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Abstract
Scaling analysis of heart rate time series has emerged as a useful tool
for the assessment of autonomic cardiac control. We investigate the heart
rate time series of ten athletes (five males and five females), by applying
detrended fluctuation analysis (DFA). High resolution ECGs are recorded under
standardized resting conditions over 30 min and subsequently heart rate time
series are extracted and artifacts filtered. We find three distinct regions of scale
invariance, which correspond to the well-known VLF, LF and HF bands in
the power spectra of heart rate variability. The scaling exponents α are αHF:
1.15 [0.96–1.22], αLF: 0.68 [0.57–0.84], αVLF: 0.83[0.82–0.99], p < 10−5). In
conclusion, DFA scaling exponents of heart rate time series should be fitted to
the VLF, LF and HF ranges, respectively.
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1. Introduction

Scaling analysis of heart rate time series has emerged as a useful tool for assessment of
autonomic cardiac control and has been shown to be useful for diagnostics in patients with
cardiac disease (Ho et al 1997). One widely applied approach for the investigation of scaling
characteristics is detrended fluctuation analysis (DFA) (Peng et al 1995). Scale invariance
has been commonly observed over a wide range with a characteristic break at segment sizes
of 16 heart beats. Consequently, two scaling exponents, termed α1 and α2, are computed
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in the ranges of 4–16 and 16–64 heart beats, respectively. Early investigators considered
fractal scaling analysis as a means to providing a unique view into autonomic control (Peng
et al 1995). Recently, however, the mathematical link between DFA and the classical power
spectrum analysis of heart rate variability (HRV) has been provided (Willson et al 2002,
Willson and Francis 2003) and a physiological interpretation of α1 and α2 in the framework
of the well-studied VLF, LF and HF frequency bands has been given (Francis et al 2002).
Nevertheless, the fractal nature of HRV remains an open question, especially when the state
of the autonomous nervous system is altered by exercise (Karasik et al 2002).

2. Methods

Roughly speaking, DFA relates the variance in a detrended time series versus the size of the
linearly trend eliminated segments. Note that DFA has been developed to analyze long-range
correlations (long-memory dependence) in non-stationary data, where conventional fluctuation
analyses such as power spectra and Hurst analysis cannot be reliably used (Peng et al 1995).
The method works as follows:

• Compute the cumulative sum c(k) = ∑k
i=1[s(i) − s ] of the zero-mean (beat-to-beat RR

interval) time series, where s denotes the mean of the time series s (using the concept of
random-walk analysis (Peng et al 1995)).

• Compute the local trend cn(k) within boxes of varying sizes n (linear least-square fit).

• Compute the root-mean square of the detrended time series in dependency on box size n

as F(n) =
√

1
N

∑N
k=1[c(k) − cn(k)]2, where N denotes the length of s.

• Plot log10 F(n) against log10 n.

If the data display long-range dependence, then F(n) ∝ nα—where α is the scaling exponent
that is obtained via least-square fit. For stationary data with scale-invariant temporal
organization, the Fourier power spectrum S(f ) is S(f ) ∝ f −β , where the scaling exponent β

is related to α in the following way: β = 2α − 1 (Peng et al 1993, Peng et al 1994). Thus
time series with 1/f in the power spectrum (i.e. β = 1) are characterized by DFA exponent
α = 1. Values of 0 < α < 0.5 are associated with anti-correlation (i.e. large and small
values of the time series are likely to alternate). For Gaussian white noise α = 0.5. Values of
0.5 < α � 1 indicate long-range power-law correlations (i.e. large values of the time series are
likely to be followed by large values) and describe the decay γ of the auto-correlation function
C(n) ≡ 〈s(i)s(i + n)〉 ∝ n−γ , where γ = 2 − 2α. Values 1 < α � 1.5 represent stronger
long-range correlations that are different from power law, where α = 1.5 for Brownian motion
(Peng et al 1995).

We perform DFA in heart rate time series of ten healthy experienced athletes (five
males and five females) from track and field as well as triathlon. Anthropometric data
and peak oxygen uptake are shown in table 1, applying non-parametric statistics, all subjects
being fully recovered from the competition season and the results of a medical examination
were negative. No athlete received medication prior to the study. High resolution ECGs
(1600 Hz) are recorded in a supine position under standardized resting conditions over 30 min.
Heart rate time series are automatically extracted and artifacts are subsequently filtered and
interpolated based on local variance estimation. The investigation conforms to the principles
outlined in the declaration of Helsinki, with written informed consent of all athletes being
provided.
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Figure 1. Detrended fluctuation analysis of heart rate time series is performed over a sample of
ten athletes. This figure represents one example plot, for one athlete, clearly demonstrating for
the first time the three distinct frequency regions. F(n)—root-mean square of the detrended time
series. Here, n—segment size for linear trend elimination. Solid line—scaling range equivalent to
the HF band, starting with n = 4; dotted gray line—scaling range equivalent to the LF band; bold
line—scaling range equivalent to the VLF band, truncated at n = 64.

Table 1. Anthropometric data and peak oxygen uptake of the ten investigated athletes presented
as medians and interquartile ranges (IQR).

Women Men

Sex Median IQR Median IQR

Age (years) 24.8 24.7–26.4 26.6 26.5–28.8
Body mass (kg) 54.8 50.4–61.8 72.0 69.0–86.8
Height (cm) 163 162–168 181 181–182
Body fat (%) 18.0 15.0–24.0 14.0 12.0–21.0
VO2 peak (ml (kg m)−1) 51.1 48.9–52.2 65.9 61.4–74.6

3. Results and discussion

In most subjects, DFA reveals three distinct regions of scale invariance as seen in figure 1. By
investigating the location of the breakpoints, we find a direct relationship between the well-
known HRV frequency bands (a) very low frequency (VLF): 0–0.04 Hz, (b) low frequency
(LF): 0.04–0.15 Hz, and (c) high frequency (HF): 0.15–0.4 Hz (Task Force of the European
Society of Cardiology the North American Society of Pacing and Electrophysiology 1996).
The two break points between the three regions of scale invariance correspond to the border
frequencies of power spectrum analysis, i.e. 0.04 and 0.15 Hz. In order to relate frequency
values fn in Hertz from the segment size n of DFA, we use the rough approximation: fn ≈
(sn)−1. Thus, the three scaling regions are individually computed, depending on the traditional
two fixed border frequencies and the individual mean heart rate. Lower and upper boundaries
for the analysis are n = 4 and n = 64, respectively, as proposed in the original work by Peng
et al (1995).
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Figure 2. Boxplots of the HF-, LF- and VLF- range scaling exponents obtained from heart rate time
series of all ten athletes by applying detrended fluctuation analysis. The Friedman test indicates
highly significant group median differences (p < 10−5). Values displayed by the box plot are
(a) the median, indicated inside each box, (b) the interquartile range, indicated as the height of
each box, and (c) the whiskers indicate the total range of the data.

All three scaling exponents are significantly different from each other (see figure 2,
Friedman test for non-parametric group median comparisons of repeated measurements:
p < 10−5). The HF scaling exponents of all subjects indicate the presence of correlation, i.e.
α > 0.5, and might be caused by the strictly periodic nature of respiration. The LF scaling
exponent—usually associated with sympathetic, vagal cardiac and vascular control—reveals
a much less strict long-term correlation and therefore a less strict control regime. In individual
cases, the correlation disappears, i.e. α = 0.5, or even becomes anti-correlated, i.e. α < 0.5.
The VLF exponent shows long-term correlation, in all subjects, but lower than those of the HF
range. Although a physiological explanation of VLF oscillations is still under debate, links
with the renin-angiotensin-system, for example, have been suggested (Bonaduce et al 1994).
Our analysis clearly shows that DFA scale invariance of HRV is directly linked to well-known
physiological phenomena of VLF, LF and HF oscillations. Although this relationship has been
shown mathematically before (Willson et al 2002, Willson and Francis 2003), we are for the
first time able to show this relationship directly in scaling graphs, such as the example given in
figure 1. The initial scale invariance (α1), which has been reported often (Ho et al 1997, Peng
et al 1995, Karasik et al 2002), seems therefore to be predominately caused by respiratory
modulations—whereas the α2 range of scale invariance reflects the typical 1/f characteristics
of VLF oscillations, which have been shown in HRV power spectra (Task Force of the European
Society of Cardiology the North American Society of Pacing and Electrophysiology 1996).
The crossover range between those areas of scale invariance (Karasik et al 2002) is caused
by LF oscillations that show only weak correlation. Interestingly, three scaling exponents
were found in the beat-to-beat blood pressure dynamics of normal inactive subjects as well as
in patients with dilated cardiomyopathy (Baumert et al 2005). Obviously, the relatively low
mean heart rate in athletes (58 [50–64] beats per minute) reveals the separate VLF, LF and
HF scaling regions, while these might remain partly masked in untrained probands. Further, a
change in cardiac activity mediated by sympathetic and vagal efferents, as has been observed
in athletes (Carter et al 2003), might play a role. Therefore, scaling exponents and graphs,
respectively, could provide an additional tool in monitoring the effects of physical activity on
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the regulation of the autonomous nervous system in patients and healthy subjects and in the
monitoring of athlete training.

We conclude that DFA scaling exponents of HRV should be fitted to three ranges: namely
the VLF, LF and HF ranges, respectively.
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