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Abstract

The transient analysis of a uniform transmission line of finite length is considered in this
paper. For the first time this paper provides an analytical expression for the time-domain re-
sponse of an RC transmission line, which is stimulated by a step function that is fed into
both ends of the transmission line. In particular, we find an analytical expression for the step
response at the center of the transmission line, in order to determine the worst-case rise
time. This is of interest, for example, in large charge-coupled device (CCD) arrays, where
long polysilicon lines are dual-fed in order to mitigate degradation in rise time. The analytical
expressions for the RC transmission line are supported by computer-simulated lumped RC
models.

Introduction

Integrated circuits have seen significant progress—from the early developments that contained
only a few transistors to modern microprocessors that can contain billions of elements. This
development has been made possible by the downscaling of circuit dimensions, which results
in increased speed and reduced costs.

The disadvantage of this development is that the resistance of the wires between transistors
increases disproportionately when their cross-sectional dimensions are reduced. Consequently,
when they are scaled down, signal propagation speed becomes reduced.

Estimating interconnection delay is an important issue for present circuits. Many authors
have modeled the wires inside integrated circuits as distributed RC lines. The analysis of finite
RC interconnections under a step input is widely discussed in the literature, e.g. [1, 2]. The
usual method is to calculate the transfer function, then the time-domain response is extracted
for an RC transmission line with a step input. Many authors have adopted different approaches
to obtain a time-domain response using the Laplace transform technique [3]. Kahng and
Muddu presented the time-domain response for an RC transmission line with source and load
impedances [3]. Moreover, they analyzed a finite transmission line for a ramp input [4], using
a method based on solving the diffusion equation and applying the method of images [3]. Rao
reviewed the step response of the semi-infinite distributed RC line and focused mainly on the
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step response of a finite-length RC line with a capacitive load termination, which is the most
common model for a wire within present-day integrated CMOS chips [5]. Additionally, Gupta
and Patnaik presented an exact analysis of the output response of a distributed RC interconnect
under input signals that are polynomial in time [6].

None of these previous studies used the same step input fed simultaneously into both ends
of the transmission line, while considering the behavior at the center of the line. This scheme is
of interest for long interconnects on chips and also for long electrodes on charged-coupled de-
vices (CCDs). For example, in order to mitigate a slow rise time, a circular clock bus can be fed
from both ends, and it becomes of interest to have an analytical expression for the transient re-
sponse at the center of the bus. Similarly, in order to reduce RC degradation of clock signals
along long CCD electrodes, it is possible to feed the clock to both ends of the electrodes [7]. An
analytical expression that predicts the worst-case rise time at the center of the electrode is
therefore a useful design equation. Another example, where such an analytical expression is po-
tentially useful, is in the design of A and J gates for future silicon quantum computers [8].

The rest of this paper is organized as follows. After reviewing the transient response of a
semi-infinite RC transmission line and an RC line of finite length with open-circuit termina-
tion, we will derive the transient response of an RC line of finite length that is fed at both ends
with the same step function. In particular, we will determine the improvement of the 63% rise
time thereby achieved at the center of the line. The analytical expressions will be presented in
two forms: a convergent series of trigonometric and exponential functions, and a convergent
series of complementary error functions. Furthermore, it will be evident that the same expres-
sions arise by applying the method of superposition. As a final confirmation of the derived ana-
lytical expressions, the distributed RC line of finite length is modeled by several lumped RC
sections, and the step response at the center of the model is computed and compared with the
analytical expressions.

Transient Response of RC Transmission Lines
Semi-Infinite RC Transmission Line

An RC transmission line is shown in Fig. 1. This may, for example, be the model of a CCD elec-
trode. Ignoring any propagation time due to inductance, the voltage across the line v(x;, t) at po-
sition x along the line and at time ¢ satisfies the well-known diffusion equation

oy o
o Bt

(1)

together with appropriate boundary conditions and initial condition. Here r and c are the uni-
form resistance and capacitance per unit length. It is a linear partial differential equation
(PDE). The corresponding current in the line i(x, t) satisfies the same PDE and is related to the
voltage v(x, t) by

1 ov

= & @

A particular integral for the diffusion equation is

v(x,t) =a erfc((b:t%)/ %) +cx+d (3)
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Figure 1. An RC transmission line.

doi:10.1371/journal.pone.0116993.g001

where a, b, c and d are constants and erfc(-) is the complementary error function defined by

erfc(z) =1 — % /OZ e dy- (4)

A characteristic length L has been introduced so that the dimensionless (normalized) variables

x
== 5
=7 (5)
and
t

can be used throughout the analysis. The corresponding dimensionless diffusion equation is

v v
= (7)
oz ot

The unit step response of a semi-infinite line extending from x = 0 to infinity is found by im-
posing the boundary conditions

BCl: v(0,t) = v, (t) =u(t) forall >0 (8)
. ov
BC2: i(co,t) =0 or a(oo,t) =0 forall ¢t>0 (9)

where u(f) is the unit step function, and the initial condition

IC: v(x,0)=0 forall 0<x<oo. (10)

Therefore a = 1, and b, c and d must be zero, and so the unit step response of the semi-infinite
line is

v(x,t) = erfc((%)/ %) (11)
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or

v(z.7) = erfe(y/V/). (12)

Finite RC Transmission Line with Open-Circuit Termination

Consider an RC transmission line of finite length L with open-circuit termination, as shown in
Fig. 1, fed with a unit step function of voltage. Rao has solved this case by using the Laplace
transform technique [5]. For the Laplace transform of the voltage step response v(x;, t) he ob-
tains

B 1 cosh((l — %) vV rcLQS)
s cosh (v/rcL%)

for 0 < x < L. By directly inverting this Laplace transform Rao obtains the following infinite se-
ries for the unit step response:

v(x,t) =1— %i (nl_;) {sin ((n - ;) n(z)” o (3 e/e2). (14)

n=1

L{v(x, )Y = /0 T e dt = Vi(x,s) (13)

Then, by using the expansion

1 2e7 =
— =92 —1 n_—(2n+1)y 15
cosh(y) 1+e¥ ; (=1)% (15)

so that

Vix,s) = lzoo: (l)n{e(Qnﬁ)\/EJﬁe(zwz%)\/E} (16)

n=0

he performs an alternative inversion of the Laplace transform (13) and obtains another, but
equivalent, infinite series for the unit step response:

v(x,t) = i (—1)”{erfc<(2n —&-%)/ %) + erfc(<2n +2- %)/ %) } (17)

n=0

For the purpose of comparison, the following practical example will be considered here and
later in the paper. Let r = 1 Q/m, ¢ = 1x10°° F/m and L = 1x10”> m. The unit step response at
the center of this line will be of particular interest. Here, x = 0.5x10> m and y = x/L = 0.5.
When evaluated at this position, the unit step response reaches (1-1/e) or 0.63212 of its final
value of 1.0 in the time ¢ = 0.36283x107'% s, that is, when 7 = #/(rcL?) = 0.36283. This is called
the 63% rise time.

For interest, if this practical line were extended to infinity (becoming a semi-infinite line),
the 63% rise time at the same position would increase to time t = 0.54538x10™'? s, that is, to
7= t/(rcL®) = 0.54538. The increased rise time is due to the need to charge the extra capacitance
beyond x = L.

On the other hand, if this practical line is fed with the same step function of voltage into
both ends of the line, charging of the capacitance within the finite line is potentially faster than
when leaving the far end open.
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Figure 2. The RC transmission line is identical to that in Fig. 1, except that both ends are fed with the

same step function v;,(t). The response of interest, v(x; t), is the voltage at the center of the line. The voltage
at that position will possess the worst-case rise time.

doi:10.1371/journal.pone.0116993.9002

Analysis of Dual-Fed RC Transmission Line

Consider an RC transmission line of finite length L fed with the same step function of voltage
at both ends, as shown in Fig. 2. The boundary and initial conditions now become

BCl: v(0,t) =u, -u(t) forall >0, (18)
BC2: v(L,t) =u,-u(t) forall ¢>0, (19)
IC: v(x,00=0 forall 0<x<L. (20)

For generality, individual step amplitudes ©; and u, have been introduced at each end of the
RClline. They can both be set to unity at the end of the analysis.

Taking the Laplace transform of the diffusion Equation (1) and applying the initial condi-
tion (20) gives the wave equation

2

p V(x,s) = re[v(x, t)e ] + rcs/ v(x, t)e dt = resV(x,s). (21)
X 0

Its general solution in the Laplace transform domain is
V(x,s) = A(s) &V + B(s) e ™V (22)

where A(s) and B(s) do not depend on x and must be determined from the boundary condi-
tions (18) and (19). Since the Laplace transform of the unit step function is 1/s, BC1 and BC2

become
V(0,5) = A(s) + B(s) = % (23)
V(L,s) = A(s) ¥ + B(s) e W& = 2. (24)

N
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Thus

—u eV L,

Al) = 2ssinh (Ly/rcs) ’

Ly/res
ue Uy

Bls) = 2ssinh (L+/7cs) (26)

so that

1 wysinh ((1 = £)V/rcLs) + uysinh ((¥)v/rcL?s) _
V(x,s) = T cinh (VreL%s) =u,F(L — x,s) + u,F(x,s) (27)

where

B 1 .sinh ((’L—‘) vV T’CLQS) .
Fxs) = s sinh (\/T’CL2S) (28)

The inverse Laplace transform of F(x; s) is

f(xa t) = ‘Cil{F(xv S)}; =

= 3 e*ds. (29)

1 /“*fx 1 /“”xl sinh ((¥)V/rcL’s)

F(x,s)e"ds = —
(x:3) 27 Jusjne S sinh (\/ T’CL25>

—joo

Though sinh+/Z is not analytic, the ratio of two such functions is lacking any double-valued-
ness and so there is no need for a cut along the negative-real axis. Note that this ratio has a line
of first-order poles along this axis. For t < 0, the contour of the integration may be closed to
the right, the integral at infinity goes to zero, and the value of the contour integral is zero. For ¢
> 0, this is not permissible, the integral becoming exponentially large due to the e* factor.
However, the contour may be closed to the left, thus enclosing the line of poles. The value of
the new integral at infinity is still zero, and the contour integral that we are interested in takes
on the value of the sum of the residues. The simple poles are located at

(nm)’

s, = — 12 (30)

for each integer n > 1. Therefore,

X X 2 sinh (jnnx/L)e*(”ﬂ)Qt/(rcﬁ)

flx,t) ==+

A L cosh (jnr)
so that
2.3 (~1)" .
fx,t) = % + EZ( n) sin (nmx/L)e /04 (32)
n=1

Hence the general step response is

v(x,t) = u (1 _z> + u, (%)
+ %; (7’11) [ulsin (mr(l - %)) + u,sin (nn (%))] e (mm)t/(rel?) (33)

PLOS ONE | DOI:10.1371/journal.pone.0116993 February 13,2015 6/11



" ®
@ ’ PLOS ‘ ONE Transient Response of a Dual-Fed Transmission Line

Finally, by setting u; = 1 and u, = 1, the unit step response of the dual-fed RC line is

v(x,t) =1+ %i (—nl)" [sin (nn(l - %)) +sin (nn (%))} g/ rel?), (34)

At the center of the line where y = x/L = 0.5, the unit step response of the dual fed RC line is

V(£ t) =1 _ézoo: (_1) e—((2n+l)n)2t/(rcL2) (35)

2’ né=(2n+1)
or
4 o0 (71)n 5
0.5 =1—-- ) (@) 36
V( 7‘5) n;(2n+1)e ( )

Again let r = 1 Q/m, ¢ = 1x10° F/m and L = 1x10” m. The unit step response at the center
of this dual-fed RC line reaches (1-1/e) or 0.63212 of its final value of 1.0 in the time ¢ =
0.125795x107'? s, that is, when 7 = /(rcL?) = 0.125795.

Compared to the case when this line is left open at the far end, the 63% rise time at the cen-
ter has been reduced by a factor of 2.8843, which is a significant improvement.

Alternative Analysis of Dual-Fed RC Transmission Line

Following a method similar to that presented by Rao in [5], and using the expansion

1 2e” =
= =2) ety 37
sinh(y) 1—e? ; ¢ (37)
the Laplace transform (28) can be expanded as
F(X, S) — lz {e(ZnJrli)\/ rcLzs_’ e—(2n+1+’f)\/ rcl?s } ) (38)
s
n=0

Then another, but equivalent, infinite series for the general step response of the dual-fed RC

erfc<<2n+ 1 —%)/ %) —erfc<(2n+

(39)

line is

V(x’t)_; {”1leffc<(2ﬂ+%)/ %)—erfc<(2n+2—%)/ %)

+ u,

The unit step response is obtained by setting u; = 1 and u, = 1. At the center of the line
where y = x/L = 0.5, the unit step response of the dual-fed RC line is

)2l ) (I} e

or

v(0.5,7) = 2 Zm; {erfc( <2n + ;) NE) - erfc(<2n + g) /x/@) } (41)
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Table 1. Analytical results for the unit step response at the center of a dual-fed RC line.

T 0.01 0.02 0.03 0.05 0.07 0.10 0.12 0.13 0.15 0.20 0.50
v(0.5, 1) (volt) 0.001 0.025 0.082 0.228 0.363 0.526 0.610 0.647 0.710 0.823 0.991

doi:10.1371/journal.pone.0116993.t001

This series has been found to converge faster than the series in Equation (36) for small values
of 7 but otherwise gives identical numerical values.
Some analytical results are shown in Table 1.

Analysis of Dual-Fed RC Transmission Line using Superposition

For any bilateral linear electrical network, lumped or distributed, the method of superposition
is valid. In particular, the voltage at any point in an RC transmission line that is fed by two in-
dependent sources is the algebraic sum of the voltages caused by each independent source act-
ing alone, where the other source is reduced to zero and replaced by its internal impedance.
Thus, an ideal voltage source becomes a short-circuit when reduced to zero.

The problem of the dual-fed RC transmission line can now be solved by first finding the
step response within the line when it is fed by a unit step voltage source at one end having ter-
minated the other end of the line with a short-circuit. Because of the symmetry of the uniform
RC transmission line, the step response when the unit step voltage source and the short-circuit
load are swapped can be found by simply changing the position variable x to L—x, where L is
the length of the line. By applying superposition, the step response of the dual-fed line is the al-
gebraic sum of the step responses of the line when fed from just one end and terminated at the
other end with a short-circuit.

Because of the symmetry of the uniform line the step response at the center will be the same
whether it is fed from the left end and short-circuited at the right end or fed from the right end
and short-circuited at the left end. Hence, the step response at the center of a dual-fed line is
the same as that from a singly-fed line, terminated in a short-circuit, but fed with double the
amplitude.

The step response of a forward-fed finite RC transmission line with short-circuit termina-
tion at x = L can obtained by setting u, = 0 in either Equation (33) or Equation (39). Similarly
the step response of a backward-fed finite RC transmission line with short-circuit termination
at x = 0 can obtained by setting u; = 0 in either Equation (33) or Equation (39). By superposi-
tion, the general step response of a dual-fed RC line is the algebraic sum of these two individual
step responses. But that is exactly what appears in both Equations (33) and (39).

Furthermore, it is easily shown that the step response at the center of a dual-fed RC line is
simply halved in amplitude when the source at either end is reduced to zero and replaced by a
short-circuit. By linearity, that halved-response can be restored by doubling the amplitude of

R R R

(O —— C == C C 2

Figure 3. The lumped RC model.
doi:10.1371/journal.pone.0116993.9003
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the remaining source. Shorting the far end of an RC line maximizes the current through the
bulk of the transmission line, but at the same time causes the greatest voltage drop towards the
far end. It follows that terminating the far end of the line with any finite value of resistance will
improve the rise time within the RC line compared to when that far end is left open. The source
amplitude can be increased to compensate for the extra voltage drop towards the far end.

Transient Response of Lumped RC Models

A lumped approximation is used to model the distributed RC line as lumped resistors and
lumped capacitors, as shown in Fig. 3. As the transmission line is uniform, the lumped model
consists of several identical 7 sections in cascade.

A model with two 1t sections in cascade is the simplest approximation to the transmission
line. A better approximation has four sections, wherein the transmission line is split into two
halves, and each half is approximated by two 7 sections in cascade. The approximation contin-
ues to improve as the line is broken into smaller lengths, each piece being represented by a n
section. Table 2 lists the computed results for the unit step response at the center of the dual-
fed lumped model with N sections where N = 2,4,10 and 20. The example values of r =1 Q/m, ¢
=1x10° F/m and L = 1x10™> m were used in the computations, but the results are shown for
selected values of dimensionless (normalized) time 7 = #/(rcL?). The results for N = 2,4 and 20
are plotted in Fig. 4.

It is clear from these plots that the lumped approximation improves as the number of sec-
tions increases. In practice, for N = 20, the step response closely follows the analytical result.

For reference, the step responses of the first two models, N = 2 and N = 4, have explicit ex-
pressions:

v,(05,1) =1—e™ (42)

and

v,(0.5,7) =1

_ \/§2+ 16—(32—16\/5)1 + \/5 -1 e—(32+16x/§)f (43)

2

The latter is the step response of an overdamped second-order circuit with a natural frequency
of 161/2/(rcL?) rad/s and a Q-factor of 1/(2+/2) = 0.354.

Conclusion

This paper derives analytical expressions for the transient time response of an RC transmission
line under a step excitation fed into both ends of the line. Of particular interest is the response
at the center of the line, where the rise time is the longest. Two forms of the analytical expres-
sions are obtained by inverting the Laplace transform in two ways. Both forms are infinite se-
ries but one of them converges faster for small values of time. Furthermore, the expressions
were presented in a form consistent with the method of superposition.

It is found that the 63% rise time at the center is reduced by a factor of 2.8843 when the RC
line is dual-fed compared to the case when it is left open at the far end.

While closed-form analytical expressions now exist for the step response at the center of a
dual-fed distributed RC line, lumped models with different numbers of sections were used to
approximate the line. We demonstrated that the response errors from the lumped approxima-
tions reduce significantly as the number of sections in the m model is increased, 20 sections
being enough in practice to closely predict the step response of the distributed line.
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Table 2. Analytical and lumped model results for the unit step response at the center of a dual-fed RC line.

T analytical N=2 N=4 N=10 N =20
0.01 0.001 0.077 0.021 0.004 0.002
0.02 0.025 0.148 0.069 0.034 0.027
0.03 0.082 0.213 0.129 0.091 0.085
0.05 0.228 0.330 0.258 0.232 0.229
0.07 0.363 0.429 0.378 0.365 0.363
0.10 0.526 0.551 0.528 0.526 0.526
0.12 0.610 0.617 0.608 0.610 0.610
0.13 0.647 0.647 0.643 0.646 0.647
0.15 0.710 0.699 0.704 0.709 0.710
0.20 0.823 0.798 0.815 0.822 0.823
0.50 0.991 0.982 0.989 0.991 0.991

doi:10.1371/journal.pone.0116993.t002
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Output

[y |

0 0.1 0.2 0.3 0.4 0.
T

Figure 4. The voltage at the center of the dual-fed line, simulated with N = 2, 4 and 20 sections.

doi:10.1371/journal.pone.0116993.9004
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