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Abstract

The origins of Fisher information are in its use as a performance measure for parametric estimation. We augment this and
show that the Fisher information can characterize the performance in several other significant signal processing operations.
For processing of a weak signal in additive white noise, we demonstrate that the Fisher information determines (i) the
maximum output signal-to-noise ratio for a periodic signal; (ii) the optimum asymptotic efficacy for signal detection; (iii) the
best cross-correlation coefficient for signal transmission; and (iv) the minimum mean square error of an unbiased estimator.
This unifying picture, via inequalities on the Fisher information, is used to establish conditions where improvement by noise
through stochastic resonance is feasible or not.
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Introduction

Fisher information is foremost a measure of the minimum error

in estimating an unknown parameter of a probability distribution,

and its importance is related to the Cramér-Rao inequality for

unbiased estimators [1,2]. By introducing a location parameter,

the de Bruijn’s identity indicates that the fundamental quantity of

Fisher information is affiliated with the differential entropy of the

minimum descriptive complexity of a random variable [1].

Furthermore, in known weak signal detection, a locally optimal

detector, acting as the small-signal limited Neyman-Pearson

detector, has favorable properties for small signal-to-noise ratios

[3]. With sufficiently large observed data and using the central

limit theorem, it is demonstrated that the locally optimal detector

is asymptotically optimum and the Fisher information of the noise

distribution is the upper bound of the asymptotic efficacy [2–7].

For weak random signal detection, the second order Fisher

information is also associated with the maximum asymptotic

efficacy of the generalized energy detector [4–7].

However, the fundamental nature of Fisher information is not

adequately recognized for processing weak signals. To extend the

heuristic studies of [1–7], in this paper, we will theoretically

demonstrate that, for a weak signal buried in additive white noise,

the performance for locally optimal processing can be generally

measured by the Fisher information of the noise distribution. We

show this for the following signal processing case studies: (i) the

maximum output signal-to-noise ratio for a periodic signal; (ii) the

optimum asymptotic efficacy for signal detection; (iii) the best

cross-correlation coefficient for signal transmission; and (iv) the

minimum mean square error of an unbiased estimator. The

physical significance of Fisher information is that it provides a

unified bound for characterizing the performance for locally

optimal processing. Furthermore, we establish the Fisher infor-

mation condition for stochastic resonance (SR) that has been

studied for improving system performance over several decades

[8–32]. In our recent work [28], it is established that improvement

by adding noise is impossible for detecting a weak known signal.

Here, based on Fisher information inequalities, we further prove

that SR is not applicable for improving the performance of locally

optimal processing in the considered cases (i)–(iv). This result

generalizes a proof that existed previously only for a weak periodic

signal in additive Gaussian noise [12,33]. However, beyond these

restrictive conditions, the observed noise-enhanced effects [9–

11,26,28–30] show that SR can provide a signal processing

enhancement using the constructive role of noise. The applications

of SR to nonlinear signal processing are of practical interest.

Results

In many situations we are interested in processing signals that

are very weak compared to the noise level [2,3,6]. It would be

desirable in these situations to determine an optimal memoryless

nonlinearity in the following study cases.

Output signal-to-noise ratio for a periodic signal
First, consider a static nonlinearity with its output

y(t)~g½x(t)�, ð1Þ

where the function g is a memoryless nonlinearity and the input is

a signal-plus-noise mixture x(t)~s(t)zz(t). The component s(t) is

a known weak periodic signal with a maximal amplitude A
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(0ƒDs(t)DƒA) and period T . Zero-mean white noise z(t),
independent of s(t), has probability density function (PDF) fz

and a root-mean-square (RMS) amplitude sz. It is assumed that g

has zero mean under fz, i.e.
Ð?
{? g(x)fz(x)dx~E½g(x)�~0, which

is not restrictive since any arbitrary g can always include a

constant bias to cancel this average [6]. The input signal-to-noise

ratio for x(t) can be defined as the power contained in the spectral

line 1=T divided by the power contained in the noise background

in a small frequency bin DB around 1=T [10], this is

Rin~
DSs(t) exp½{i2pt=T �TD2

s2
zDBDt

, ð2Þ

with Dt indicating the time resolution or the sampling time in a

discrete-time implementation and the temporal average defined as

S � � � T~ 1
T

Ð T

0
� � � dt [10]. Here, we assume the sampling time

Dt%T and observe the output y(t) for a sufficiently large time

interval of NT (N&1) [10]. Since s(t) is periodic, y(t) is in general

a cyclostationary random signal with period T [10]. Similarly, the

output signal-to-noise ratio for y(t) is given by

Rout~
DSE½y(t)� exp½{i2pt=T �TD2

Svar½y(t)�TDBDt
, ð3Þ

with nonstationary expectation E½y(t)� and nonstationary variance

var½y(t)� [10].

In the case of A?0, we have a Taylor expansion of the

expectation at a fixed time t as

E½y(t)�~
ð?

{?
g(x)fz(x{s)dx&

ð?
{?

g(x)½fz(x){s(t)f ’z(x)�dx

~s(t)

ð?
{?

g’(x)fz(x)dx~s(t)E½g’(x)�,
ð4Þ

where we assume the derivatives g’(x)~dg(x)=dx and

f ’z(x)~dfz(x)=dx exist for almost all x (similarly hereinafter)

[2,6]. Thus, we have

var½y(t)�~E½y2(t)�{E½y(t)�2&E½y2(t)�{s2(t)E2½g’(x)�

&
ð?

{?
g2(x)½fz(x){s(t)f ’z(x)�dx

&
ð?

{?
g2(x)fz(x)dx~E½g2(x)�,

ð5Þ

wheres(t)
Ð?
{? g2(x)f ’z(x)dx~2s(t)E½g(x)g’(x)�ands2(t)E2½g’(x)�,

compared with E½g2(x)�, can be neglected as A?0 (0vDs(t)DƒA)

[2,6]. The above derivations of Eqs. (4) and (5) are exact in the

asymptotic limit for weak signals, and have been generally adopted in

[2,6].

Substituting Eqs. (4) and (5) into Eq. (3), we have

Rout&
DSs(t) exp½{i2pt=T �TD2

DBDt

E2½g’(x)�
E½g2(x)�

ƒ

DSs(t) exp½{i2pt=T �TD2

DBDt
E

f ’2z(x)

f 2
z (x)

� �

~
DSs(t) exp½{i2pt=T �TD2

DBDt
I(fz),

ð6Þ

where the expectation E f ’2z (x)=f 2
z (x)

� �
is simply the Fisher

information I(fz) of the noise PDF fz [2,6], and the equality

occurs as

g(x)~Cf ’z(x)=fz(x) ¼D gopt(x), ð7Þ

by the Cauchy-Schwarz inequality for a constant C [2,6].

Noting Eqs. (2) and (6), the output-input signal-to-noise ratio

gain G is bounded by

G~
Rout

Rin

&s2
z

E2½g’(x)�
E½g2(x)�ƒs2

zE
f ’2z(x)

f 2
z (x)

� �
~s2

zI(fz)~I(fz0
), ð8Þ

with equality achieved when g takes the locally optimal

nonlinearity gopt of Eq. (7). Here, for a standardized PDF fz0

with zero mean and unity variance s2
z0

~1, the scaled noise

z(t)~szz0(t) has its PDF fz(z)~fz0
(z=sz)=sz and the Fisher

information satisfies I(fz)~I(fz0
)=s2

z [1,34]. It is known that a

standardized Gaussian PDF fz0
(z0)~ exp ({z2

0=2)=
ffiffiffiffiffiffi
2p
p

has the

minimal Fisher information I(fz0
)~1 and any standardized non-

Gaussian PDF fz0
has the Fisher information I(fz0

)w1 [2]. It can

be seen that, the linear system gL(x)~x has its output signal-to-

noise ratio Rout~Rin in Eq. (3). Thus, the output-input signal-to-

noise ratio gain G in Eq. (8) also clearly represents the expected

performance improvement of the nonlinearity g over the linear

system gL.

Optimum asymptotic efficacy for signal detection
Secondly, we consider the observation vector

X~(X1,X2, � � � ,XN ) of real-valued components Xn by

Xn~hsnzzn, n~1,2, � � � ,N, ð9Þ

where the components zn form a sequence of independent and

identically distributed (i.i.d.) random variables with PDF fz, and

the known signal components sn are with the signal strength h [6].

For the known signal sequence fsn,n~1,2, � � � ,Ng, it is assumed

that there exists a finite (non-zero) bound A such that 0ƒDsnDƒA,

and the asymptotic average signal power is finite and non-zero, i.e.

0vP2
s ~ limN??

PN
n~1 s2

n=Nv? [6]. Then, the detection prob-

lem can be formulated as a hypothesis-testing problem of deciding

a null hypothesis H0 (h~0) and an alternative hypothesis H1

(hw0) describing the joint density function of X with

H0 : fX (X )~ P
N

n~1
fz(Xn) for h~0;

H1 : fX (X )~ P
N

n~1
fz(Xn{hsn) for hw0:

ð10Þ

Consider a generalized correlation detector

TGC(X )~
XN

n~1

g(Xn)sn w
v
H0

H1
c, ð11Þ

where the memoryless nonlinearity g has zero mean under fz, i.e.

E½g(x)�~0 [6]. In the asymptotic case of h?0 and N??, the test

statistic TGC, according to the central limit theorem, converges to

a Gaussian distribution with mean E½TGCDH0�~0 and variance

var½TGCDH0�&NP2
s E½g2(x)� under the null hypotheses H0 [6].

Using Eqs. (4) and (5), TGC is asymptotically Gaussian with

Fisher Information for Stochastic Resonance
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mean E½TGCDH1�&hNP2
s E½g’(x)� and variance var½TGCDH1�~

var½TGCDH0� under the hypothesis H1 [6].

Given a false alarm probability PFA, the asymptotic detection

probability PD for the generalized correlation detector of Eq. (11)

can be expressed as [2,6]

PD~Q½Q{1(PFA){
ffiffiffiffiffi
N
p

hPs

ffiffiffiffiffiffiffiffi
jGC

p
�, ð12Þ

with Q(x)~
Ð?

x
exp½{t2=2�=

ffiffiffiffiffiffi
2p
p

dt and its inverse function Q{1

[2,6]. Thus, for fixed N and hPs (since the signal is known), PD is a

monotonically increasing function of the normalized asymptotic

efficacy jGC given by [6]

jGC~ lim
N??

fdE½TGC(X )�
dh Dh~0g2

P2
s Nvar½TGC(X )�Dh~0

~
E2½g’(x)�
E½g2(x)�ƒE

f ’2z (x)

f 2
z (x)

� �
~I(fz), ð13Þ

with equality being achieved when g~gopt in Eq. (7). This result

also indicates that the asymptotic optimal detector is just the

locally optimal detector established by the Taylor expansion of the

likelihood ratio test statistic ln½PN
n~1 fz(Xn{hsn)=PN

n~1 fz(Xn)�&PN
n~1 gopt(Xn)hsn (C~{1) in terms of the generalized Neyman-

Pearson lemma [2,6].

Interestingly, with jLC~E2½g’(x)�=E½g2(x)�~s{2
z achieved by

a linear correlation detector (gLC(x)~x in Eq. (11)) as a

benchmark [5,6], the asymptotic relative efficiency

ARE~
jGC

jLC

~s2
z

E2½g’(x)�
E½g2(x)�ƒs2

zI(fz)~I(fz0
), ð14Þ

provides an asymptotic performance improvement of a general-

ized correlation detector over the linear correlation detector when

both detectors operate in the same noise environment [5,6].

Next, consider the weak random signal components sn has PDF

fs with zero mean
Ð?
{? snfsds~0 and variance

s2
s ~

Ð?
{? s2

nfsds~1 in the observation model of Eq. (9) [5,6].

Here, the signal components sn are i.i.d. Then, this random signal

hypothesis test becomes [6]

H0 : fX (X )~ P
N

n~1
fz(Xn), for h~0;

H1 : fX (X )~

ð?
{?

P
N

n~1
fz(Xn{hsn)fs(sn)dsn, for hw0,

for determining whether the random signal is present or not.

Consider a generalized energy detector

TGE(X )~
XN

n~1

g(Xn) w
v
H0

H1
c, ð15Þ

where we also assume E½TGE DH0�~0, and then

var½TGEDH0�~NE½g2(x)�. Furthermore, in the asymptotic case

of h?0, the expectation [6]

E½TGEDH1�~N

ð?
{?

g(x)

ð?
{?

fz(x{hs)fs(s)ds dx

&N

ð?
{?

g(x)

ð?
{?
½fz(x){hsf ’z(x)z

h2s2

2
f ’’z(x)�fs(s)ds dx

&
Nh2

2

ð?
{?

g(x)f ’’z(x)dx~
Nh2

2
E½g’’(x)�:

ð16Þ

Thus, the efficacy of a generalized energy detector is defined as [6]

jGE~ lim
N??

fdE½TGE(X )�
dh2 D

h2~0
g2

Nvar½TGE(X )�D
h2~0

~
1

4

E2½g’’(x)�
E½g2(x)� ƒ

1

4
E

f ’’2z (x)

f 2
z (x)

� �
~

1

4
I2(fz), ð17Þ

where h2 is treated as the signal strength parameter and I2(fz) is

the second order Fisher information [6,7]. It is noted that the

equality of Eq. (17) is achieved as g(x)~gopt(x)~Cf ’’z=fz for a

constant C [6]. Given a false alarm probability PFA, the

asymptotic detection probability PD for the generalized energy

detector of Eq. (15) is a monotonically increasing function of the

efficacy jGE [5–7].

Cross-correlation coefficient for signal transmission
Thirdly, we transmit a weak aperiodic signal s(t) through the

nonlinearity g of Eq. (1) [13]. Here, the signal s(t) is with the

average signal variance s2
s%s2

z , the zero mean and the upper

bound A (0ƒDs(t)DƒA). For example, s(t) can be a sample

according to a uniformly distributed random signal equally taking

values from a bounded interval. The input cross-correlation

coefficient of s(t) and x(t)~s(t)zz(t) is defined as [2,13]

rs,x~
E½s(t)x(t)�

ss

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E½x2(t)�

p ~

ss
szffiffiffiffiffiffiffiffiffiffiffiffi

s2
s

s2
z
z1

r &
ss

sz

: ð18Þ

Using Eqs. (4) and (5), the output cross-correlation coefficient of

s(t) and y(t)~g½x(t)� is given by

rs,y~
E½s(t)y(t)�

ss

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
var½y(t)�

p &
ssE½g’(x)�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E½g2(x)�
p ƒss

ffiffiffiffiffiffiffiffiffi
I(fz)

p
, ð19Þ

which has its maximal value as g~gopt of Eq. (7). Then, the cross-

correlation gain Gr is bounded by

Gr~
rs,y

rs,x

&sz
E½g’(x)�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E½g2(x)�

p ƒ

ffiffiffiffiffiffiffiffiffiffiffi
I(fz0

)
q

: ð20Þ

Mean square error of an unbiased estimator
Finally, for the N observation components xn~sn(h)zzn, we

assume the signal sn(h) are with an unknown parameter h. As the

upper bound A?0 (0ƒDsnDƒA), the Cramér-Rao inequality

indicates that the mean squared error of any unbiased estimator of

the parameter h is lower bounded by the reciprocal of the Fisher

information [1,2] given by

I(h)~
XN

n~1

E
L ln fz(xn{sn)

Lh

� �2
" #

&
XN

n~1

E
dfz(zn)=dzn

fz(zn)
Dzn~xn{sn ({

Lsn

Lh
)

� �2
" #

~I(fz)
XN

n~1

(
Lsn

Lh
)2,

ð21Þ

which indicates that the minimum mean square error of any

unbiased estimator is also determined by the Fisher information

I(fz) of a distribution, as
PN

n~1 ( Lsn
Lh )2 is given.
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Therefore, just as the Fisher information represents the lower

bound of the mean squared error of any unbiased estimator in

signal estimation [1,2], the physical significance of the Fisher

information I(fz)(I2(fz)) is that it provides a unified upper bound of

the performance for locally optimal processing in the considered

signal processing cases.

Aiming to explain the upper bound of the performance for

locally optimal processing as Fisher information, we here show an

illustrative example in Fig. 1. Consider the generalized Gaussian

noise with PDF

fz(x)~
c1

sz

exp ({c2D
x

sz

Da), ð22Þ

where c1~
a
2
C

1
2 3a{1
	 


=C
3
2 a{1
	 


, c2~ C 3a{1
	 


=C a{1
	 
� �a

2 for a

rate of exponential decay parameter aw0 [2,6]. The correspond-

ing locally optimal nonlinearity is gopt(x)~DxDa{1sign(x) and the

output-input signal-to-noise ratio gain in Eq. (8) is

G~I(fz0
)~a2C(3a{1)C(2{a{1)=C2(a{1) (solid line), as shown

in Fig. 1. For comparison, we also operate the sign nonlinearity

gS(x)~sign(x) and the linear system gL(x)~x in the generalized

Gaussian noise. The output-input signal-to-noise ratio gain in Eq.

(8) of gS is G~4s2
z f 2

z (0)~4f 2
z0

(0) (dashed line), as shown in Fig. 1.

For the linear system gL, Eq. (8) indicates that G~1 (dotted line)

for aw0, as plotted in Fig. 1. It is seen in Fig. 1 that, only for a~1,

the performance of gS attains that of the locally optimal

nonlinearity of gopt. This is because, the nonlinearity gS is just

the locally optimal nonlinearity for Laplacian noise (a~1), and the

Fisher information limit I(fz0
)~2 is achieved. Likewise, for

Gaussian noise (a~2), the linear system gL is optimal and the

output-input SNR gain G~I(fz0
)~1. It is noted that the above

analyses are also valid for the asymptotic relative efficiency of Eq.

(14) and the cross-correlation gain of Eq. (20).

Fisher information condition for stochastic resonance
Stochastic resonance (SR), being contrary to conventional

approaches of suppressing noise, adds an appropriate amount of

noise to a nonlinear system to improve its performance [8–32]. SR

emerged from the field of climate dynamics [8], and the topic has

flourished in physics [15–19] and neuroscience [13,14,20]. The

notion of SR has been widened to include a number of different

mechanisms [15,17,25], and SR effects have also been demon-

strated in various extended systems [9–20,25] and complex

networks [21–24,27].

An open question concerning SR is that, under the asymptotic

cases of weak signal and large sample size, can SR play a role in

locally optimal processing? Here, based on the Fisher information

inequalities, we will demonstrate that SR is inapplicable to

performance improvement for locally optimal processing.

For a given observation x(t)~s(t)zz(t), we add the extra noise

v(t), independent of the initial noise z(t) and the signal s(t), to x(t).
Then, the updated data x̂x(t)~s(t)zz(t)zv(t)~s(t)zw(t). Here,

the composite noise w(t) has a convolved PDF

fw(x)~

ð?
{?

fz(x{u)fv(u)du, ð23Þ

where fv is the PDF of noise v(t). Currently, the weak signal s(t) is

corrupted by the composite noise w(t), and then the performance

measures of locally optimal processing in Eqs. (6), (13), (17), (19)

and (21) should be replaced with I(fw) (I2(fw)). It can be shown by

the Cauchy-Schwarz inequality that [34]

I(fw)ƒmin(I(fz),I(fv)), ð24Þ

I2(fw)ƒmin(I2(fz),I2(fv)): ð25Þ

This is because that, if I(fz)ƒI(fv), then using

f ’w(x)~
Ð?
{? f ’z(x{u)fv(u)du and the Cauchy-Schwarz inequal-

ity [34]

I(fw) ~

ð
(f ’w(x))2

fw(x)
dx

~

ð Ð
(f ’z(x{u)=fz(x{u))fz(x{u)fv(u)du

� �2
fw(x)

( )
dx

ƒ

ð ð
f ’z(x{u)

fz(x{u)

� �2

fz(x{u)fv(u)du

( )
dx

~

ð ð
f ’z(z)

fz(z)

� �2

fz(z)fv(u)dudz~I(fz):

ð26Þ

Similarly, substituting f ’’w(x)~
Ð?
{? f ’’z(x{u)fv(u)du into Eq.

(26), we also obtain I2(fw)ƒI2(fz) of Eq. (25).

Therefore, in asymptotic cases of weak signal and large sample

size, Eqs. (24) and (25) show that SR cannot improve the

performance of the above four locally optimal processing cases by

adding more noise. However, the asymptotic limits of weak signal

and large sample size are well delimited, and may not be met in

practice. It is interesting to note that, under less restrictive

conditions, noise-enhanced effects have been observed in fixed

locally optimal detectors [9], suboptimal detectors [26,29], the

optimal detector with finite sample sizes [11] or non-weak signals

[11,25], soft-threshold systems [30] and the dead-zone limiter

detector [28] by utilizing the constructive role of noise.

We here present an illustrative example of SR that occurs

outsides restrictive conditions, where a suboptimal detector is

adopted for Gaussian noise. Consider a generalized correlation

Figure 1. The output-input signal-to-noise ratio gain G. The
output-input signal-to-noise ratio gain G versus the exponential decay
parameter a of the generalized Gaussian noise for the locally optimal
nonlinearity gopt (solid line), the sign nonlinearity gS (red line) and the
linear system gL (dotted line), respectively.
doi:10.1371/journal.pone.0034282.g001
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detector of Eq. (11) based on the dead-zone limiter nonlinearity

gDZ(x)~

{1 for xv{c,

0 for {cƒxƒc,

z1 for xwc,

8><
>: ð27Þ

with response thresholds at x~+c [6]. For the generalized

Gaussian noise of Eq. (22), the normalized asymptotic efficacy jGC

in Eq. (13) of gDZ can be rewritten as

jGC~
1

c2
(

c

sz

)2
2f 2

z0
(c=sz)

1{Fz0
(c=sz)

, ð28Þ

where Fz0
is the cumulative distribution function of the

standardized generalized Gaussian noise PDF fz0
[28]. For a

fixed response threshold c (c~1 without loss of generality), we plot

the the normalized asymptotic efficacy jGC (solid line) of the dead-

zone limiter nonlinearity gDZ as a function of the RMS amplitude

sz of Gaussian noise (a~2), as shown in Fig. 2. It is clearly seen in

Fig. 2 that the SR effect appears, and jGC achieves its maximum

j�GC~1:1512 at a non-zero level of s�z~0:6098. If the original

Gaussian noise RMS szvs�z~0:6098, we can add independent

Gaussian noise v(t) with its RMS amplitude sv~
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s�2z {s2

z

p
to

increase jGC to the maximum j�GC~1:1512 [28]. However, gDZ is

a suboptimal nonlinearity for Gaussian noise, and the locally

optimal detector is the linear correlation detector based on the

linear system gL(x)~x in Eq. (11). It is seen in Fig. 2 that gDZ can

not overperform gL (dashed line), even we can add the appropriate

amount of noise to exploit constructive role of noise in gDZ.

Discussion

In this paper, for a weak signal in additive white noise, it is

theoretically demonstrated that the optimum performance for

locally optimal processing is upper bounded by the Fisher

information of the noise distribution, and this is uniformly

obtained in (i) the maximum output signal-to-noise ratio ratio

for a periodic signal; (ii) the optimum asymptotic efficacy for signal

detection; (iii) the best cross-correlation coefficient for signal

transmission; and (iv) the minimum mean square error of an

unbiased estimator. Based on the Fisher information inequalities, it

is demonstrated that SR cannot improve locally optimal

processing under the usual conditions. However, outside these

restrictive conditions of weak signal and large sample size,

improvement by addition of noise through SR can be achieved,

and becomes an attractive option for nonlinear signal processing.

The analysis in the paper has focused on the simplest case of

additive white noise as an essential reference, and an interesting

extension for future work is to examine the affect of considering

different forms of colored noise [15,31,32].

Methods

Under the assumption of weak signals, the Taylor expansion of

the noise PDF is utilized in Eqs. (4), (5), (16) and (21). The Cauchy-

Schwarz inequality is extensively used in Eqs. (6), (13), (17), (19)

and (26).
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