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Abstract

We use the formalism of Clifford Geometric Algebra (GA) to develop an analysis of quantum versions of three-player non-
cooperative games. The quantum games we explore are played in an Einstein-Podolsky-Rosen (EPR) type setting. In this
setting, the players’ strategy sets remain identical to the ones in the mixed-strategy version of the classical game that is
obtained as a proper subset of the corresponding quantum game. Using GA we investigate the outcome of a realization of
the game by players sharing GHZ state, W state, and a mixture of GHZ and W states. As a specific example, we study the
game of three-player Prisoners’ Dilemma.
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Introduction

The field of game theory [1,2] has a long history [3], but was

first formalized in 1944 with the work of von Neumann and

Morgenstern [4], aiming to develop rational analysis of situations

that involve strategic interdependence.

Classical game theory has found increasing expression in the

field of physics [3] and its extension to the quantum regime [5] was

proposed by Meyer [6] and Eisert et al [7], though its origins can

be traced to earlier works [8–11]. Early studies in the area of

quantum games focused on the two-player two-strategy non-

cooperative games, with the proposal for a quantum Prisoners’

Dilemma (PD) being well known [7]. A natural further develop-

ment of this work was its extension to multiplayer quantum games

that was explored by Benjamin and Hayden [12]. Du et al. [13,14]

explored the phase transitions in quantum games for the first time

that are central in the present article.

The usual approach in three-player quantum games considers

players sharing a three-qubit quantum state with each player

accessing their respective qubit in order to perform local unitary

transformation. Quantum games have been reported [15] in which

players share Greenberger-Horne-Zeilinger (GHZ) states and the W

states [5], while other works have, for instance, investigated the

effects of noise [16,17] and the benefits of players forming coalitions

[18,19].

A suggested approach [20–23] in constructing quantum games

uses an Einstein-Podolsky-Rosen (EPR) type setting [24–31]. In

this approach, quantum games are setup with an EPR type

apparatus, with the players’ strategies being local actions related to

their qubit, consisting of a linear combination (with real coef-

ficients) of (spin or polarization) measurements performed in two

selected directions.

Note that in a standard arrangement for playing a mixed-

strategy game, players are faced with the identical situation, in that

in each run, a player has to choose one out of two pure strategies.

As the players’ strategy sets remain classical, the EPR type setting

avoids a well known criticism [32] of quantum games. This cri-

ticism refers to quantization procedures in which players are given

access to extended strategy sets, relative to what they are allowed

to have in the classical game. Quantum games constructed with an

EPR type setting have been studied in situations involving two

players [22] and also three players [23]. The applications of three-

player quantum games include describing three-party situations,

involving strategic interaction in quantum communication [33].

In recent works, the formalism of Clifford’s geometric algebra

(GA) [34–38] has been applied to the analysis of two-player

quantum games with significant benefits [39,40], and so is also

adopted here in the analysis of three-player quantum games. The

use of GA is justified on the grounds that the Pauli spin algebra is a

matrix representation of Clifford’s geometric algebra in R3, and

hence we are choosing to work directly with the underlying

Clifford algebra. There are also several other documented benefits

of GA such as:

a) The unification of the dot and cross product into a single

product, has the significant advantage of possessing an

inverse. This results in increased mathematical compactness,

thereby aiding physical intuition and insight [41].

b) The use of the Pauli and Dirac matrices also unnecessarily

introduces the imaginary scalars, in contrast to GA, which

uses exclusively real elements [42]. This fact was also pointed

out by Sommerfield in 1931, who commented that ‘Dirac’s use

of matrices simply rediscovered Clifford algebra’ [43].

c) In the density matrix formalism of quantum mechanics, the

expectation for an operator Q is given by Tr rQð Þ
~SyjQjyT, from which we find the isomorphism to GA,

Tr rQð Þ<SrQT0, the subscript zero, indicating to take the

scalar part of the algebraic product rQ, where r and Q are
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now constructed from real Clifford elements. This leads to a

uniquely compact expression for the overlap probability

between two states in the N-particle case, given by Eq. (13),

which allows straightforward calculations that normally

require 8|8 complex matrices representing operations on

three qubits.

d) Pauli wave functions are isomorphic to the quaternions, and

hence represent rotations of particle states [44]. This fact

paves the way to describe general unitary transformations on

qubits, in a simplified algebraic form, as rotors. In regard to

Hestenes’ analysis of the Dirac equation using GA, Boudet

[41] notes that, ‘the use of the pure real formalism of

Hestenes brings noticeable simplifications and above all the

entire geometrical clarification of the theory of the electron. ’

e) Recent works [6,39,40] show that GA provides a better

intuitive understanding of Meyer’s quantum penny flip game

[6], using operations in 3-space with real coordinates, permitting

helpful visualizations in determining the quantum player’s

winning strategy. Also, Christian [45,46] has recently used

GA to produce thought provoking investigations into some of

the foundational questions in quantum mechanics.

Our quantum games use an EPR type setting and players have

access to general pure quantum states. We determine constraints

that ensure a faithful embedding of the mixed-strategy version of

the original classical game within the corresponding quantum

game. We find how a Pareto-optimal quantum outcome emerges

in three-player quantum PD game at high entanglement. We also

report phase transitions taking place with increasing entanglement

when players share a mixture of GHZ and W type states in

superposition.

In an earlier paper [23], two of the three authors contributed to

developing an entirely probabilistic framework for the analysis of

three-player quantum games that are also played using an EPR

type setting, whereas the present paper, though using an EPR type

setting, provides an analysis from the perspective of quantum

mechanics, with the mathematical formalism of GA. The previous

work analyzed quantum games from the non-factorizable property

of a joint probability distribution relevant to a physical system that

the players shared in order to implement the game. For the game

of three-player Prisoners’ Dilemma, our probabilistic analysis

showed that non-factorizability of a joint probability distribution

indeed can lead to a new equilibrium in the game. The three-

player quantum Prisoners’ Dilemma, in the present analysis,

however, moves to the next step and explores the phase structure

relating players’ payoffs with shared entanglement and also the

impact of players sharing GHZ and W states and their mixture.

We believe that without using the powerful formalism of GA, a

similar analysis will nearly be impossible to perform using an

entirely probabilistic approach as developed in [22].

EPR setting for playing quantum games
The EPR setting [20,22,23] two player quantum games involves

a large number of runs when, in a run, two halves of an EPR pair

originate from the same source and move in the opposite

directions. Player Alice receives one half whereas player Bob

receives the other half. To keep the non-cooperative feature of the

game, it is assumed that players Alice and Bob are located at some

distance from each other and are not unable to communicate

between themselves. The players, however, can communicate

about their actions, which they perform on their received halves,

to a referee who organizes the game and ensures that the rules of the

game are followed. The referee makes available two directions to

each player. In a run, each player has to choose one of two

available directions. The referee rotates Stern-Gerlach type

detectors [5] along the two chosen directions and performs

quantum measurement. The outcome of the quantum measure-

ment, on Alice’s side, and on Bob’s side of the Stern-Gerlach

detectors, is either z1 or {1. Runs are repeated as the players

receive a large number of halves in pairs, when each pair comes

from the same source and the measurement outcomes are

recorded for all runs. A player’s strategy, defined over a large

number of runs, is a linear combination (with normalized and real

coefficients) of the two directions along which the measurement is

performed. The referee makes public the payoff relations at the

start of the game and announces rewards to the players after the

completion of runs. The payoff relations are constructed in view of

a) the matrix of the game, b) the list of players’ choices of direc-

tions over a large number of runs, and c) the list of measurement

outcomes that the referee prepares using his/her Stern-Gerlach

apparatus.

For a three-player quantum game, this setting is extended to

consider three players Alice, Bob and Chris who are located at the

three arms of an EPR system [5]. In the following they will be

denoted by A, B and C, respectively. As it is the case with two-

player EPR setting, in a run of the experiment, each player

chooses one out of two directions.

We have used the EPR setting in view of the well known Enk

and Pike’s criticism [32] of quantum games that are played using

Eisert et al’s setting [7]. Essentially this criticism attempts to equate

a quantum game to a classical game in which the players are given

access to an extended set of classical strategies. The present paper

uses an EPR setting in which each player has two classical

strategies consisting of the two choices he/she can make between

two directions along which a quantum measurement can be

performed. That is, the player’s pure strategy, in a run, consists of

choosing one direction out of the two. As the sets of strategies

remain exactly identical in both the classical and the quantum

forms of the game, it is difficult to construct an Enk and Pike type

argument for a quantum game that is played with an EPR setting.

As Fig. 1 shows, we represent Alice’s two directions as k1
1,k1

2.

Similarly, Bob’s directions are k2
1,k2

2 and Chris’ are k3
1,k3

2. The

players measurement directions form a triplet out of eight possible

cases k1
1,k2

1,k3
1

� �
, k1

1,k2
2,k3

1

� �
, k1

2,k2
1,k3

1

� �
, k1

2,k2
2,k3

1

� �
, k1

1,k2
1,k3

2

� �
,

k1
1,k2

2,k3
2

� �
, k1

2,k2
1,k3

2

� �
, k1

2,k2
2,k3

2

� �
and measurement is performed

along the chosen directional triplet. The measurement outcome

for each player along their chosen direction is z1 or {1.

Over a large number of runs the players sequentially receive

three-particle systems emitted from a source and a record is

maintained of the players’ choices of directions over all runs. One

of the eight possible outcomes z1,z1,z1ð Þ, z1,{1,z1ð Þ,
{1,z1,z1ð Þ, {1,{1,z1ð Þ, z1,z1,{1ð Þ, z1,{1,{1ð Þ,
{1,z1,{1ð Þ, {1,{1,{1ð Þ emerges out of the measurement

in an individual run, with the first entry for Alice’s outcome, the

second entry for Bob’s outcome and the third entry for Chris’

outcome.

In the following we express the players’ payoff relations in terms

of the outcomes of these measurements. These payoffs depend on

the triplets of the players’ strategic choices made over a large

number of runs and on the dichotomic outcomes of the mea-

surements performed along those directions.

Players’ sharing a symmetric initial state
We consider the situation in which an initial quantum state of

three qubits is shared among three players. To obtain a fair game,

we assume this state is symmetric with regard to the interchange of

the three players. The GHZ state is a natural candidate given by

Three-Player Quantum Games
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jGHZT~cos
c

2
j000Tzsin

c

2
j111T, ð1Þ

where we have an entanglement angle c[<, which has been shown

[5] to be capable of producing the maximally entangled three

qubit state. Alternatively we could start with the W entangled state

jWT~
1ffiffiffi
3
p j100Tzj010Tzj001Tð Þ: ð2Þ

The other symmetric state would be an inverted W state

j �WWT~
1ffiffiffi
3
p j110Tzj011Tzj101Tð Þ: ð3Þ

After the measurement along three directions selected by the

players, each player is rewarded according to a payoff matrix GP ,

for each player P[fA,B,Cg. Thus the expected payoffs for a

player is given by

PP k1,k2,k3
� �

~
X1

i,j,k~0

GPijkPijk, ð4Þ

where Pijk is the probability the state jiTjjTjkT is obtained after

measurement, with i,j,k[f0,1g, along the three directions k1,k2,k3

chosen by Alice, Bob and Chris respectively. In the EPR setting,

k1 can be either of Alice’s two directions i.e. k1
1 or k1

2 and similarly

for Bob and Chris.

Clifford’s geometric algebra
The formalism of GA [34–38] has been shown to provide an

equivalent description to the conventional tensor product

formalism of quantum mechanics.

To set up the GA framework for representing quantum states,

we begin by defining s1,s2,s3 as a right-handed set of

orthonormal basis vectors, with

si:sj~dij , ð5Þ

where dij is Kronecker delta. Multiplication between algebraic

elements is defined to be the geometric product, which for two

vectors u and v is given by

uv~u:vzu ^ v, ð6Þ

where u:v is the conventional symmetric dot product and u ^ v is

the anti-symmetric outer product related to the Gibb’s cross

product by u|v~{iu ^ v, where i~s1s2s3. For distinct basis

vectors we find

sisj~si:sjzsi ^ sj~si ^ sj~{sj ^ si~{sjsi: ð7Þ

This can be summarized by

sisj~dijzieijksk, ð8Þ

where eijk is the Levi-Civita symbol. We can therefore see that i

squares to minus one, that is i2~s1s2s3s1s2s3~s1s2s1s2~{1
and commutes with all other elements and so has identical

properties to the unit imaginary i. Thus we have an isomorphism

between the basis vectors s1,s2,s3 and the Pauli matrices through

the use of the geometric product.

In order to express quantum states in GA we use the one-to-one

mapping [36,38] defined as follows

jyT~aj0Tzbj1T~
a0zia3

{a2zia1

" #
<y

~a0za1is1za2is2za3is3,

ð9Þ

where ai are real scalars.

For a single particle we then have the basis vectors

j0T<1, j1T<{is2 ð10Þ

and so for three particles we can use as a basis

j0Tj0Tj0T<1 ð11aÞ

j0Tj0Tj1T<{is3
2 ð11bÞ

j0Tj1Tj0T<{is2
2 ð11cÞ

j0Tj1Tj1T<is2
2is3

2, ð11dÞ

j1Tj0Tj0T<{is1
2 ð11eÞ

j1Tj0Tj1T<is1
2is3

2 ð11fÞ

Figure 1. The EPR setup for three-player quantum game. A
three-qubit entangled quantum state is distributed to the three players,
who each choose between two possible measurement directions.
doi:10.1371/journal.pone.0021623.g001
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j1Tj1Tj0T<is1
2is2

2 ð11gÞ

j1Tj1Tj1T<{is1
2is2

2is3
2, ð11hÞ

where to reduce the number of superscripts representing particle

number we write i1s1
2 as is1

2. General unitary operations are

equivalent to rotors in GA [36], represented as

R h1,h2,h3ð Þ~e{h3is3=2e{h1is2=2e{h2is3=2, ð12Þ

which is in Euler angle form and can completely explore the available

space of a single qubit. Using the definition of unitary operations

given by Eq. (12) we define A~R a1,a2,a3ð Þ, B~R b1,b2,b3ð Þ,
C~R x1,x2,x3ð Þ for general unitary transformations acting locally

on each of the three players qubit in order to generalize the starting

state, that is the GHZ or W states, as far as possible.

We define a separable state w~KLM, where K , L and M are

single particle rotors, which allow the players’ measurement

directions to be specified on the first, second and third qubit

respectively. The state to be measured is now projected onto this

separable state w. The overlap probability between two states y
and w in the N-particle case is given in Ref. [36] as

P y,wð Þ~2N{2 SyEy{wEw{T0{SyJy{wJw{T0

h i
, ð13Þ

where the angle brackets ST0 mean to retain only the scalar part of

the expression and E and J are defined for 3 particles in Ref. [36] as

E~ P
N

i~2

1

2
1{is1

3isi
3

� �
~

1

4
1{is1

3is2
3{is1

3is3
3{is2

3is3
3

� �
ð14aÞ

J~Eis1
3~

1

4
is1

3zis2
3zis3

3{is1
3is2

3is3
3

� �
: ð14bÞ

The { operator acts the same as complex conjugation: flipping

the sign of i and inverting the order of the terms.

Results

We now, firstly, calculate the observables from Eq. (11) for the

GHZ state in GA, which from Eq. (11) gives

y~ABC cos
c

2
{sin

c

2
is1

2is2
2is3

2

� �
, ð15Þ

where A, B, and C represent the referee’s local unitary actions,

written as rotors A, B, and C in GA, on the respective player’s

qubits, in order to generalize the starting state. Referring to Eq.

(13), we firstly calculate

yJy{~
1

4
ABC cos

c

2
{sin

c

2
is1

2is2
2is3

2

� �
is1

3zis2
3zis3

3{is1
3is2

3is3
3

� �
| cos

c

2
zsin

c

2
is1

2is2
2is3

2

� �
C{B{A{

~
1

4
ABC cos c{sin cis1

2is2
2is3

2

� �
is1

3zis2
3zis3

3{is1
3is2

3is3
3

� �
C{B{A{

~
1

4
cos c R3zS3zT3{R3S3T3ð Þ

zsin c R1S2T2zR2S1T2zR2S2T1{R1S1T1ð Þ

ð16Þ

where Rk~iAskA{,Sk~iBskB{,Tk~iCskC{.

We also calculate

yEy{~
1

4
ABC cos

c

2
{sin

c

2
is1

2is2
2is3

2

� �
1{is1

3is2
3{is1

3is3
3{is2

3is3
3

� �
| cos

c

2
zsin

c

2
is1

2is2
2is3

2

� �
C{B{A{

~
1

4
ABC 1{is1

3is2
3{is1

3is3
3{is2

3is3
3

� �
C{B{A{

~
1

4
1{R3S3{R3T3{S3T3ð Þ:

ð17Þ

For measurement defined with K~e
{iks1

2
=2

, L~e
{iks2

2
=2

and

M~e
{iks3

2
=2

allowing a rotation of the detectors by an angle k,

where we have written k1s1
2 as ks1

2, we find

wJw{~

1

4
is1

3e
iks1

2zis2
3e

iks2
2zis3

3e
iks3

2{is1
3is2

3is3
3e

iks1
2 e

iks2
2 e

iks3
2

� � ð18aÞ

wEw{~

1

4
1{is1

3is2
3e

iks1
2 e

iks2
2{is1

3is3
3e

iks1
2 e

iks3
2{is2

3is3
3e

iks2
2 e

iks3
2

� �
:
ð18bÞ

From Eq. (13) we find

2SyEy{wEw{T~
1

8
1{R3S3{R3T3{S3T3ð Þ

|(1{is1
3is2

3e
iks1

2 e
iks2

2{is1
3is3

3e
iks1

2 e
iks3

2{is2
3is3

3e
iks2

2 e
iks3

2 )

~
1

8
1z({)lzmX (k1)Y (k2)z({)lznX (k1)Z(k3)
�

z({)mznY (k2)Z(k3)
�

~
1

8
1z({)lzmXiYjz
�

({)lznXiZkz({)mznYjZk

�
,

ð19Þ

where l,m,n[f0,1g refers to measuring a j0T or j1T state,

respectively, and using the standard results listed in the Appendix

S1, we have

Xi~X k1
i

� �
~cos a1 cos k1

i zcos a3 sin a1 sin k1
i , ð20aÞ

Yj~Y k2
j

� �
~cos b1 cos k2

j zcos b3 sin b1 sin k2
j , ð20bÞ

Zk~Z k3
k

� �
~cos x1 cos k3

kzcos x3 sin x1 sin k3
k, ð20cÞ

with i,j,k[f1,2g, representing the two measurement directions

Three-Player Quantum Games
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available to each player. Also from Eq. (13) we have

{2SyJy{wJw{T~{
1

8
S(cos c(R3zS3zT3{R3S3T3)

z sin c(R1S2T2zR2S1T2zR2S2T1{R1S1T1))

|(is1
3e

iks1
2zis2

3e
iks2

2zis3
3e

iks3
2{is1

3is2
3is3

3e
iks1

2 e
iks2

2 e
iks3

2 )T0

~
1

8
(cos c(({)lXiz({)mYjz({)nZkz({)lmnXiYjZk)

z({)lmn sin c(FiVjWkzUiGjWkzUiVjHk{FiGjHk))

~
1

8
½cos cf({)lXiz({)mYjz({)nZkz({)lmnXiYjZkg

z({)lmn sin cHijk�,

ð21Þ

where

Fi~F k1
� �

~{sin k1
i cos a1 cos a2 cos a3{sin a2 sin a3ð Þ

zsin a1 cos a2 cos k1
i ,

ð22aÞ

Gj~G k2
� �

~{sin k2
j cos b1 cos b2 cos b3{sin b2 sin b3ð Þ

zsin b1 cos b2 cos k2
j ,

ð22bÞ

Hk~H k3
� �

~{sin k3
k cos x1 cos x2 cos x3{sin x2 sin x3ð Þ

zsin x1 cos x2 cos k3
k

ð22cÞ

and

Ui~U k1
� �

~sin k1
i cos a2 sin a3zsin a2 cos a3 cos a1ð Þ

{sin a1 sin a2 cos k1
i ,

ð23aÞ

Vj~V k2
� �

~sin k2
j cos b2 sin b3zsin b2 cos b3 cos b1ð Þ

{sin b1 sin b2 cos k2
j ,

ð23bÞ

Wk~W k3
� �

~sin k3
k cos x2 sin x3zsin x2 cos x3 cos x1ð Þ

{sin x1 sin x2 cos k3
k

ð23cÞ

and

Hijk~FiVjWkzUiGjWkzUiVjHk{FiGjHk: ð24Þ

So we find from Eq. (13) the probability to observe a particular

state after measurement as

Plmn~
1

8
½1zcos cf {ð ÞlXiz {ð ÞmYjz {ð ÞnZkg

z {ð ÞlmXiYjz {ð ÞlnXiZkz {ð Þmn
YjZk

z {ð Þlmnfcos cXiYjZkzsin cHijkg�:

ð25Þ

For instance, at c~0 we obtain

Plmn~
1

8
1z {ð ÞlXi

� �
1z {ð ÞmYj

� �
1z {ð ÞnZkð Þ, ð26Þ

which shows a product state, as expected. Alternatively with

general entanglement, but no operation on the third qubit, that is

xi~0, we have

Plm~
1

8
½1zcos cf {ð ÞlXiz {ð ÞmYjz1z {ð Þlmn

XiYjg

z {ð ÞlmXiYjz {ð ÞlXiz {ð ÞmYj �:

~
1

8
½ 1zcos cð Þ 1z {ð ÞlXi

� �
1z {ð ÞmYj

� �
�,

ð27Þ

which shows that for the GHZ type entanglement each pair of

qubits is mutually unentangled.

Obtaining the payoff relations
We extend the approach of Ichikawa and Tsutsui [47] to three

qubits and represent the permutation of signs introduced by the

measurement process. For Alice we define

a000~
1

8

X
ijk

GA
ijk, a100~

1

8

X
ijk

{ð ÞiGA
ijk, ð28aÞ

a010~
1

8

X
ijk

{ð ÞjGA
ijk, a001~

1

8

X
ijk

{ð ÞkGA
ijk, ð28bÞ

a110~
1

8

X
ijk

{ð Þizj
GA

ijk, a011~
1

8

X
ijk

{ð Þjzk
GA

ijk, ð28cÞ

a101~
1

8

X
ijk

{ð Þizk
GA

ijk, a111~
1

8

X
ijk

{ð Þizjzk
GA

ijk: ð28dÞ

Using Eq. (4), we then can find the payoff for each player

PA k1
i ,k2

j ,k3
k

� �
~a000zcos cfa100Xiza010Yjza001Zkg

za110XiYjza101XiZkza011YjZk

za111fcos cXiYjZkzsin cHijkg,

ð29aÞ

PB k1
i ,k2

j ,k3
k

� �
~b000zcos cfb100Xizb010Yjzb001Zkg

zb110XiYjzb101XiZkzb011YjZk

zb111fcos cXiYjZkzsin cHijkg,

ð29bÞ

PC k1
i ,k2

j ,k3
k

� �
~c000zcos cfc100Xizc010Yjzc001Zkg

zc110XiYjzc101XiZkzc011YjZk

zc111fcos cXiYjZkzsin cHijkg,

ð29cÞ

where, as Eqs. (20) show, the three measurement directions
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k1
i ,k2

j ,k3
k are held in Xi,Yi,Zi. Alternatively, in order to produce

other quantum game frameworks [7,48], we can interpret the

rotors A,B,C, held in Xi,Yi,Zi, as the unitary operations which

can be applied by each player to their qubit, where in this case, the

measurement directions will be set by the referee.

Mixed-strategy payoff relations. For a mixed strategy

game, Alice, Bob and Chris choose their first measurement

directions k1
1, k2

1, k3
1 with probabilities x, y and z respectively,

where x,y,z[ 0,1½ � and hence choose the directions k1
2, k2

2, k3
2 with

probabilities 1{xð Þ, 1{yð Þ, 1{zð Þ, respectively. Alice’s payoff is

now given as

PA x,y,zð Þ

~xyz
X1

i,j,k~0

Pijk k1
1,k2

1,k3
1

� �
Gijkzx 1{yð Þz

X1

i,j,k~0

Pijk k1
1,k2

2,k3
1

� �
Gijk

z 1{xð Þyz
X1

i,j,k~0

Pijk k1
2,k2

1,k3
1

� �
Gijkz 1{xð Þ 1{yð Þz

X1

i,j,k~0

Pijk k1
2,k2

2,k3
1

� �
Gijk

zxy 1{zð Þ
X1

i,j,k~0

Pijk k1
1,k2

1,k3
2

� �
Gijkzx 1{yð Þ 1{zð Þ

X1

i,j,k~0

Pijk k1
1,k2

2,k3
2

� �
Gijk

z 1{xð Þy 1{zð Þ
X1

i,j,k~0

Pijk k1
2,k2

1,k3
2

� �
Gijk

z 1{xð Þ 1{yð Þ 1{zð Þ
X1

i,j,k~0

Pijk k1
2,k2

2,k3
2

� �
Gijk:

ð30Þ

Payoff relations for a symmetric game. For a symmetric

game we have PA x,y,zð Þ~PA x,z,yð Þ~PB y,x,zð Þ~PB z,x,yð Þ
~PC y,z,xð Þ~PC z,y,xð Þ. This requires a111~b111~c111, a000~

b000~c000, a110~b110~a101~c101~b011~c011, b100~c100~a010

~c010~a001~b001, a100~b010~c001 and a011~b101~c110. The

payoff relations (0) are then reduced to

PA k1
i ,k2

j ,k3
k

� �
~a000zcos cfa100Xiza001Yjza001Zkg

za110XifYjzZkgza011YjZkza111fcos cXiYjZkzsin cHijkg,
ð31aÞ

PB k1
i ,k2

j ,k3
k

� �
~a000zcos cfa001Xiza100Yjza001Zkg

za110YjfXizZkgza011XiZkza111fcos cXiYjZkzsin cHijkg,
ð31bÞ

PC k1
i ,k2

j ,k3
k

� �
~a000zcos cfa001Xiza001Yjza100Zkg

za110ZkfXizYjgza011XiYjza111fcos cXiYjZkzsin cHijkg:
ð31cÞ

Embedding the classical game
If we consider a strategy triplet x,y,zð Þ~ 0,1,0ð Þ for example, at

zero entanglement, then the payoff to Alice is obtained from Eq.

(30) to be

PA x,y,zð Þ~
1

8
½G000 1zX2ð Þ 1zY1ð Þ 1zZ2ð ÞzG100 1{X2ð Þ 1zY1ð Þ 1zZ2ð Þ

zG010 1zX2ð Þ 1{Y1ð Þ 1zZ2ð ÞzG110 1{X2ð Þ 1{Y1ð Þ 1zZ2ð Þ

zG001 1zX2ð Þ 1zY1ð Þ 1{Z2ð ÞzG101 1{X2ð Þ 1zY1ð Þ 1{Z2ð Þ

zG011 1zX2ð Þ 1{Y1ð Þ 1{Z2ð ÞzG111 1{X2ð Þ 1{Y1ð Þ 1{Z2ð Þ�:

ð32Þ

Hence, in order to achieve the classical payoff of G101 for this

triplet, we can see that we require X2~{1, Y1~z1 and

Z2~{1.

This shows that we can select any required classical payoff by

the appropriate selection of Xi, Yi, Zi~+1. Referring to Eq. (20),

we therefore have the conditions for obtaining classical mixed-

strategy payoff relations as

Xi~cos a1 cos k1
i zcos a3 sin a1 sin k1

i ~+1, ð33aÞ

Yj~cos b1 cos k2
j zcos b3 sin b1 sin k2

j ~+1, ð33bÞ

Zk~cos x1 cos k3
kzcos x3 sin x1 sin k3

k~+1: ð33cÞ

For the equation for Alice, we have two classes of solution: If

a3=0, then for the equations satisfying X2~Y2~Z2~{1 we

have for Alice in the first equation a1~0, k1
2~p or a1~p, k1

2~0
and for the equations satisfy X1~Y1~Z1~z1 we have

a1~k1
1~0 or a1~k1

1~p, which can be combined to give either

a1~0, k1
1~0 and k1

2~p or a1~p, k1
1~p and k1

2~0. For the

second class with a3~0 we have the solution a1{k1
2~p and for

X1~Y1~Z1~z1 we have a1{k1
2~0.

So in summary for both cases we have that the two measurement

directions are p out of phase with each other, and for the first case

(a3=0) we can freely vary a2 and a3, and for the second case

(a3~0), we can freely vary a1 and a2 to change the initial quantum

quantum state without affecting the game Nash equilibrium (NE) or

payoffs [1,2]. The same arguments hold for the equations for Y and

Z. Using these results in Eq. (24) we find that Hijk~0.

We have the associated payoff for Alice

PA x,y,zð Þ~ 1

2
½G000zG111{cos c G000{G111ð Þ

{4 yzzð Þ a110za011ð Þzcos cf4x a111za100ð Þ

z4 a111za001ð Þ yzzð Þgz8xa110 yzz{1ð Þz8yza011

{8a111 cos cfxyzxzzyz{2xyzg�:

ð34Þ

Setting c~0 in Eq. (34) we find Alice’s payoff as

PA x,y,zð Þ~G111zx G011{G111ð Þzy G110{G111ð Þ

zz G110{G111ð Þz4xy a110{a111ð Þz4xz a110{a111ð Þ

z4yz a011{a111ð Þz8xyza111,

ð35Þ

which has the same payoff structure as the mixed-strategy version

of the classical game.
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Now, we can also write the equations governing the NE as

PA x�,y�,z�ð Þ{PA x,y�,z�ð Þ

~ x�{xð Þ½a110 2y�{1ð Þza101 2z�{1ð Þ

zcos cfa100za111 2y�{1ð Þ 2z�{1ð Þg�§0

PB x�,y�,z�ð Þ{PB x�,y,z�ð Þ

~ y�{yð Þ½b110 2x�{1ð Þzb011 2z�{1ð Þ

zcos cfb010zb111 2x�{1ð Þ 2z�{1ð Þg�§0

PC x�,y�,z�ð Þ{PC x�,y�,zð Þ

~ z�{zð Þ½c101 2x�{1ð Þzc011 2y�{1ð Þ

zcos cfc001zc111 2x�{1ð Þ 2y�{1ð Þg�§0,

ð36Þ

where the strategy triple x�,y�,z�ð Þ is a NE. Using the conditions

defined earlier for a symmetric game, we can reduce our equations

governing the NE for the three players to

x�{xð Þ½2a110 y�zz�{1ð Þ

zcos cfa100za111 2y�{1ð Þ 2z�{1ð Þg�§0,
ð37aÞ

y�{yð Þ½2a110 x�zz�{1ð Þ

zcos cfa100za111 2x�{1ð Þ 2z�{1ð Þg�§0,
ð37bÞ

z�{zð Þ½2a110 x�zy�{1ð Þ

zcos cfa100za111 2x�{1ð Þ 2y�{1ð Þg�§0
ð37cÞ

We can see that the new quantum behavior is governed solely by

the payoff matrix through a100, a110 and a111 and by the entang-

lement angle c, and not by other properties of the quantum state.

For completeness, we have Bob’s payoff, in the symmetric case, as

PB x,y,zð Þ~ 1

2
½G000zG111{cos c G000{G111ð Þ

{4 xzzð Þ a110za011ð Þzcos c4y a111za100ð Þ

z4 xzzð Þ a111za001ð Þ�z8ya110 xzz{1ð Þz8xza011

{8a111 cos cfxyzxzzyz{2xyzg�:

ð38Þ

The mixed NE for all players is

x�~y�~z�~
{a110zcos ca111+

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2

110{cos ca100a111

q
2 cos ca111

: ð39Þ

Maximally entangled case. For c~p=2 at maximum

entanglement for both NE of x�,y�,z�ð Þ~ 0,0,0ð Þ and x�,y�,z�ð Þ
~ 1,1,1ð Þ we have the payoff

PA x�,y�,z�ð Þ~PB x�,y�,z�ð Þ~PC x�,y�,z�ð Þ~ 1

2
G000zG111ð Þð40Þ

which gives the average of the two corners of the payoff matrix,

which is as expected.

Prisoners’ Dilemma. An example of a three-player PD

game is shown in Table 1. For this game, from Eq. (28), we have

a000~32=8,a001~14=8, a010~14=8,a011~0,a100~{8=8,a101~

{2=8,a110~{2=8,a111~0, with the NE from Eqs. (37) given by

x�{xð Þ½{ y�zz�{1ð Þ{2 cos c�§0, ð41aÞ

y�{yð Þ½{ x�zz�{1ð Þ{2 cos c�§0, ð41bÞ

z�{zð Þ½{ x�zy�{1ð Þ{2 cos c�§0: ð41cÞ

We have the classical NE of x�,y�,z�ð Þ~ 0,0,0ð Þ for cos c~1,

but we have a phase transition, as the entanglement increases, at

cos c~
1

2
where we find the new NE x�,y�,z�ð Þ~ 1,0,0ð Þ,

x�,y�,z�ð Þ~ 0,1,0ð Þ and x�,y�,z�ð Þ~ 0,0,1ð Þ. The payoff for Alice

from Eq. (34) is given by

PA x,y,zð Þ~ 1

2
½7z2xz yzzð Þ 1{2xð Þ

{cos cf5z4x{7 yzzð Þg�:
ð42Þ

For the classical region we have PA 0,0,0ð Þ~PB 0,0,0ð Þ~
PC 0,0,0ð Þ~ 7

2
{

5

2
cos c, which is graphed in Fig. 2 along with

other parts of the phase diagram. It should be noted that cos c can

go negative, which will produce a mirror image about the vertical

axis of the current graph. That is for cos c decreasing from {
1

2
to

{1, we have a NE of x�,y�,z�ð Þ~ 1,1,1ð Þ, falling from 2:25 down

to 1. We will also have the NE of x�,y�,z�ð Þ~ 1,1,0ð Þ and

x�,y�,z�ð Þ~ 0,1,1ð Þ for {
1

2
cos cv0.

This graph also illustrates the value of coalitions, because if Bob

and Chris both agree to implement the same strategy, then the

only NE available for 0vcos cv
1

2
for example, is x�,y�,z�ð Þ~

1,0,0ð Þ. However, for a NE in the region of cos c just less than one

half, both Bob and Chris receive a significantly greater payoff, of

around 4:5 units, as opposed to 2:5 for Alice, so the coalition will

receive nearly twice the payoff.

Table 1. An example of three-player Prisoners’ Dilemma.

State j000T j001T j010T j100T j011T j101T j110T j111T

Payoff (6,6,6) (3,3,9) (3,9,3) (9,3,3) (0,5,5) (5,0,5) (5,5,0) (1,1,1)

The payoff for each player (one,two,three), for each measurement outcome.
doi:10.1371/journal.pone.0021623.t001
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Players sharing the W state
The second type of three particle entangled state [49] is the W state

y~{ABC
1ffiffiffi
3
p is1

2zis2
2zis3

2

� �
, ð43Þ

where once again we have used the three rotors A, B and C in order

to generalize the state as far as possible. So proceeding as for the GHZ

state, the probability that a particular state will be observed after

measurement can be found to be

Plmn~
1

24
½3z({)lXiz({)mYjz({)nZk

z({)lzmzn(2(XiGjHkzFiYjHkzFiGjZkzXiVjWk

zUiYjWkzUiVjZk){3XiYjZk)

z({)lzm(2FiGjz2UiVj{XiYj)

z({)lzn(2FiHkz2UiWk{XiZk)

z({)mzn(2GjHkz2VjWk{YjZk)�:

ð44Þ

Clearly the same probability distribution would be found for the

second type of W state, shown in Eq. (3), because it is simply an

inverse of this state.

Obtaining the pure-strategy payoff relations. With

players sharing a W state, referring to Eq. (28), we introduce the

following notation for Alice

a
0
xyz~

1

3
axyz: ð45Þ

Using the payoff function given by Eq. (4), we then find for Alice

PA(k1
i ,k2

j ,k3
k)

~3a
0
000za

0
100Xiza

0
010Yjza

0
001Zkza

0
011(2GjHkz2VjWk{YjZk)

za
0
110(2FiGjz2UiVj{XiYj)za

0
101(2FiHkz2UiWk{XiZk)

za
0
111 2fXiGjHkzFiYjHkzFiGjZkzXiVjWkzUiYjWkzUiVjZkg
�

{3XiYjZk

�
:

ð46Þ

Similarly for other players, simply by switching to their payoff

matrix in place of Alices’.

Obviously for the W state there is no way to turn off the

entanglement and so it is not possible to embed a classical game,

hence we now turn to a more general state which is in a

superposition of the GHZ and W type states.

Games with general three-qubit state
It is noted in Ref. [49] that there are two inequivalent classes of

tripartite entanglement, represented by the GHZ and W states.

More specifically, Ref. [50] finds a general three qubit pure state

jyT3~l0j000Tzl1eiwj100Tzl2j101Tzl3j110Tzl4j111T ð47Þ

where l1,w[<, with l1§0, 0ƒwƒp and
P4

j~0 l2
j ~1.

We have a 1 : 1 mapping from complex spinors to GA given in

Eq. (9), so we will have a general three qubit state represented in

GA as

y~ABC½l0{l1 cos xis1
2zl1 sin xis1

1

zl2is1
2is3

2zl3is1
2is2

2{l4is1
2is2

2is3
2�,

ð48Þ

which with the rotors gives us 15 degrees of freedom.

We desire though, a symmetrical three-qubit state in order to

guarantee a fair game and so we construct

jyT3~r0j000Tzr1(j001Tzj010Tzj100T)

zr2(j011Tzj101Tzj110T)zr3j111T
ð49Þ

as the most general symmetrical three qubit quantum state, with ri

subject to the conventional normalization conditions. We might

think to add complex phases to the four terms, however we find

that this addition has no effect on the payoff or the NE and so can

be neglected. This symmetrical state can be represented in GA, by

referring to Eq. (11), as

y~ABC½cos
c

2
cos

w

2
zsin

w

2
sin

d

2
(is1

2zis2
2zis3

2)=
ffiffiffi
3
p

zsin
w

2
cos

d

2
(is1

2is2
2zis2

2is3
2zis1

2is3
2)

=
ffiffiffi
3
p

zsin
c

2
cos

w

2
is1

2is2
2is3

2�:

ð50Þ

If we set c~0 and w~0 we find the product state j000T, which we

will constrain to return the classical game as for the GHZ state.

For c~p=2 and w~0 we produce the maximally entangled GHZ

state and for w~p we have the W type states in a superposition

controlled by d. Using Eq. (50) and following the same calculation

path used for the GHZ state, we can arrive at the NE, using the

same condition for classical embedding as for the GHZ state,

finding for Alice

PA(x�,y�,z�){PA(x,y�,z�)

~(x�{x)½3(a100zU2) cos c(1zcos w)

z2U1(1z2 cos w){(a100{3U2)(1{cos w)cos d�,

ð51Þ

where

Figure 2. Phase structure for Alice in quantum PD game using
EPR setting. For the PD example given in Table 1, the classical

outcome of (0,0,0), is still returned for low entanglement, cos cw
1

2
, but

with new NE arising at higher entanglement. As the game is symmetric,

we have PA(0,1,0)~PA(0,0,1) and the NE (0,0,1) is not shown.
doi:10.1371/journal.pone.0021623.g002
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U1~a110 2y�{1ð Þza101 2z�{1ð Þ~2a110 y�zz�{1ð Þ ð52aÞ

U2~a111 1{2y�ð Þ 1{2z�ð Þ: ð52bÞ

We can see the effect of the W type states in the cos d term and so

it illustrates how both types of W states contribute. The reason

they can both appear is because by demanding the classical

embedding we have severely restricted the available unitary

transformations available to transform the starting state.

The payoff relations. The payoff function for Alice given by

PA~a000{
1

2
V1zV3ð Þ cos c 1zcos wð Þz 1

3
V2 1z2 cos wð Þ

z
1

6
V1{3V3ð Þ 1{cos wð Þ cos d,

ð53Þ

where

V1~a100 1{2xð Þza010 1{2yð Þza001 1{2zð Þ ð54aÞ

V2~a110(1{2x)(1{2y)

za101(1{2x)(1{2z)za011(1{2y)(1{2z)
ð54bÞ

V3~a111 1{2xð Þ 1{2yð Þ 1{2zð Þ: ð54cÞ

The payoff for Bob and Chris found by simply replacing aijk with

bijk and cijk from their respective payoff matrices. When

comparing with the payoff formula above with the classical

result at x,y,zð Þ~ 0,0,0ð Þ, it is helpful to note that a000za001

za010za011za100za101za110za111~G000 and generally a000

z {1ð Þna001z {1ð Þma010z {1ð Þmzn
a011z {1ð Þla100z

{1ð Þlzn
a101z {1ð Þlzm

a110z {1ð Þlzmzn
a111~Glmn:

Uniform superposition state. If we select a uniform

superposition state, with r0~r1~r2~r3~
1

2
, that is,

substituting c~
p

2
, w~

2p

3
and d~

p

2
, giving a product state

H63j000T, with H being the Hadamard operator, then we find

that PA x�,y�,z�ð Þ{PA x,y�,z�ð Þ~0 for Alice, and similarly for

the other players. That is the payoff will be independent of the

player choices and Eq. (53) gives PA~PB~PC~a000. Where

a000 represents the average of all the entries in the payoff matrix,

as expected for a uniform superposition state.

Prisoners’ Dilemma. For the PD game from the previous

section with the GHZ state, we found a100~{8=8,a110~

{2=8,a111~0, so U2~0, with the NE from Eq. (79) for the

three players given by

(x�{x)½(1{y�{z�)(1z2 cos w){

3 cos c(1zcos w)z(1{cos w) cos d�§0,
ð55aÞ

(y�{y)½(1{x�{z�)(1z2 cos w){

3 cos c(1zcos w)z(1{cos w) cos d�§0,
ð55bÞ

(z�{z)½(1{x�{y�)(1z2 cos w){

3 cos c(1zcos w)z(1{cos w) cos d�§0,
ð55cÞ

with the payoff for Alice given by

PA~4{
1

6
(1{2x)(1{y{z)(1z2 cos w){

1

4
(5z4x{7y{7z)½cos c(1zcos w){

1

3
(1{cos w) cos d�:

ð56Þ

We can see with w~0 we recover the NE for the GHZ state, in

Eq. (37).

Shifting of the NE compared to the GHZ state. We have

the classical NE of x�,y�,z�ð Þ~ 0,0,0ð Þ for cos c~1 and cos w~1,

but we can see, that once again, we have a phase transition, as the

entanglement increases, to a new NE of x�,y�,z�ð Þ~ 1,0,0ð Þ,
x�,y�,z�ð Þ~ 0,1,0ð Þ and x�,y�,z�ð Þ~ 0,0,1ð Þ.

The phase transition will be at cos c~
1

3
2{cos dð Þz

2 cos d{1

3 1zcos wð Þ . We notice that as we increase the weighting towards

the W state, by increasing w, that it becomes easier to make the

phase transition in comparison to the pure GHZ state, that is, we

improve access to the phase transition as we introduce the weight

of the j011Tzj101Tzj110T state. In fact, even at cos c~1, we

can achieve the NE of x�,y�,z�ð Þ~ 1,1,1ð Þ, with w~p, giving a

payoff of 3
1

3
units.

Maximizing the payoff. Looking at the payoff function for

Alice in Eq. (56), we can seek to maximize this function. The

maximum achievable payoff is found to be 4:5, which is equal to

the maximum payoff found for the GHZ state, see Fig. 2. Thus

incorporating W type states into a superposition with the GHZ

state, cannot improve the maximum payoff.

Observing Fig. 3, we can see that as we mix in the W state, that

the phase transitions move to the right, with an extra offset

available by changing d, and the maximum payoff obtainable, will

drop below the maximum achievable of 4:5 with the pure GHZ

state. Fig. 3, shows the shifted NE from 0:5 to 2=3 and payoffs for

the case w~
p

2
and d~0.

Discussion

A quantum version of a three-player two-strategy game is

explored, where the player strategy sets remain classical but their

payoffs are obtained from the outcome of quantum measurement

performed, as in a typical EPR experiment. If players share a

product state, then the quantum games reduces itself to the

classical game, thus ensuring a faithful embedding of a mixed-

strategy version of a classical three-player two-strategy game

within the more general quantum version of the game.

For a general three-player two-strategy game, we find the

governing equation for a strategy triplet forming a NE is given by

Eq. (51) with the associated payoff relations obtained in Eq. (53).

At zero entanglement the quantum game returns the same

triplet(s) of NE as the classical mixed-strategy game and the payoff

relations in the quantum game reduce to the trilinear form given

in Eq. (35), equivalent to the classical game involving mixed-

strategies. We find that even though the requirement to properly

embed a classical game puts significant restrictions on the initial

quantum states, we still have a degree of freedom, available

with the entanglement angle c, with which we can generate a

new NE.

As a specific example the PD was found to have a NE of

x�,y�,z�ð Þ~ 1,1,1ð Þ at high entanglement. For the GHZ state, the

phase diagram is shown in Fig. 2, which is modulated with the

inclusion of the W type states, by reducing the payoffs and sliding

the NE closer to the classical region.
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As our setup for a three-player quantum game involves players

performing classical strategies, our conclusions are restricted by

not only players sharing GHZ or W states but also by the EPR

setting that we use. The most general form of the GHZ state

permits a description in terms of a single entanglement parameter

c. However, as the general W state involves three kets, the

entanglement in such a state cannot be described by a single

parameter. It appears that as for symmetric W states with equal

superposition it is not possible to remove entanglement, therefore,

embedding a classical game within the quantum game (while

players share such states) is not possible in the EPR-type setup in

which players can perform only classical strategies. Our results in

this regard are general in that although they rely on the EPR

setting, but not on a particular game as these use the parameters

introduced in Eqs. (28a–28d) that can be evaluated for any game.

Also, this is discussed in the Section 5, where games with general

three-qubit symmetric states are considered, that include combi-

nation of GHZ and W states. However, the situation with sharing

non-equally weighted superposition states can be entirely different,

not considered in the present paper, but represents a useful

extension for future work.

Our analysis shows that, with a quantization based on the EPR

setting, a faithful embedding of a classical game can be achieved that

also avoids an Enk-Pike type argument [32] because players’ strategy

sets are not extended relative to the classical game. However, with

players sharing entangled states, while their strategy sets remain

classical, our quantum games lead to new game-theoretic outcomes.

We also find that an analysis of three-player quantum games using

Clifford’s geometric algebra (GA) comes with some clear benefits, for

instance, a better perception of the quantum mechanical situation

involved and particularly an improved geometrical visualization of

quantum mechanical operations. The same results using the familiar

algebra with Pauli matrices may possibly be tractable but would

certainly obscure intuition. Also, the simple expression given in (13)

for the overlap probability between two quantum states in the

N-particle case is another benefit of the GA approach.

The results reported in the paper can be useful in a game-

theoretic analysis of the EPR paradox. Bell’s consideration of the

EPR paradox usually implies the inconsistency between locality

and completeness of quantum mechanics, or in more broader

terms, simply the surprising nonlocal effects invoked by entangle-

ment. However, one notices that these conclusions are merely

sufficient but not necessary for the violation of Bell’s inequality and

that other interpretations are also reported [45,51–54], especially,

the interpretation based on the non-existence of a single

probability space for incompatible experimental contexts [55].

This non-existence also presents a new route in constructing

quantum games and the first step in this direction was taken in Ref

[56]. Because such quantum games originate directly from the

violation of Bell’s inequality, they allow a discussion of the EPR

paradox in the context of game theory. This is also supported by

the fact that for quantum games with players sharing entangle-

ment, a game-theoretic analysis that involves Bell’s settings [26–

28] has been reported in Refs [57,58].

A variety of other classical games could now be adapted and

applied to this three-player framework, with new NE being

expected. The present study of three-player quantum games can

also be naturally extended to analyze the N-player quantum

games. We believe that the mathematical formalism of GA permits

this in a way not possible using the usual complex matrices. Also,

this extension could be fruitfully exploited in developing a game-

theoretic perspective on quantum search algorithms and quantum

walks. We find that our analysis can be helpful in providing an

alternative viewpoint (with emphasis on underlying geometry) on

multi-party entanglement shared by a group of individuals

(players), while they have conflicting interests and can perform

only classical actions on the quantum state. That is, a viewpoint

that is motivated by the geometrical perspective that Clifford’s

geometric algebra provides. Such situations take place in the area

of quantum communication and particularly in quantum cryp-

tography [59–61].

Supporting Information

Appendix S1

(PDF)

Figure 3. Phase transition in three-player quantum Prisoners’ Dilemma with a general three qubit state. The solid lines indicate the
phase transitions from Table 1, and shown in Fig. 1, with the dashed lines indicating the shifted transitions when the W-state is mixed in. We observe

that new NE now arise at lower entanglement, at cos c~
2

3
, as indicated by the arrow pointer.

doi:10.1371/journal.pone.0021623.g003
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