 2 × 20 × 1
5
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Fig. 4. Classification error rate in a testing set of 2 × 103 pairs of data points versus the number T of threshold elements. Here, 102 trials are realized for each point of 
experimental results.

Fig. 5. Learning curves of (a) the total cross entropy Htot and (b) noise levels ση and σξ versus the number of epochs for training the feedforward neural network to 
recognize handwritten digits.

but hyperbolic tangent activation functions [28]. This result also demonstrates the beneficial effects of added noise in the threshold neural 
network for the data pattern classification problem.

3.2. Recognition of handwritten digits

We further apply the proposed backpropagation learning algorithm in Eq. (13) to train the feedforward threshold neural network 
for recognizing handwritten digits. The data set used to train the designed network is the MNIST handwritten image database, which 
contains 6 × 104 images used for training and 104 images for testing. Here, we employ 104 images with the training set and test set in 
a 4 : 1 ratio. Each black-and-white handwritten image has 28 × 28 pixels and so can be mapped into a 784 × 1 input vector x for the 
feedforward neural network. The categories of the digits are expressed by the target vector set d = {di} for i = 0, 1, . . . , 9. For instance, 
the vector d0 = [0, 0, 0, 0, 0, 0, 0, 0, 0, 1]� represents the digit 0, the vector d1 = [1, 0, 0, 0, 0, 0, 0, 0, 0, 0]� indicates the digit 1, the vector 
d2 = [0, 1, 0, 0, 0, 0, 0, 0, 0, 0]� signifies the digit 2, and so on. The learning rate α = 0.1 in Eq. (13) for the noise levels σξ and ση , but 
α = 0.02 for other network parameters. The initial noise levels ση(0) = σξ (0) = 1. The initial weights [W I]kn , [W o]mk , the thresholds θk
and θm are uniformly distributed in the interval [−0.1, 0.1]. The designed feedforward neural network is with the layer size of N × K ×M =
784 × 100 × 10.

Using the proposed backpropagation learning algorithm in Eq. (13) and 8 × 103 handwritten images for training the designed network, 
we obtain the total cross entropy Htot(100) = 24.96, the converged noise levels ση(100) = 0.96 and σξ (100) = 0.51 after 100 training 
epochs, as shown in Fig. 5 (a) and (b), respectively. Then, the test set containing 2 × 103 handwritten images is used to test the gener-
alization ability of the trained neural network. Note that for testing, the network is operated by the injection of mutually independent 
Gaussian noise components ηkt in hidden neuron hk at the noise level ση(100) and ξmt in output neuron ym at the noise level σξ (100), 
respectively. The number of threshold elements T = 102. In terms of precision, an accuracy rate up to 97% on the test set is obtained, 
which remains competitive with the results achieved by other classification networks, such as the convolutional neural network of the 
size 784 × 1000 × 10 with the accuracy rate 95.5% [29,30].

4. Conclusion

In this paper, aiming to implement a feedforward threshold neural network for pattern classification, we intentionally add noise into 
a large-scale summing array of threshold elements. The reason is the asymptotical approximation of a large-scale summing array of 
threshold elements can be viewed as a differentiable noise-smoothed activation function giving rise to nonlinear neuron behavior for 
the feedforward neural network. As a consequence, during the training phase, the added noise sources, as well as the weights, are 
6
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Fig. 6. Comparison of the input signals of the hidden layer and the converged threshold levels γ opt .

treated as adjustable parameters that are adaptively learned. Moreover, the learning process converges to non-zero optimal added noise 
levels, establishing a beneficial role for noise on the operation of the network. The trained neural network is operated and activated by 
mutually independent noise components at run-time. Experimental results show that the feedforward threshold neural network trained 
by the proposed backpropagation algorithm can achieve state-of-the-art accuracy on two benchmark data sets. In the classification 2 ×
103 handwritten digits, the input signals of the hidden layer and the converged threshold levels for 102 neurons are plotted in Fig. 6, 
respectively. The mechanism of SSR naturally arises in the optimal configuration obtained in Fig. 6, with the stochastic inputs of each 
neuron in the hidden layer that are not always less but partly larger than the corresponding converged threshold levels. Moreover, as 
indicated in Fig. 4, the beneficial effects of noise in the neural networks for pattern classification become more efficient as the element 
number increases. This conclusion reveals the beneficial effects of noise in the neural networks for pattern classification, which can be 
attributed to the SSR mechanism. In addition, the obtained results also extend the applicability of the backpropagation algorithm to train 
neural networks with a much wider family of non-differentiable activation functions by artificially introducing the random noise into 
them.

As an extension to this study, it may be of interest to further investigate the possibility and application of the pattern classification 
algorithm based on the stochastic resonance mechanism when the activation functions in neural networks employ other typical functions, 
such as Sigmoid, Rectified linear unit, Softmax and so on. Generally, the activation functions can be classified into two categories: with 
saturation (e.g. Sigmoid) and without saturation (e.g. Rectified Linear unit). For a parallel array of neurons with saturation, it has been 
found that the stochastic resonance effect can be reinforced by a sufficient amount of added noise in the intermediate and the saturation 
parts of the neuronal response [31]. Therefore, the effects of noise in the neural networks with both saturated and unsaturated activa-
tion functions can potentially be further investigated for additional benefits. Naturally, the pattern classification algorithm based on the 
stochastic resonance mechanism can be extended to such conditions.
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