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Abstract

We study the coevolution of quantum and classical strategies on weighted and directed random networks in the realm of
the prisoner’s dilemma game. During the evolution, agents can break and rewire their links with the aim of maximizing
payoffs, and they can also adjust the weights to indicate preferences, either positive or negative, towards their neighbors.
The network structure itself is thus also subject to evolution. Importantly, the directionality of links does not affect the
accumulation of payoffs nor the strategy transfers, but serves only to designate the owner of each particular link and with it
the right to adjust the link as needed. We show that quantum strategies outperform classical strategies, and that the critical
temptation to defect at which cooperative behavior can be maintained rises, if the network structure is updated frequently.
Punishing neighbors by reducing the weights of their links also plays an important role in maintaining cooperation under
adverse conditions. We find that the self-organization of the initially random network structure, driven by the evolutionary
competition between quantum and classical strategies, leads to the spontaneous emergence of small average path length
and a large clustering coefficient.
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Introduction

Evolutionary games on graphs and networks as well as

coevolutionary games have recently received significant attention

[1–4]. Nowak and May’s discovery of network reciprocity [5] has

indeed spawned a spree of activity aimed at understanding how

the interactions between us affect the evolution of cooperation.

The later has implications ranging from the Cold War to bacterial

colonies [6,7]. While there are other forms of reciprocity that one

can count on to lead to cooperation [8], network reciprocity has

received a substantial push from leaps of progress in network

science that have unfolded roughly a decade ago [9–12].

Evolutionary games have been staged on various types of complex

networks [13–27], whereby in particular the scale-free network has

been identified as an excellent host topology for cooperative

individuals [28–30], warranting the best protection against

defectors. Since the strong heterogeneity of the degree distribution

of scale-free networks was identified as a key driving force behind

flourishing cooperative states [31–35], some alternative sources of

heterogeneity were also investigated as potential promoters of

cooperation with noticeable success (see also [36]). Examples of

such approaches include the introduction of preferential selection

[37], asymmetry of connections [38], different teaching capabil-

ities [39], heterogeneous influences [40], social diversity [41] as

well as diversity of reproduction time scales [42]. Coevolutionary

games [3] have also been extensively studied, for example in the

study of the coevolution of strategy and structure [43], games on

networks subject to random or intentional rewiring procedures

[14,44–51], prompt reactions to adverse ties [52,53], games on

growing networks [54,55], and indeed many more [49,56–

65,65,66].

While classical game theory [67–69] has made an impact on a

large range of disciplines, it has also been generalized to the

quantum regime [73,74]. A new research area dubbed quantum

game theory has emerged, and has since attracted considerable

attention. Some interesting results without counterparts in classical

game theory have been reported. For example, an agent using a

quantum strategy can always defeat an opponent using a classical

strategy and increase expected payoffs in a penny flip game [74].

When the Prisoner’s Dilemma (PD) is quantized, it is surprising

that the dilemma in the PD can be escaped if agents are allowed to

play quantum strategies in a restricted space [73]. Later, the Battle

of the Sexes game was studied in a further quantum game model,

and a unique equilibrium for the game was found, provided agents

adopt quantum strategies [75]. Furthermore, the model for a two-

person quantum game has been extended to a n-person quantum

game [76]. Later on, evolutionary quantum games [76], evolu-

tionary stable strategies [77], quantum cooperative games [78] and

quantum repeated games [79] were also studied. More recently, a

unifying perspective on both the classical and quantum versions of

two-player games has been given by a probabilistic framework

[80]. Classically defined games have been analyzed and it has been

PLOS ONE | www.plosone.org 1 July 2013 | Volume 8 | Issue 7 | e68423



found that a quantum team has an advantage over any classical

team [81]. Quantum games have also been analyzed by using

geometric algebra [82–84], and they have been implemented

using quantum computers [85–88]. For further background on

quantum games, we refer to [89,90].

It is important to note that quantum games are established on

quantum mechanics, and hence quantum effects such as

entanglement can be employed, which may give rise to results

or phenomena without classical counterparts. This is also the main

difference between a quantum and a classical game. According to

quantum game theory, a classical strategy set is only a subset of the

full quantum strategy space, and the latter can thus be used to

describe a larger variety of different phenomena. If agents can use

both quantum and classical strategies, an interesting question is

how these strategies evolve on a network. Previous research [70–

72] has shown that the evolution exhibits new features without

classical counterparts. For example, if strategies evolve on a static

network, a quantum strategy becomes the dominant strategy in the

population from the outset, when a PD game is employed.

Conversely, if only the two classical strategies of cooperation (C)

and defection (D) are considered, defectors always dominate for

sufficiently large temptations to defect. In Ref [72], the evolution

of quantum and classical strategies was studied in spatial public

goods games, where cooperators could survive even at r~0, while

in the classical regime there exists at critical finite r where

cooperators die out. These results, however, were obtained on

static networks.

In this paper, we therefore focus on the behavior of quantum

and classical strategies on an evolving network, where relationships

among agents vary over time by means of a coevolutionary

process. As is observed in societies, friendship networks consist of a

set of relationships weighted by the level of trust between friends.

Trust can increase or decrease depending on the past actions of

each member of the network. The process of making friends can

be modeled by a weighted and directed evolving network, where

agents are regarded as nodes of the network, relationships between

them as links and the degree of trust as a weight on a link.

Therefore, in this paper, the evolution of quantum and classical

strategies on a weighted and directed evolving network is

investigated. In the evolving network, the structure of the network

varies with time due to agents switching their neighbors, which is

implemented by breaking links and connecting new ones. Further,

if there are two directed links between two nodes, this means that

two agents (the nodes) are best friends and the degrees of trust (the

weights on the links) are highest. When a link is broken and

rewired to a new node, it means an agent makes a new friend, and

then the new friend assigns a degree of trust (a weight) to the

relationship (the link). Over time, the degree of trust or the weight

on a given link can increase or decrease by agents breaking and

rewiring links that belong to them. It is worth noting that an agent

cannot cut the links directed from its neighbors to itself, but it can

lower the weights on these links to punish the neighbors. Also, it

should be emphasized that the direction of a link only indicates to

whom the link belongs, but two agents are neighbors if there is a

link between them, regardless of the direction of the link, and they

can adopt strategies from one another likewise unrestricted by the

directionality of links.

The evolution of the network and the modification of weights

can be visualized in terms of a game-theoretic setting with

associated payoffs, i.e., links and weights are altered as a function

of the set of payoffs, and meanwhile agents’ total payoffs are

affected by weights too. Furthermore, an agent’s total payoff will

influence the spread of a strategy in the network. Obviously, high

total payoffs are advantageous to the wide spread of strategies.

Based on the rules of coevolution, new patterns are observed,

when quantum games and quantum strategies are involved.

Further, we discuss the coevolution in different parameters and

explain the results of the evolution of strategies and networks in

detail. It is worth noting that a quantum strategy is not a

probabilistic sum of pure classical strategies (except under special

conditions), and that it cannot be reduced to pure classical

strategies [77].

The basics of quantum games and the model with coevolution-

ary rules are presented in the Methods section, where also the

notation and other mathematical concepts are introduced. Next

we proceed with the results, in particular showing how the

probability of a structural update event influences the evolution of

quantum and classical strategies, what is the impact of the

relationship between the coevolution and the number of initial

neighbors, and what is the impact of minimizing weights. Lastly

we also investigate the statistical properties of the interaction

networks before and after the coevolution. We conclude with a

brief discussion of presented results.

Methods

Basics of Quantum Games
The Prisoner’s Dilemma, as an abstraction of many strategic

phenomena in the real world, has been widely applied in a number

of scientific fields. In this symmetric game, each agent has two

available strategies, Cooperation (C) and Defection (D). If both

agents are cooperators, then they receive Reward (R). Contrarily,

if they are both defectors, they receive Punishment (P). When one

is a cooperator and the other is a defector, the cooperator receives

Sucker (S), while the defector acquires the highest payoff,

Temptation (T ). So, the payoff matrix to the focal agent can be

written as

C D C D

C

D

R S

T P

 !
~

C

D

1 0

b 0

 !
ð1Þ

To be compatible with previous studies and without loss of

generality, the payoff matrix of the PD game is chosen as R~1,

T~b (1vbƒ2), P~0 and S~0, satisfying the inequalities

TwRwP§S. As is known in classical game theory, the strategy

profile (D,D) is the unique Nash Equilibrium (NE). However, the

strategy profile (C,C) is merely the best choice that is Pareto

optimal [91]. This gives rise to the dilemma.

On the other hand, if both agents are allowed to adopt quantum

strategies in a restricted space, the dilemma can be removed [73].

Next, we will introduce the model of a quantum game briefly,

which is shown in Fig. 1 [73].

Figure 1. A model of a quantum game. For details on the notation
we refer to the Methods section, in particular the subsection Basics of
Quantum Games.
doi:10.1371/journal.pone.0068423.g001
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In the model, at first two basis vectors fDC~0T,DD~1Tg in

Hilbert space are assigned to the possible outcomes of the classical

strategies, C~0 and D~1, respectively [73]. Assume a quantum

game starts in an initial state D00T, where two qubits belong to two

agents, say Alice and Bob. The state will be Dy0T~ĴJ D00T, if the

initial state is operated by a unitary operator ĴJ that is known to

both agents. For a 2|2 maximally entangled quantum game, the

entangling operator ĴJ takes form below [92,93]

ĴJ~
1ffiffiffi
2
p (I62zis62

x ): ð2Þ

In the following, each agent chooses a unitary operator ŶY as a

strategy from the full quantum unitary strategy space ŜS [89],

ŶY (a,b,h)~
eia cos h

2
ieib sin h

2

ie{ib sin h
2

e{ia cos h
2

 !
[ŜS, ð3Þ

where a,b[½{p,p�, h[½0,p� and then operates it on the qubit that

belongs to the agent. Finally, the state (ŶY16ŶY2)ĴJ D00T goes

through a unitary operator ĴJ{. Before Alice and Bob forward their

qubits for the final measurement, i.e., before a projective

measurement on the basis fD0T,D1Tg is carried out, the final state is

Dyf T~ĴJ{(ŶY16ŶY2)ĴJ D00T: ð4Þ

Thus, the focal agent’s expected payoff can be calculated as

P(ŶY 1,ŶY 2)~R:DS00Dyf TD2zS:DS01Dyf TD2

zT :DS10Dyf TD2zP:DS11Dyf TD2:
ð5Þ

The Model with Coevolutionary Rules
Assume there is a weighted and directed network Gt(V ,E) with

N nodes, where V is the set of nodes, E is the set of links and t is

the time step. There are no duplicated links and self loops in the

network. Initially, a regular random network G0(V ,E) is

constructed, in which each node has kout neighbors, which

warrants that all nodes have equal chances of success [94]. Here,

kout is the outdegree of a node. Moreover, initially there are two

links between any pairs of connected nodes and the initial weight

on each link is wij~wji~1. A regular random network can be

created as follows. At first, a undirected ring with N nodes is

constructed, where each node has kout nearest neighbors. Next, we

choose two links randomly in the ring, say {eab and ecd[E}, and

switch two nodes belonging to different links to created two new

links, {eac and ebd} or {ead and ebc}. Then, we check if the

number of neighbors of each node is kout or not. If the numbers of

neighbors of all nodes are kout, then the two new links will be

retained. Otherwise, the switch operation will be canceled. The

two steps are repeated till all links in the network are rewired once.

Each node i[V in the network is occupied by an agent and its

neighbor j is any other agent such that there is a link between

them, so the set of neighbors of an agent i at a time step t can be

defined as

C t(i)~C t(i /? j)|C t(i?j)|C t(i/j)

C t(i /? j)~f j D eij[E,eji[E, j[V \ig
C t(i?j)~f j D eij[E,ejiE, j[V \ig
C t(i/j)~f j D eijE,eji[E, j[V \ig ,

8><
>: ð6Þ

where V \i means the set of nodes, V , not including the i-th
node (a complement of fig in V ) and there are two links between

the agent i and its neighbor j in C t(i /? j), also called bidirectional

links. Similarly, there is a directed link from the agent i to the

neighbor j in C t(i?j), while there is a link directed from the

neighbor j in C t(i/j) to the agent i. According to the definition,

any two agents are neighbors, only if there is a link between them,

regardless of the direction of the link. And the total number of

neighbors of the agent i is kt(i)~DC t(i)D, where D:D represents the

cardinality of a set.

Initially, each agent on the network is randomly assigned one of

two quantum strategies or two classical strategies (C and D) with

equal probability, all of which are taken from the full quantum

strategy space ŜS, and the initial fraction of agents using each

strategy is equal. Particularly, the classical strategies, C and D,

take the forms:

C~ŶY (0,0,0)~
1 0

0 1

� �
[ŜS and

D~ŶY (0,0,p)~
0 i

i 0

� �
[ŜS,

ð7Þ

while two quantum strategies, Q1 and Q2, are produced by

choosing the parameters, a,b and h, in Eq. 3 randomly, before

each simulation starts. For example, at the t-th simulation,

initially, Q1~ŶY (at1,bt1,ht1), Q2~ŶY (at2,bt2,ht2).
Next, the rules of the strategy evolution and the network

evolution are introduced in detail. Strategy evolution: (i) a randomly

selected agent i plays 2|2 maximally entangled quantum games

with all its neighbors in j[C t(i), respectively, according to the

model of a quantum game (Fig. 1). The expected payoff of the

agent after playing a game with a neighbor can be calculated by

Eq. 5, Pt(ŶYi,ŶYj),j[C t(i), while its total payoff Ft(i) is written as

Ft(i)~
X

j[Ct(i/?j)

Pt(ŶY i,ŶY j):1z
X

j[Ct(i?j)

Pt(ŶY i,ŶY j):wijz

X
Ct(i/j)

Pt(ŶY i,ŶY j):wji:
ð8Þ

(ii) After each round, the agent i randomly chooses a neighbor

j[C t(i), and then the agent j calculates its total payoff Ft(j) in

terms of the above mentioned method. In the framework of the

replicator dynamics, the agent i compares its total payoff with the

neighbor’s and imitates the neighbor’s strategy with probability

ps(i), which is given as

ps(i)~
1

1ze(Ft(i)=kt(i){Ft(j)=kt(j))=l
, ð9Þ

where l is the intensity of selection and the updating rule is also

called the Fermi rule. If the agent i decides to imitate this strategy,

it will play it in the next round. It is worth noting that the direction

of a link between two agents only represents who controls this link

Coevolution of Quantum and Classical Strategies
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and agents can adopt strategies from one another likewise

unrestricted by the directionality of links. This process is called a

strategy update event.

Network evolution: After the agent updates its strategy, the

structure of the network is updated with probability pn. First,

agent i identifies the neighbors who bring payoffs that are below

the average and those with minimal weights on links, and then

puts them in a set Ut(i)~fj D Pt(ŶYi,ŶYj) ,P
j[C t(i)

Pt(ŶYi,ŶYj)=kt(i), j[C t(i)g|fj D wij~wmin, j[C t(i?j)g,
where wmin represents the minimal weight. In the set, there exist

three types of links between the agent and the neighbors: (i)

bidirectional links, fC t(i /? j)\Ut(i)g; (ii) links directed from the

agent to the neighbors, fC t(i?j)\Ut(i)g; (iii) links directed from

the neighbors to the agent, fC t(i/j)\Ut(i)g. For Case (i), the

agent performs the following three steps. (a) Link broken. The

agent breaks the links that belong to it. (b) Link rewired. The

broken links are preferentially rewired to the neighbors who bring

payoffs higher than the average and where there is only one link

directed from each of the neighbors to the agent,

Wt(i)~fj D jUt(i),j[C t(i/j)g. As such, there are two links

between the agent and a neighbor in Wt(i), and the weights on the

links are upgraded to wij~wji~1. If the number of broken links is

larger than that of DWt(i)D, the other links will be rewired to the

agent’s neighbors’ neighbors at random [94], satisfying the

condition that there are no links between the chosen nodes and

the agent before rewiring. The new neighbors will randomly assign

weights wij to the new links, which are restricted to an interval

(wmin,0:9�, and follow a normal distribution with

m~(wminz0:9)=2 and s2~0:1, where m and s2 are the mean

and the variance, respectively. This distribution is applied in order

to imitate that most people in reality give half degrees of trust to

new friends, when wmin~0:1. (c) Punishment. The weights on the

links directed from the neighbors to the agent are set to wji~wmin

for punishment. In Case (i), these links remain after Step (a),

because the agent only breaks the links directed from it to the

neighbors. On the other hand, for Case (ii), the agent only needs

to do Step (a) and (b), because all links are directed from the agent

to neighbors. It is easier for Case (iii), because only Step (c) needs to

be carried out. The process of the network evolution is illustrated

in Fig. 2, which is also called a structural update event.

The entire game is iterated for a maximum number of

t~5|104 time steps and the fractions of agents with different

strategies are calculated by averaging over another 1000 time steps

after the maximum, which produces a result of evolution of

strategies vh(b)~fvh(b,1),vh(b,2),vh(b,C),vh(b,D)g, where

vh(b,:) denotes the fraction of agents with a certain strategy at a

given b. When the temptation b changes from 1 to 2,

vh(b,:),b[(1,2� represents a curve and vh(b),b[(1,2� represents a

family of curves. The statistical result Q(b),b[(1,2� is obtained by

averaging over at least 200 of these results vh(b), b[½1,2�, namely,

Q(b)~(
P200

h~1 vh(b,1)=200,
P200

h~1 vh(b,2)=200,
P200

h~1 vh(b,C)=200,P200
h~1 vh(b,D)=200), b[(1,2�. If strategies of all agents do not

change for 1000 consecutive time steps, it is deemed that a steady

state has been reached and the iteration ends.

Results and Discussion

In our simulations, the coevolution starts from a weighted and

directed regular random network G0(V ,E) with N~2500 nodes

that are occupied by agents using quantum and classical strategies.

Agents play games with their immediate neighbors according to

the model of a quantum game. Due to the rules of the coevolution

involved, agents can break and rewire their own links, which leads

the network to become an evolving network Gt(V ,E). During the

coevolution, the intensity of selection is set at l~0:05 throughout

the paper and the weight for punishment is set at wmin~0:1, if not

otherwise explicitly stated. Later, the coevolution of strategies and

networks over different parameters is investigated.

In this section, how the probability of a structural update event

occurring influences the evolution of quantum and classical

strategies is studied first, and then the results are explained in

detail. Fig. 3 exhibits the statistical results of the evolution of four

strategies on an evolving network with different probabilities pn.

Because quantum strategies are taken from a very large space ŜS by

choosing the parameters, a,b and h at random, before each

simulation starts, the final result Q(b) is obtained statistically in

order to reduce randomness. In the result of each simulation

vh(b),b[½1,2� (like Fig. 3), for the curves corresponding to the

quantum strategies, the quantum strategy that produces the

topmost curve is defined as Q1, the second curve as Q2, and so on.

Finally, the statistical result Q(b),b[(1,2� can be obtained in terms

Figure 2. Illustration of the network evolution. The left panel represents the status of the network before the network evolution, in which the
focal agent i (in red) on the network with kout~3 intends to break two links (in dash lines) due to payoffs less than the average. The right panel is the
status of the network after the network evolution, where the focal agent preferentially rewires one of the broken links to a neighbor j (in blue) who
brings a payoff greater than the average and upgrades the weights to wij~wji~1. However, the weight on the remaining link between the agent i
and g is set at wgi~wmin by the agent i for punishment. Then, it chooses a neighbor’s neighbor k (in green) at random and rewires the other link to
the neighbor k. Meanwhile, the neighbor k assigns a weight wik[(wmin,0:9� randomly to the new link.
doi:10.1371/journal.pone.0068423.g002
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of the statistical method described in the last of the Methods

section.

In Fig. 3, there exists a curve that is higher than others, when

the coevolution comes to an end, which means that the strategy is

played by most of agents in the population and it is also a

dominant strategy in the population. When the strategies evolve

on a static network, namely pn~0, a quantum strategy can be a

dominant strategy from the outset. Furthermore, the fraction of

agents using the dominant strategy rises slightly with the increase

of the temptation b. However, once the network evolution is

involved, new patterns emerge in the evolution of strategies. As is

shown in Fig. 3 (b)–(d), even if the probability of a structural

update event pn is low, the strategy, Cooperation, dominates in the

population when b is small. However, as b increases, the fractions

of agents using quantum strategies in the population exceed that of

cooperators gradually, and finally a quantum strategy becomes the

dominant strategy. Moreover, the fraction of defectors also

increases a little at the same time.

When an agent adopts a quantum strategy Q[fŜSg\fC,Dg
against its neighbor who uses a strategy X[ŜS, according to Eq. 5,

its expected payoff is restricted to an interval (0,b), i.e., P(Q,X ) or

P(X ,Q)[(0,b). Further, based on the statistical analysis of payoffs,

most payoffs of agents using the strategy Q are less than 1, P(Q,X )
or P(X ,Q)[(0,1), when b is less than the critical value. In terms of

the rules of the network evolution, if the focal agent’s payoff, after

a game with a neighbor, is less than the average, the link directed

from the focal agent to the neighbor will be broken. In order to

observe the behavior of different pairs of agents, we list the focal

agent’s payoffs and possible operations in Table 1 according to the

statistical analysis, before b reaches the critical value. Here, a

C?C pair means two agents connected by a link both adopt the

strategy C, a D?D pair means both adopt the strategy D, and so

on. From Table 1, it can be found that D?D and C?D pairs are

surely broken, because the focal agent’s payoff is zero, and other

pairs will be broken if the received payoffs are less than the average

or the weights of the links are wij~wmin. On the contrary, C?C

pairs always bring 1 for each agent, while the payoff 1 is greater

than the average easily at a small b, so that many C?C pairs can

be preserved. Furthermore, when rewiring begins, it is more likely

that agents preferentially rewire the broken links to the cooper-

Figure 3. The evolution of strategies as a function of b on a weighted and directed evolving network for different pn. (a) pn~0. (b)
pn~0:2. (c) pn~0:5. (d) pn~1. (a)–(d) exhibit the fractions of agents using two quantum strategies (Q1 and Q2) and two classical strategies (C and D)
in the population after the coevolution, when kout~10, wmin~0:1 and different probabilities of a structural update event are adopted.
doi:10.1371/journal.pone.0068423.g003
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ators in the neighborhood, because they bring payoffs greater than

the average. As such, the number of C?C pairs will be increased

further. Hence, cooperators can accumulate higher payoffs and

the strategy C can spread widely in the population when b is small.

On the other hand, as the temptation b rises, the expected

payoffs of agents adopting a quantum strategy Q rise at the same

time. Particularly, after b is greater than the critical value, more

and more agents using quantum strategies receive payoffs greater

than 1, P(Q,X ) or P(X ,Q)[(1,b). Thereafter, the probability of

C?C pairs to be broken gradually becomes higher than that of

Q?X and X?Q pairs, because cooperators’ payoffs are now

often less than the average. Thus, agents using quantum strategies

can accumulate higher payoffs, which leads quantum strategies to

prevail in the population. Consequently, a quantum strategy

becomes the dominant strategy. Note that a defector in a D?C
pair always acquires the highest payoff. When b is significantly

greater than 1, the defector’s total payoff is thus likely very high.

Therefore, the strategy D can also be imitated by some myopic

agents, but the fraction of defectors rises only a little, because

D?C pairs will be broken in the next round, since the opponent

(cooperator) minimizes the weight on the D?C link as

punishment in this round.

If the probability of a structural update event, pn, becomes

higher, the strategy C will be dominant in the population in a

larger range of b. When the time scale for the network evolution is

much faster than that for the strategy evolution, say pn~1, the

critical value of b can be increased up to b~1:75. As analyzed

above, many C?C pairs are preserved when b is small. If the

structure of the network is updated faster, more C?C pairs will be

preserved and created in terms of the rules of the network

evolution. Therefore, the fraction of cooperators in the population

is higher at a high probability pn than that at a low probability.

When b rises further, the number of Q?X and X?Q pairs in the

population is increased at the same time, but the rate of C?C
pairs produced is still high, because of the high probability of a

structural update event. This slows the spread of quantum

strategies, while the strategy C is dominant in the population at

a larger critical value of b.

In summary, the higher the probability of a structural update

event, the greater the critical value of b corresponding to the

domination of cooperators in the population and the higher the

fraction of cooperators. However, in reality, it is often observed

that people change their strategies faster than their relationships

between friends, i.e., the time scale for the strategy update is faster

than that for the structural changes, so in the rest of the paper, the

probability of the network evolution pn is set at 0.2.

Next, the relationship between the evolution of strategies and

the number of neighbors is discussed, and subsequently the impact

of punishment on the coevolution of the network structure is

investigated. When an initial network is constructed, the number

of neighbors of an agent depends on the parameter kout, which

determines the connectedness of the random network. Therefore,

we increase the number of agents’ initial neighbors from kout~10
to kout~20 and 30, in order to measure the effects of higher

connectedness on the strategy evolution. Comparing them with

the result obtained at kout~10 and pn~0:2, we can see that the

critical value of b is similar and the fraction of cooperators drops

only slightly. It can be inferred that if the number of initial

neighbors of agents is equal, i.e., agents have equal chances of

success, the results of the coevolution are similar.

On the other hand, according to the rules of the network

evolution, an agent can break and rewire the links directed from it

to the neighbors, if the received payoffs from neighbors are less

than the average. On the contrary, if the link between them is

directed from the neighbor to the agent, the agent can only

minimize the weight on the link in order to punish the neighbor

and reduce the neighbor’s total payoff. Thus, the link with a

minimal weight wmin will be broken by the neighbor in the next

round, because its payoff is less than the average. In the previous

subsection, the minimum of a weight for punishment is wmin~0.1.

If the minimum is increased, i.e., the intensity of punishment is

reduced, the evolution of strategies and the network will be

influenced. Meanwhile, the mean of the normal distribution is

increased due to m~(wminz0:9)=2. When wmin~0:3 and 0.5, the

results depicting the evolution of strategies are shown in Fig. 4.

From Fig. 4, it can be found that with the decrease of the

intensity of punishment, the critical value of b drops significantly

from b~1:25 (wmin~0:1) to b~1:1 (wmin~0:5). In other words, a

quantum strategy is dominant in the population at a smaller b,

while the fraction of cooperators is reduced at the same time. As is

analyzed above, before the critical value of b, the punishment

often occurs among C/D and Q/X pairs, because the focal

agent acquires payoffs less than the average. The punishment

causes the agents using quantum strategies cannot accumulate

high payoffs and prevents quantum strategies from spreading in

the population. However, when wmin is increased, the intensity of

punishment decreases, so that agents adopting quantum strategies

can collect high payoffs at a smaller b. Consequently, a quantum

strategy becomes the dominant strategy in the population earlier.

As discussed above, the strategy evolution and the network

evolution interact with each other. Finally, we thus investigate the

statistical features of the network for different parameters, after the

coevolution of strategies and the network structure comes to an

end. The clustering coefficient and the average path length are

most often used to describe statistical features of network topology.

Hence, we calculate these quantities before and after the

coevolution as representative measures of the network structure.

The clustering coefficient is a measure of degree to which nodes in

a network tend to cluster together. In this paper, the local

clustering coefficient for a directed network is used, which is given

as

C(i)~
DfejkgD

k(i)(k(i){1)
,j,k[C(i),ejk[E: ð10Þ

Table 1. The focal agents’ possible operations on different
pairs according to the statistical analysis of payoffs, before the
critical value of b.

Pairs Payoffs Operations

C?C P(C,C)~1wAverage Preserved

C?D P(C,D)~0vAverage Broken and Rewired

C?Q Mostly P(C,Q)vAverage Mostly Broken and Rewired

D?C P(D,C)~bwAverage Preserved (this round),

Broken and Rewired (next round)

D?D P(D,D)~0vAverage Broken and Rewired

D?Q Mostly P(D,Q)vAverage Mostly Broken and Rewired

Q?C Mostly P(Q,C)vAverage Mostly Broken and Rewired

Q?D Mostly P(Q,D)vAverage Mostly Broken and Rewired

Q?Q Mostly P(Q,Q)vAverage Mostly Broken and Rewired

doi:10.1371/journal.pone.0068423.t001
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Here, C(i) is the clustering coefficient of the node i, while the

clustering coefficient of the network is the average of clustering

coefficients of all nodes, Ct~1=N
PN

i~1 C(i). The average path

length is the average of the shortest paths for all pairs of nodes in a

network, which has the form

Lt~
1

N(N{1)
:
X
i,j[V

d(i,j), ð11Þ

where d(i,j) denotes the shortest distance between nodes i and j.

Initially, the evolution starts on a regular random graph, whose

clustering coefficient C0 and average path length L0 both are

small. After the model is iterated for 5|104 times, the structure of

the network is changed largely, so the clustering coefficient Ct and

average path length Lt of the network are calculated again, which

are listed in Table 2. The clustering coefficient Ct and average

path length Lt in Table 2 corresponding to different pn and kout

are the averages of many Ct and Lt that are obtained from

different independent initial conditions, respectively. From

Table 2, it can be found that the clustering coefficient Ct rises

considerably compared to C0. It is even 20 times greater than C0

in the case of kout~10. On the contrary, with the increase of kout,

the growth rate of Ct drops, but it is still greater than C0. If the

probability of a structural update event rises from 0.2 to 1, while

kout is a constant, the clustering coefficient Ct will rise slightly with

it. On the other hand, the average path length Lt, after the

coevolution, is not very different from the initial average path

length L0. By further observation, it can be seen that the average

path length Lt is similar, when the probability of a structural

update event rises, whereas it decreases with the increase of kout.

Summing up, after the network evolves according to the rules of

the network evolution, a large clustering coefficient and small

average path length emerge in the network, which are properties

that are frequently referred to as small-world properties. This is

because in our coevolutionary model, the rules concerning the

evolution of the network structure allow agents to break the links

that belong to them, and then to rewire these links to neighbors’

neighbors at random. This rewiring operation, while keeping the

average path length small, increases the number of links among

agents’ neighbors, which is the main reason for the emergence of

the relatively large (compared to that of a random network)

clustering coefficient. In addition, the large clustering coefficient

can also be interpreted as emerging because of the tendency of

each agent to organize and sustain cohesive clusters of reciprocal

trust.

Lastly, we also investigate the degree distribution of networks,

which is also an important statistical feature. In this paper, we

focus on the indegree distributions of directed networks because

the outdegree is fixed, which is defined to be the fraction of nodes

in the network with indegree kin, namely, P(kin)~nk=N, where nk

is the number of nodes with indegree kin. Further, among the

nodes with the same strategy in the network, we study the indegree

distribution under a strategy in order to find possible correlations

between the indegree distributions and strategies. The indegree

distribution under a strategy is defined as Ps(kin)~nks=N , where

nks represents the number of nodes with indegree kin and where

these nodes use the same strategy. Figure 5 shows the indegree

distributions at different b, which are the statistical averages over

200 independent realizations with different initial conditions.

Figure 4. The evolution of strategies as a function of b on a weighted and directed evolving network for different intensity of
punishment, wmin. (a) wmin~0:3. (b) wmin~0:5. (a)–(b) exhibit the fractions of agents using two quantum strategies (Q1 and Q2) and two classical
strategies (C and D) in the population after the coevolution, when kout~10, pn~0:2 and different intensity of punishment, wmin, are adopted,
respectively.
doi:10.1371/journal.pone.0068423.g004

Table 2. Comparison of statistical features of networks
before and after coevolution.

pn kout C0 Ct L0 Lt

0.2 10 0.0030 0.0637 3.5861 3.7422

0.5 10 0.0030 0.0642 3.5826 3.7485

1.0 10 0.0031 0.0658 3.5833 3.7468

0.2 20 0.0071 0.0392 2.9725 2.9712

0.2 30 0.0111 0.0346 2.6936 2.7006

doi:10.1371/journal.pone.0068423.t002
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Comparing the indegree distributions of networks P(kin) at

different b, we can see that the indegrees of most nodes (19%) in

networks are zero or one at b~1:025, while at b~2, the indegrees

of 12% of nodes are five. Further, observing the indegree

distributions under different strategies Ps(kin), it can be found

that when b is small, nodes with larger indegrees are those using

strategies C and Q1. On the contrary, at b~2, they are those with

strategies Q1 and D, and the nodes with the largest indegrees are

quantum strategists. As we have analyzed above, the strategy C
and the strategy Q1 dominate in the population at b~1:025 and

b~2 respectively, which indicates that most nodes in the network

adopt C at b~1:025 or Q1 at b~2. During the network evolution,

nodes with these strategies thus have a higher chance to be

connected by other nodes, which directly leads to the fact that

these are also the nodes with the largest indegees, as can be

inferred from Fig. 5.

Conclusions

We have proposed and studied a model with coevolutionary

rules, which uses an evolving network to represent the relation-

ships among agents. Based on the model, the evolution of

quantum and classical strategies on an evolving network is

investigated. The coevolution starts on a regular random network,

in which the number of each agent’s neighbors is equal and the

weights on links are one. The same number of neighbors

guarantees each agent has the same ability to ‘‘make friends’’,

while the direction of a link indicates to whom the link belongs, but

agents can adopt strategies from one another likewise unrestricted

by the directionality of links.

If strategies evolve on a static network, a quantum strategy

becomes the dominant strategy in the population from the outset.

However, when the network evolution is involved, even if the

probability of a structural update event pn is low, cooperators are

dominant in the population instead of agents using quantum

strategies when b is small. As the probability pn rises, cooperators

prevail in a larger range of b. But, finally, a quantum strategy

defeats the classical strategies and becomes the dominant strategy

in the population. When the probability of the network evolution

remains constant, similar results of the coevolution are obtained,

even if initially the number of neighbors of each agent is increased.

On the other hand, if the intensity of punishment is reduced by

increasing wmin, a quantum strategy can dominate in the

population at a smaller b.

After the coevolution ends, the structure of the network is

changed largely due to links being broken and rewired. By

analyzing the statistical features of the network before and after the

coevolution, we can find that the average path length increases

slightly, but the clustering coefficient increases significantly after

the coevolution, in particular it increases about 20 times at

kout~10 compared to that before the evolution. The growth rate

of the clustering coefficient decreases with the increase of kout. It

can be concluded that small world properties, small average path

length and a large clustering coefficient, emerge spontaneously in

the network after the coevolution. Comparing the indegree

distributions of networks under different strategies Ps(kin), it can

be found that at different b, nodes with the larger indegrees are

cooperators and quantum strategists, respectively.
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