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Abstract

Cortical circuits in the brain have long been recognised for their information processing capabilities and have been studied
both experimentally and theoretically via spiking neural networks. Neuromorphic engineers are primarily concerned with
translating the computational capabilities of biological cortical circuits, using the Spiking Neural Network (SNN) paradigm,
into in silico applications that can mimic the behaviour and capabilities of real biological circuits/systems. These capabilities
include low power consumption, compactness, and relevant dynamics. In this paper, we propose a new accelerated-time
circuit that has several advantages over its previous neuromorphic counterparts in terms of compactness, power
consumption, and capability to mimic the outcomes of biological experiments. The presented circuit simulation results
demonstrate that, in comparing the new circuit to previous published synaptic plasticity circuits, reduced silicon area and
lower energy consumption for processing each spike is achieved. In addition, it can be tuned in order to closely mimic the
outcomes of various spike timing- and rate-based synaptic plasticity experiments. The proposed circuit is also investigated
and compared to other designs in terms of tolerance to mismatch and process variation. Monte Carlo simulation results
show that the proposed design is much more stable than its previous counterparts in terms of vulnerability to transistor
mismatch, which is a significant challenge in analog neuromorphic design. All these features make the proposed design an
ideal circuit for use in large scale SNNs, which aim at implementing neuromorphic systems with an inherent capability that
can adapt to a continuously changing environment, thus leading to systems with significant learning and computational
abilities.
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Introduction

Brain processes large amounts of data in real-time in the

presence of noise, while consuming little power. The brain also

takes little space and has extraordinary processing features. The

ultimate goal for neuromorphic engineers is to develop a

cybernetic system, which closely mimics the capabilities of the

brain. To reach this goal, understanding and implementing in silico

the main components of cortical networks, i.e. neurons and

synapses, is a crucial first step.

Currently, the dynamical behaviour of biological neurons is best

understood through biophysically detailed models, such as the

Hodgkin-Huxley (HH) model [1], which given the correct

parameters, can replicate various experimentally observed re-

sponse properties. Using such models one can develop hypotheses

about cortical circuit behaviour and any underlying computations

taking place. The complexity of such biophysical models can be a

prohibitive bottleneck when translation into silicon is desired. For

this reason simpler models, such as the Integrate-and-Fire (IF)

[2,3], have been adopted in simulating networks, even though they

lack the dynamic realism of real cortical circuits.

In addition to neurons, synapses are the second main building

blocks of SNNs. Similar to neurons, synapses also have complex

structures and behaviours. They are widely thought to be the

essential components responsible for learning and memory in

neural networks [4]. Synapses alter their strength or efficacy

through activity-dependent biophysically driven changes coordi-

nated by pre-synaptic activities or by both pre- and post-synaptic

activities. To date, the precise molecular mechanisms underlying

how synapses change their efficacy requires further elucidation.

However, there exists a significant number of hypotheses that aim

to approximate synaptic efficacy alterations [5]. These hypotheses

that govern the synaptic weight changes, are so called synaptic

plasticity rules. Generally, these rules can be divided into two main

groups, namely short-term and long-term plasticity. While long-

term plasticity is believed to be the underlying mechanism for

learning and memory, short-term plasticity is responsible for

decoding and processing neural signals on short-time scales [6].

The short-term plasticity mechanisms including excitatory and

inhibitory depression and facilitation has been successfully

implemented and observed in VLSI technology [7,8]. The focus

of this paper is on STDP, which is a long-term synaptic plasticity

rule.

Identical to neuron models, there are a variety of synaptic

plasticity models. Some of these models embrace certain features

of real biological synapses, however they tend to be complex in

their (mathematical) formulation. On the other hand, other

models have been mathematically formulated to replicate the

outcomes of a subset of known experiments. Their representation

is typically simpler in form allowing, in some cases, reduced
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problematic translation into silicon. Generally, the main purpose

of such simplified rules is to mimic, as accurately as possible, the

outcomes of various experimental synaptic plasticity protocols.

In this paper, we propose a new Very Large Scale Integration

(VLSI) implementation of a malleable synaptic circuit that is

capable of mimicking the outcomes of various synaptic plasticity

experiments. We demonstrate that the new design has a compact

structure and possesses low power consumption, which is required

for VLSI implementations of large-scale spiking neural networks.

In addition, the robustness of the proposed circuit is verified

against transistor mismatch and process variations. The results

show that the new circuit is a fairly stable design in terms of

transistor mismatch. These features make this new design an ideal

learning component that may benefit various VLSI synaptic

plasticity systems. The proposed circuit is of potential interest for

future large scale neuromorphic circuits with significantly high

numbers of neurons and synapses, where low power consumption,

compactness, accuracy and mismatch tolerance are absolutely

essential.

Materials and Methods

Various plasticity rules have been proposed throughout the

literature. In order to achieve a fair comparison among these rules,

we compare them from two aspects. Firstly, their capability in

reproducing various synaptic plasticity experiments, and secondly

their simplicity and suitability to be employed in large-scale neural

simulations, and/or large-scale hardware realisations. Here, a

variety of experimental protocols are briefly summarized, in order

to provide the reader with an understanding of various conditions

under which synaptic plasticity rules are simulated and compared.

In the following sections, first some important synaptic plasticity

protocols are reviewed and their structures are described. And

second, some significant synaptic plasticity models are reviewed

and their structures and various synaptic plasticity abilities are

highlighted. Then, we introduce our new proposed circuit, which

is based on one of the reviewed synaptic plasticity rules.

Synaptic Plasticity Experiments
To study both the outcome and underlying cause of plastic

changes in synapses, experimentalists have resorted to carefully

crafted hypotheses and stimulation paradigms to test and

characterize physiological changes of synapses. Understanding

these alterations with respect to activities of the pre- and post-

synaptic neurons and their corresponding dynamics have shed

light on how neural activity affect synaptic strength and bring

about Long Term Potentiation (LTP) or Long Term Depression

(LTD) [9]. This permits neuroscientists to describe the behaviour

of the synapse with a mathematical expression, and assists them in

developing a detailed model for synaptic plasticity.

In order to measure, the efficiency of a model or a circuit in

replicating the outcomes of experiments, one can define an error

function based on the difference between the weight changes

predicted by a candidate model or circuit, and those of the

biological experiments. An instance of such a measure, is the

Normalized Mean Square Error (NMSE) function proposed and

utilised in [10]. The NMSE is calculated using the following

equation:

NMSE~
1

p

Xp

i~1

Dwi
exp{Dwi

model

si

 !2

, ð1Þ

where Dwi
exp, Dwi

model and si are the mean weight change

obtained from biological experiments, the weight change obtained

from the model or circuit under consideration, and the standard

error mean of Dwi
exp for a given data point i, respectively; p

represents the number of data points in a data set under

consideration. In order to minimize the resulting NMSEs for the

model/circuit and fit their output to the experimental data, there

is a need to adjust the model or circuit bias parameters and time

constants. This is an optimisation process of the model parame-

ters/circuit biases, which results in reaching a minimum NMSE

value and so a close fit to the experimental data.

With respect to this error measure, an ideal synaptic plasticity

model/circuit is therefore the one that can reproduce the

outcomes of a large number of biological experiments, while

examined, and while achieving the smallest possible error. Hence,

the replication of plasticity outcomes a single model can account

for is a desirable measure/benchmark on model performance. In

the following, we review some of these experimental protocols,

which have been utilised in this paper, to verify the functionality

and performance of the proposed circuit.

Pairing protocol. The pair-based Spike Timing Dependent

Plasticity (STDP) protocol has been extensively used in electro-

physiological experiments and simulation studies [11,12]. In this

protocol, 60 pairs of pre- and post-synaptic spikes with a delay of

Dt~tpost{tpre are conducted with a repetition frequency of r Hz

(in many experiments 1 Hz repetition frequency is used). This

experimental protocol has been utilised in experiments reported in

[11,13,14], and also has been employed in simulations and circuit

designs for synaptic plasticity [15–17].

Frequency-dependent pairing protocol. In the simple

pairing protocol, the repetition frequency of spike pairs is kept

constant. However, it has been illustrated in [18] that altering the

pairing repetition frequency affects the total change in weight of

the synapse. It is shown that in higher pairing frequencies, the

order of pre-post or post-pre spike pairs does not matter and both

cases will lead to LTP. However, in lower pairing frequencies, pre-

post results in LTP and post-pre combination results in LTD

[4,18].

Triplet protocol. There are two types of triplet patterns that

are used in the hippocampal experiments, which are also adopted

in this paper to compute the prediction error as described in [10].

Both of them consist of 60 triplets of spikes, which are repeated at

a given frequency of r~1 Hz. The first triplet pattern is composed

of two pre-synaptic spikes and one post-synaptic spike in a pre-

post-pre configuration. As a result, there are two delays between

the first pre and the middle post, Dt1~tpost{tpre1, and between

the second pre and the middle post Dt2~tpost{tpre2: The second

triplet pattern is analogous to the first but with two post-synaptic

spikes, one before and the other one after a pre-synaptic spike

(post-pre-post). Here, timing differences are defined as

Dt1~tpost1{tpre and Dt2~tpost2{tpre.

Extra triplet protocol. In addition to the aforementioned

triplet protocol employed in [10], which considers only two

combinations of spike triplets, there are other combinations (rather

than pre-post-pre or post-pre-post) of spikes triplet which have not

been explored in [10], but have been used in another set of multi-

spike interaction experiments performed in [13]. The experimen-

tal triplet protocol as described in [13] is as follows; a third spike is

added either pre- or post-synaptically to the pre-post spike pairs, to

form a triplet. Then this triplet is repeated 60 times at 0.2 Hz to

induce synaptic weight changes. In this protocol, there are two

timing differences shown as Dt1~tpost{tpre, which is the timing

difference between the two most left pre-post or post-pre spike

pairs, and Dt2~tpost{tpre, which is the timing difference between

the two most right pre-post or post-pre spike pairs.

Low-Energy Compact STDP Circuit
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Quadruplet protocol. This protocol is composed of 60

quadruplets of spikes repeated at frequency of r~1 Hz. The

quadruplet is composed of either a post-pre pair with a delay of

Dt1~tpost1{tpre1v0 precedes a pre-post pair with a delay of

Dt2~tpost2{tpre2w0 with a time Tw0, or a pre-post pair with a

delay of Dt2~tpost2{tpre2w0 precedes a post-pre pair with a

delay of Dt1~tpost1{tpre1v0 with a time Tv0, where

T~(tpre2ztpost2)=2{(tpre1ztpost1)=2. In other words, in the

case of Tw0, post1-pre1 spike pair precedes pre2-post2 pair.

However, in the case of Tv0, pre2-post2 precedes post1-pre1, in

the experimental protocol definition [10]. Identical to [10], in all

quadruplet experiments in this paper, Dt = {Dt1 =Dt2 = 5 ms.

Poissonian protocol for the BCM rate-based learning. In

order to test the ability of the targeted timing-based plasticity rules

and the proposed spike timing-based synaptic plasticity circuit in

generating spike rate-based learning rule which mimics the effects

of Bienenstock-Cooper-Munro (BCM) rule, a Poissonian rate-

based experimental protocol is also employed. Under this protocol,

the pre-synaptic and post-synaptic spike trains are generated as

Poissonian spike trains with firing rate of rpre and rpost,

respectively. This is the same protocol that has been used in

[10] to show how their proposed TSTDP model can present a

close mapping to the BCM model. This paper utilizes a similar

protocol to stimulate the proposed TSTDP circuit and examines if

it is capable of reproducing a similar BCM-like behaviour.

Synaptic Plasticity Rules
Although there are a variety of synaptic plasticity rules and

experiments, here we only review STDP rules, which are used in

the implementation of the proposed neuromorphic VLSI circuit.

Pair-based STDP. The pair-based STDP rule is the most

popular form of STDP that has been investigated in many

computational studies e.g. [12,19,20]. In addition, it has been also

widely used in VLSI implementations [15,16,21–25]. This rule is

represented as

Dw~
Dwz~Aze

({Dt
tz

)
if Dtw0

Dw{~{A{e( Dt
t{) if Dtƒ0,

8<
: ð2Þ

where Dt~tpost{tpre is the timing difference between a single pair

of pre- and post-synaptic spikes. As shown in Eq. 2, if Dtw0,

namely if a pre-synaptic spike precedes a post-synaptic one in a

specified time window (tz), an increase in the synaptic weight

takes place. On the other hand, if a pre-synaptic spike arrives in a

determined time window (t{) after a post-synaptic one (i.e.

Dtv0), it leads to a decrease in the synaptic weight. The

magnitude of these increase and decrease is determined as a

function of Dt, as well as potentiation and depression amplitude

constants (Az and A{, respectively) [19].

Triplet-based STDP. The weight changes in this model of

synaptic plasticity occur according to the timing differences among

triplet of spikes in contrary to the pair-based STDP, which alters

the synaptic weight based on the timing differences between pairs

of spikes. The triplet-based STDP (TSTDP) rule is described by

Dw~
Dwz~Az

2 e
(
{Dt1

tz
)
zAz

3 e
(
{Dt2

ty
)
e

(
{Dt1

tz
)

Dw{~{A{
2 e(

Dt1
t{ ){A{

3 e(
{Dt3

tx
)e(

Dt1
t{ ),

8><
>: ð3Þ

where the synaptic weight can be decreased (depressed) if a pre-

synaptic spike occurs, or can be increased (potentiated) at the time

when a post-synaptic spike arrives. Here, Az
2 , Az

3 and A{
2 , A{

3

are the potentiation and depression amplitude parameters,

respectively. In addition, Dt1~tpost(n){tpre(n),

Dt2~tpost(n){tpost(n{1){E and Dt3~tpre(n){tpre(n{1){E, are

the time differences between combinations of pre- and post-

synaptic spikes, while E is a small positive constant, which ensures

that the weight update uses the correct values occurring just before

the pre or post-synaptic spike of interest. In Eq. 3, t{ and tx are

depression time constants, while tz and ty are potentiation time

constants [10].

Since the TSTDP rule utilises higher order temporal patterns of

spikes, it is shown to be able to account for the outcomes of several

experimental protocols including the frequency-dependent pairing

experiments performed in the visual cortex [18], or triplet, and

quadruplet spike experiments performed in the hippocampal [14].

Note that, the PSTDP rule fails to reproduce the outcomes of these

experiments. This is due to a linear summation of the effect of

potentiation and depression in the PSTDP rule, while the

underlying potentiation and depression contributions in the

TSTDP rule, do not sum linearly [13].

Numerical simulation results presented in [10] demonstrate how

a minimized version of the full TSTDP rule, which is shown in Eq.

3, can approximate a number of biological experiments performed

in hippocampal including quadruplet, triplet and STDP window

experiments outcomes. This minimised TSTDP rule is presented

as

Dw~
Dwz~Az

2 e
(
{Dt1

tz
)
zAz

3 e
(
{Dt2

ty
)
e

(
{Dt1

tz
)

Dw{~{A{
2 e(

Dt1
t{ ):

8><
>: ð4Þ

This model is able to account for quadruplet, triplet, and pairing

(window) experiments as shown in [10,17]. In addition to the

capability of simultaneously approximation of triplet, quadruplet

and STDP window experiments with the same set of synaptic

parameters, another minimal version of TSTDP rule, is also

capable of reproducing the results of the frequency-dependent

pairing experiments performed in the visual cortex [18]. The

minimal model for this experiment can be shown as

Dw~
Dwz~Az

3 e
(
{Dt2

ty
)
e

(
{Dt1

tz
)

Dw{~{A{
2 e(

Dt1
t{

),

8><
>: ð5Þ

which is simpler and utilizes a lower number of synaptic

parameters, and therefore needs a new set of parameters, in

comparison with the previous minimal model for hippocampal

experiments.

Besides the ability of reproducing timing-based experiments, the

TSTDP rule has the capability to demonstrate BCM-like

behaviour. The BCM learning rule is an experimentally verified

[26,27] spike rate-based synaptic plasticity rule, proposed in 1982

[28]. Unlike STDP, which is a spike-timing based learning rule,

synaptic modifications resulting from the BCM rule depends on

the rate (activity) of the pre- and post-synaptic spikes [28].

This paper proposes a novel VLSI design for TSTDP rule, with

a fewer number of transistors, smaller area, and lower power

consumption, than all previously published circuits, yet with all

their synaptic capabilities. These features make this design an ideal

learning component for large scale neuromorphic circuits. We will

show that the proposed circuit is able to faithfully reproduce the

Low-Energy Compact STDP Circuit
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outcomes of many biological experiments, when examined under

experimental protocols mentioned earlier.

Proposed VLSI Implementation for the TSTDP Rule
The proposed design is implemented based on a different

arrangement of the TSTDP rule presented in Eq. 3. This new

arrangement is given by

Dw~
Dwz~e

(
{Dt1

tz
)
(Az

2 zAz
3 e

(
{Dt2

ty
)
)

Dw{~{e(
Dt1
t{ )(A{

2 zA{
3 e(

{Dt3
tx

)):

8><
>: ð6Þ

The new TSTDP circuit is demonstrated in Fig. 1. This

symmetric circuit operates as follows: When a pre-synaptic spike,

Vpre(n), is received at the gate of M6 at tpre(n), Vpot1 reaches

ground resulting in switching on M8, and then starts to increase

linearly toward Vdd. The rate of this increase is determined by

Vtp1 that is applied to the gate of M5, and corresponds to the

pairing potentiation time constants, tz, which is present in both

pairing and triplet potentiation terms as shown in the first line of

Eq. 3. In fact, Vpot1 is a triangular voltage, which is controlled by

the leaky integrator composed of the output conductance of M5

and the gate capacitor of M8, to control the existence of the

potentiation in the first place and allows a current, Ipot, to flow

through the potentiation branches (M7–M9 and/or M15–M16-

M8–M9) at the time of arrival of a post-synaptic spike at M9,

tpost(n). The linear increase of Vpot1, which starts at tpre(n), and

leads to charging the weight capacitor through M8 once tpost(n)

arrives, is approximately proportional to

e
(
{Dt1

tz
)
,

where Dt1~tpost(n){tpre(n) and tz approximates by Vtp1. This

term is repeated twice in the first line of Eq. 3, and can be

factorised as it is shown in the first line of Eq. 6.

Furthermore, the addition term shown in the second term of

first line of Eq. 6 that determines the amount of potentiation as a

result of both pair and triplet interactions, is approximated

through a sum of two currents that charge the weight capacitor,

Cw, and represent synaptic weight potentiation. The first current is

controlled by the controllable voltage VAz
2

, while the second one is

determined by both the second potentiation dynamic Vpot2, as well

as the controllable voltage VAz
3

. This voltage depends on the

arrival time of the previous post-synaptic spike, Vpost(n{1). When a

post-synaptic spike arrives at M18, Vpot2 reaches ground and after

the post-synaptic pulse duration is finished, it starts to increase

linearly toward Vdd. The rate of this increase is determined by

Vtp2 that is applied to the gate of M17, and corresponds to the

triplet potentiation time constants, ty. Therefore, the current

flowing through M15–M16 can be an approximation of

Az
3 e

(
{Dt2

ty
)
,

where Dt2~tpost(n){tpost(n{1). The current flowing through

M15–M16 transistors accumulates with the current flowing

through M7 transistor (which is controlled by gate voltage V
Az

2
)

and forms the total current that is approximately proportional to

Az
2 zAz

3 e
(
{Dt2

ty
)
,

and it represents an approximation of the second term of the first

line of Eq. 6.

The same dynamic operates in the depression half of the

proposed circuit, in which currents flow away from the weight

capacitor, Cw, and represents synaptic weight depression. In this

part, current sinks away from the weight capacitor through M10–

M12, if there has been a pre-synaptic action potential that arrives

Figure 1. Proposed circuit for the full TSTDP rule shown in Eq. 6. The circuit for the first minimal TSTDP model does not include transistors
M1–M4 shown in the red dashed-box. Furthermore, the second minimal TSTDP circuit, does not include the M1–M4 transistors, nor the M7 transistor,
shown in the blue dashed-box. Therefore, the source of M8 will be connected only to the drain of M16, in both minimal circuits.
doi:10.1371/journal.pone.0088326.g001
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at M10, in a specified time window defined by Vtd1 (which

corresponds to t{), after a post-synaptic spike arrives at M13. The

amount of this current is first determined by the time difference

between the pre- and post-synaptic spikes (Dt1) and then by the

controllable voltage, VA{
2

. Therefore, this current approximates

A{
2 e(

Dt1
t{ ),

where Dt1~tpost(n){tpre(n). This is the pairing depression current

that flows away from the weight capacitor and results in depression

due to post-pre spike pairs.

In addition, another current that can discharge the capacitor

and results in depression, will flow through M10–M11–M3–M4, if

two conditions are satisfied. First, if there has been a previous pre-

synaptic spike, Vpre(n{1), in a specified time window, set by Vtd2

(which corresponds to tx), before the current pre-synaptic spike,

Vpre(n), arrives at M10 gate. And second, if a post-synaptic spike

arrived at M13 gate in a specified time window set by Vtd1 before

the current and after the previous pre-synaptic spikes. The

magnitude of this current is first controlled by the time difference

between the pre- and post-synaptic spikes (Dt1), second with the

time difference between the Vpre(n) and Vpre(n{1) spikes, (Dt3), and

then by controllable voltage, VA{
3

. Therefore, this current

approximates

A{
3 e

Dt1
t{ e

{Dt3
tx

where Dt1~tpost(n){tpre(n) and Dt3~tpre(n){tpre(n{1). This is the

triplet depression current that flows away from the weight

capacitor and results in depression due to pre-post-pre spike

triplet.

If the above two currents accumulate together, they form the

depression term of both Equations 3 and 6 which are equal as

follows

{A{
2 e(

Dt1
t{

){A{
3 e

Dt1
t{ e

{Dt3
tx ~{e(

Dt1
t{

)(A{
2 zA{

3 e
{Dt3

tx ),

where the negative sign represents that the current is depressive

and shows that it flows away from the weight capacitor.

Note that the above explanations contain assumptions that

approximate the TSTDP rule using our proposed circuit.

However, from a circuit analysis point of view, if M3–M4, M7–

M12, and M15–M16 operate in the subthreshold regime [29], the

analytical expressions for Ipot and Idep, which are potentiation and

depression currents, respectively are as follows

Ipot(t)~
I0

e
{(k=UT )Vpot1(t{tpre(n))

ze
{(k=UT )VA2z

z

I0

e
{(k=UT )Vpot1(t{tpre(n))

ze
{(k=UT )Vpot2(t{tpost(n{1))

ze
{(k=UT )VA3z

ð7Þ

Idep(t)~
I0

e
{(k=UT )Vdep1(t{tpost(n))

ze
{(k=UT )VA2{

z

I0

e
{(k=UT )Vdep1(t{tpost(n))

ze
{(k=UT )Vdep2(t{tpre(n{1))

ze
{(k=UT )VA3{

ð8Þ

where tpre(n) and tpost(n) are current pre- and post-synaptic spike

times respectively, while tpre(n{1) and tpost(n{1) are the times at

which the previous pre- and post-synaptic spikes have arrived.

Therefore, the voltage change in synaptic weight, shown as Vw in

Fig. 1, is approximated as:

DVw~

DVz
w ~

Ipot(tpost(n))

Cpot1

� �
Dtspk

DV{
w ~

Idep(tpre(n))

Cdep1

� �
Dtspk

8>>><
>>>:

ð9Þ

where Dtspk are the width of pre- and post-synaptic spike pulses,

and Cpot1 and Cdep1 are the parasitic capacitance available at the

gate of M8, and M11, respectively. Please note that, as in the

proposed circuit, similar to the TSTDP model, whenever a pre-

synaptic spike arrives at tpre(n), a depression can happen, while a

potentiation can happen whenever a post-synaptic spike arrives.

This analysis is similar to the analytical method utilised in [16].

Below, experimental results of the proposed circuit are

presented and compared with previous synaptic plasticity circuits.

Furthermore, the circuit is also compared with other synaptic

plasticity circuits in terms of power consumption, area and ability

in reproducing the outcomes of various biological experiments.

Results and Discussion

Experimental Setup
This section provides information about the experimental setup,

under which simulations are performed. These simulations are

carried out, in order to verify the performance of the proposed

circuit and compare it with published synaptic plasticity circuits in

the literature.

Minimal TSTDP circuits. As already discussed, in order to

regenerate the outcomes of several biological experiments,

minimal models of the TSTDP rule, shown in Eqs. 4 and 5 are

sufficient. Matlab simulation results of the first minimal model,

presented in [10] demonstrate that the first minimal TSTDP

model, shown in Eq. 4, can efficiently generate STDP window,

triplet, and quadruplet experiments, using the synaptic parameters

optimised for these experiments. In addition, according to another

set of numerical simulations, the frequency-dependent pairing

experiments and also the BCM-like rate-based experiments, can

be regenerated through the second minimal model, shown as Eq.

5, and by employing the synaptic parameters optimised for the

frequency-dependent pairing experiments. As the full TSTDP rule

is minimised, the proposed circuit that approximates the full

TSTDP rule, can also be further modified and hence the number

of transistors is reduced from the 18 transistors required for the full

TSTDP circuit shown in Fig. 1.

This paper presents experimental results of two minimal

TSTDP circuits that correspond to the two aforementioned

minimal TSTDP models presented in [10]. According to the

minimal rules shown in both Eqs. 4 and 5, the depression

contribution of the spikes triplet interactions can be neglected

without having a significant effect on the circuit performance in

reproducing the targeted biological experiments. The triplet

depression part in the full TSTDP circuit shown in Fig. 1, is the

four transistors surrounded in the red-dashed box. Therefore, the

minimal TSTDP circuit, is the one shown in Fig. 1 minus the part

enclosed in the red-dashed box, i.e only 14 transistors are needed

to regenerate all desired biological experiments. This is the first

minimal TSTDP circuit.

ð8Þ

ð7Þ
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In addition, the numerical simulation results suggest that, for

generating the frequency-dependent pairing experiments, as well

as the BCM experiment, the pairing potentiation part is not

necessary and can be removed. Therefore, in the case of second

minimal TSTDP rule, shown in Eq. 5, Az
2 can be zeroed. As a

result, one more transistor that is shown in the blue dashed-box

can be also removed from the proposed circuit and therefore only

13 transistors are required for generating the mentioned pairing

and BCM experiments [10]. This is the second minimal TSTDP

circuit.
Experiments data sets. Since there are two versions of the

minimal TSTDP rule, two sets of simulations have been

performed using the proposed minimal circuits. Each simulation

set considers a specific set of data from the experiments. The first

experimental data set that was utilized originates from hippocam-

pal culture experiments that examine pairing, triplet and

quadruplet protocols effects on synaptic weight change [14]. This

first data set consists of 13 data points obtained from Table 2 of

[10]. These data points include (i) two data points and error bars

for pairing protocol (ii) three data points and error bars for

quadruplet protocol, and (iii) eight data points and error bars for

triplet protocol. This data set shows the experimental weight

changes, Dws, as a function of the relative spike timing Dt, Dt1, Dt2

and T under pairing, triplet and quadruplet protocols in

hippocampal culture. The second data set originates from

experiments on the visual cortex, which investigated how altering

the repetition frequency of spike pairings affects the overall

synaptic weight change [4,18]. This data set is composed of 10

data points (obtained from Table 1 of [10]) that represents

experimental weight change, Dw, for two different Dt’s, and as a

function of the frequency of spike pairs under a frequency-

dependent pairing protocol in the visual cortex. The data set is

composed of those 10 black data points and error bars that were

used in numerical simulations using the TSTDP minimal model

reported in [10].
Circuit simulation and configuration. The minimised

circuits are simulated in HSpice using the 0.35 mm C35 CMOS

process by AMS. All transistors in the design (shown in Fig. 1) are

set to 1.05 mm wide and 0.7 mm long. The weight capacitor value

is set to 1 pF. It should be noted that the circuits are simulated in

an accelerated time scale of 1000 times compared to real time,

with all pulses having a 1 ms pulse width. This is the same

approach that has been utilised by previous synaptic plasticity

circuit implementations such as [8,22,23,30,31]. For the sake of

simplicity when comparing simulation results to the biological

experimental data, all shown results are scaled back to real time.

Furthermore, the nearest-spike interaction of spikes is implement-

ed in the proposed circuit that corresponds to the nearest-spike

model of TSTDP rule presented in [10]. The circuit is examined

under same protocols, using which the biological experiments and

the Matlab numerical simulations were carried out.

Data fitting approach. Identical to [35], and previous

TSTDP circuit studies [17,32], which test their proposed triplet

model/circuit simulation results against the experimental data

using a Normalized Mean Square Error (NMSE) for each of the

data sets, the proposed circuit is verified by comparing its

simulation results with the experimental data and ensuring a

small NMSE value. The NMSE is calculated using Eq. 1. In order

to minimize the resulting NMSEs for the circuit and fit the circuit

output to the experimental data, there is a need to adjust the

circuit bias parameters and time constants. This is an optimisation

process of the circuit bias voltages, which results in reaching a

minimum NMSE value and so the closest possible fit to the

experimental data.

Circuit bias optimisation method. In order to minimise

the NMSE function and achieve the highest analogy to the

experimental data, the circuit bias voltages, which tunes the

required parameters from the models should be optimised. For this

purpose, Matlab and HSpice were integrated in a way to minimise

the NMSE resulted from circuit simulations using the Matlab

built-in function fminsearch. This function finds the minimum of

an unconstrained multi-variable function using a derivative-free

simplex search method.

Synaptic Plasticity Experiments with the Proposed TSTDP
Minimal Circuits

Pairing experiment (STDP timing window). The first

simulation that is performed using the proposed minimal TSTDP

circuit, which does not include M1–M4 shown in Fig. 1, is

reproducing the STDP learning window that demonstrates spike

timing dependent potentiation and depression, under pairing

protocol. Fig. 2 shows how the proposed circuit can successfully

perform the timing dependent weight modifications. This figure

shows the normalised experimental data extracted from [11] in

blue. It suggests that the proposed circuit behaviour under a

pairing (window) protocol can approximate the experimental data

generated with the same protocol. Beside the blue experimental

data, two other experimental values for Dt~10 and Dt~{10 are

shown with their standard error mean represented by black bars.

These points are the first two points of the 13 data points of the

aforementioned first (hippocampal) data set. These two points,

were utilised to test and optimise the bias voltages of the first

minimal TSTDP circuit. This is a similar approach to the method

used in [10].

Quadruplet experiment. The second simulation is per-

formed using the first minimal TSTDP circuit and under

quadruplet protocol. Fig. 3 demonstrates how the proposed circuit

approximates the timing dependent weight modifications close to

those for quadruplet experiment. In these results, the black data

points are extracted from [14], and the black deviation bars and

data points are those that were used in [10] for quadruplet

experiments. The circuit bias parameters for generating the

quadruplet approximation are those corresponding to the hippo-

campal data set shown in Table 1.

Triplet experiment. The third experiment that is performed

on the first minimal TSTDP circuit is the triplet experiment

performed in the hippocampal region and reported in [10,14].

Fig. 4 demonstrates how the proposed circuit approximates the

timing dependent weight modifications close to those for triplet

experiments. In the shown results, the black data and deviation

bars are those that were used in [10,14] for triplet experiments.

Table 1. Optimised biases for the minimal TSTDP circuits and
two data sets.

Data set VAz
2

(V) VA{
2

(V)VAz
3

(V)Vtp1 (V) Vtd1 (V) Vtp2 (V) NMSE

Hippocampal
(first)

3.2 0.32 2.7 2.75 0.35 2.65 2.04

Visual cortex
(second)

0 0.29 2.7 2.7 0.17 2.86 0.39

Values of bias parameters for the minimal circuit that have been optimised in
order to reach the minimal NMSEs for the targeted set of data and experiments.
Hippocampal (first) set of bias parameters generate the results shown for
pairing, quadruplet and triplet experiments. Visual cortex (second) set of bias
parameters are optimised for reaching the minimal NMSE in frequency-
dependent pairing experiment, as well as rate-based BCM experiments.
doi:10.1371/journal.pone.0088326.t001
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The circuit bias parameters for generating the triplet approxima-

tion are those corresponding to the hippocampal data set as shown

in Table 1.

Simulation results show that the TSTDP circuit can distinguish

between the pre-post-pre and post-pre-post spike combinations

and show analogy to the experiments. However, the simulation

results using the computational PSTDP model shown in [10], as

well as the results generated using a PSTDP circuit [32],

demonstrate that the pair-based STDP models and circuits do

not have the ability to distinguish among triplet combinations.

Simulation results of the minimal TSTDP circuit using the first

set of data, hippocampal experimental data [14], suggest that the

proposed minimal circuit, can reach a good approximation of

pairing, quadruplet, and triplet experiments, using a shared

optimised set of bias voltages. Using these bias voltages a

NMSE~2:04 is obtained, when considering the 13 data points

in the hippocampal data set. This is better than the minimal

NMSE obtained using the minimal TSTDP computational model,

as presented in [10].

In addition to the above experiments that are similar to the

experiments performed by Pfister and Gerstner in [10], the

proposed minimal circuit is additionally tested for all possible

combination of spike triplets under the same protocol that used by

Froemke and Dan [13,33].

Extra triplet experiment. As already mentioned, in 2002

Froemke and Dan proposed a suppression model for higher order

spike trains and performed some experiments using the afore-

mentioned extra triplet protocol. Their proposed suppression

model can account for the required non-linearity in STDP

experiments, when considering higher order of spike combina-

tions. Fig. 5 shows that the first minimal TSTDP circuit, under the

extra triplet protocol, and using the same set of parameters that

were optimised for hippocampal experiments (shown in Table 1),

is able to account for a similar behaviour to the experiments

performed by Froemke and Dan in 2002 and for extra triplet

patterns.

Although the proposed circuit implements the triplet model

presented in [10] (and not the suppressive model in [13]), obtained

results shown in Fig. 5 demonstrate qualitative regional agreement

with the reported results in [13], nonetheless, there is a slight

Figure 2. STDP timing window experiment in the hippocampal
region can be approximated using the minimal TSTDP circuit.
Simulation results are produced under pairing protocol and using the
first minimal TSTDP circuit. The circuit bias parameters for generating
the window approximation are those corresponding to the hippocam-
pal data set shown in Table 1. The first experimental data set shown in
black contains two data points with their standard error mean extracted
from [10], and the second experimental data set is part of the
normalised experimental data extracted from [11].
doi:10.1371/journal.pone.0088326.g002

Figure 3. Quadruplet experiment in the hippocampal region
can be approximated using the minimal TSTDP circuit.
Simulation results are produced under quadruplet protocol and using
the first minimal TSTDP circuit. The circuit bias parameters for
generating the quadruplet approximation are those corresponding to
the hippocampal data set as shown in Table 1. The experimental data
shown in black were extracted from [14].
doi:10.1371/journal.pone.0088326.g003

Figure 4. Triplet experiments in the hippocampal region can be
approximated using the minimal TSTDP circuit. Simulation
results are produced under the triplet protocol, and using the first
minimal TSTDP circuit. The circuit bias parameters for generating the
triplet approximation are those corresponding to the hippocampal data
set as shown in Table 1. The experimental data, shown in black and
their standard deviations extracted from [10,14]. (a) Simulation and
experimental results for the pre-post-pre combination of spike triplets
with various timings. (b) Simulation and experimental results for the
post-pre-post combination of spike triplets with various timings.
doi:10.1371/journal.pone.0088326.g004
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contrast between our results and their results in the post-pre-post

case of spike patterns. Indeed, the triplet model weight changes

induced by the pre-post-post, post-post-pre, pre-pre-post, and pre-

post-post spike triplets are matched to the weight changes and

result from the similar spike patterns obtained from the Froemke-

Dan model. However, there is a slight difference in the results for

pre-post-pre and a significant difference in the results for post-pre-

post spike combinations when using these two different models.

Right bottom square in Fig. 5(a), which represents the post-pre-

post case, shows potentiation as it is the case for the post-pre-post

spike pattern case in Fig. 4(b) also, however Froemke-Dan model

results show a depression for this spike combination (Fig. 3b in

[13]). According to the discussion provided in [10], the difference

in the result is due to the nature of the original suppressive rule

where post-pre-post contributions gave rise to a depression, in

contrast to TSTDP where this specific combination leads to

potentiation. Note that the Froemke-Dan revised model presented

in 2006 addressed this issue, since in this model there are two

different potentiation and depression saturation values [33]. This

revised model now reproduces the expected experimental

outcomes from [18].

Frequency-dependent pairing experiment. As already

mentioned, the frequency-dependent pairing experiments that

were performed in the visual cortex, can also be replicated using a

minimal TSTDP model. This model is simpler than the first

minimal model and not only does not require the A{
3 parameter

from the full triplet model, but also it does not need the Az
2

parameter (See Eq. 5). Hence, the minimal circuit for generating

this experiment is also simpler from the first minimal circuit and

does not include M7 (See Fig. 1). In order to approximate the

outcome of frequency-dependent pairing experiments, which

corresponds to the aforementioned visual cortex (second) data

set, as reported in [10,18], a new set of synaptic parameters for the

model and therefore a new set of bias voltages for the circuit is

required. As shown in Fig. 6, the optimised biases for the circuit

can closely approximate the outcomes of experiments under

frequency-dependent pairing protocol. The minimal obtained

NMSE for this experiments was 0.39, which is close to the

numerical simulation result of 0.34 reported in [10]. It is worth

mentioning that the second minimal TSTDP circuit has only one

transistor more than the simple PSTDP circuit proposed in [16],

but it has the ability to reproduce the frequency-dependent pairing

experiments, while all neuromorphic PSTDP circuits, even with

much higher number of transistors (see [15,22,25] for example) fail

to replicate these experiments [32].

BCM-like rate based experiment. In addition to the

outcome of frequency-dependent experiments, the second minimal

TSTDP circuit is also able to account for a BCM-like behaviour.

By employing the same circuit and set of bias parameters, which

were used to generate frequency-dependent pairing experiments

shown in Fig. 6, a BCM-like experiment is also reproducible. Fig. 7

depicts the synaptic weight changes produced by the second

minimal TSTDP circuit and under the aforementioned Poissonian

protocol. In this figure, three different curves show synaptic weight

changes according to three different synaptic modification

thresholds that demonstrate the points where LTD changes to

LTP. The threshold is adjustable using the TSTDP rule

parameters. In order to move the sliding threshold toward left or

right, the VA3z parameter can be altered as it is depicted in the

figure. The rate of random pre-synaptic Poissonian spike trains,

rpre, is equal to 10 Hz, and the trains with this spiking rate, are

Figure 5. Extra triplet experiments using the suppression STDP
model performed in [13] can be approximated using the
minimal TSTDP circuit. Synaptic weight changes in result of extra
triplet protocol for (a) pre-post-post (top right triangle), post-post-pre
(bottom left triangle) and post-pre-post (right bottom square) and (b)
for pre-post-pre (top left square), pre-pre-post (top right triangle) and
post-pre-pre (left bottom triangle) combination of spikes produced by
the first minimal TSTDP circuit. The circuit bias parameters for
generating the synaptic weight changes shown in this figure
correspond to the hippocampal bias set shown in Table 1.
doi:10.1371/journal.pone.0088326.g005

Figure 6. Frequency-dependent pairing experiment in the
visual cortex region can be approximated using the minimal
TSTDP circuit. Simulation results are produced under frequency-
dependent pairing protocol and using the second minimal TSTDP
circuit. The circuit bias parameters for generating the synaptic weight
changes shown in this figure correspond to the visual cortex (second)
set of bias parameters shown in Table 1. The experimental data shown
in black are extracted from [10,18].
doi:10.1371/journal.pone.0088326.g006

Low-Energy Compact STDP Circuit

PLOS ONE | www.plosone.org 8 February 2014 | Volume 9 | Issue 2 | e88326



regenerated for each data point. Each data point shows the mean

value of the weight changes for 10 various post-synaptic Poissonian

spike trains and the error bars depict the standard deviations of the

weight changes for each data points over 10 runs. In this

experiment, similar to the experiment performed in [10], the

frequency of the post-synaptic spike, rpost is swept over a range of

frequencies from 0 Hz up to 50 Hz, while the pre-synaptic spiking

frequency, rpre is kept fixed at 10 Hz.

Although Pfister and Gerstner have used this methodology to

show that their model is able to reproduce a BCM-like behaviour,

in the original BCM experiments reported in [34], the synaptic

weight changes were measured whilst the pre-synaptic and not the

post-synaptic spike rate was swept [9]. In order to check that the

proposed circuit could reproduce BCM-like behaviour, which is

driven by pre-synaptic activity, the circuit simulation was repeated.

We made this simple assumption that post-synaptic firing rate is a

linear function of the pre-synaptic firing rate, i.e. rpost~Arpre and

for the sake of simplicity we let A~1, i.e rpost~rpre. Despite such

a crude approximation, the circuit is successfully able to mimic

BCM-like behaviour where weight changes were pre-synaptically

driven, as illustrated in Fig. 8. In this figure, each data point shows

the mean value of the weight changes for 10 different trials using

random Poissonian pre- and post-synaptic spike trains for each

trial, and the error bars depict the standard deviations of the

associated weight changes.

All these experiments suggest that the proposed timing-based

circuit has a good ability to replicate the outcome of other synaptic

plasticity experiments, for a BCM-like behaviour. In the next

section we discuss and compare the proposed circuit and its

counterparts from various circuit design as well as biological

plausibility perspectives.

Synaptic Plasticity Circuit Comparison
In order to measure the efficiency of the proposed analog

neuromorphic circuit, it should be compared to its counterparts in

terms of strength in reproducing the outcomes of various synaptic

plasticity experiments. Besides, it is also essential to compare the

proposed design with available synaptic plasticity circuits in

various circuit design aspects such as required silicon real-estate,

energy consumption, and process variation tolerance. In the

following sections, we demonstrate that the proposed synaptic

plasticity circuit outperforms most of its previous counterparts. In

addition, it will be shown that the proposed circuit is much

simpler, consumes less power and occupies smaller area in

comparison to previous synaptic plasticity circuits. Furthermore,

we show that the presented synaptic plasticity circuit is better than

its counterparts in terms of process variation tolerance when a

trade-off between complexity and performance is considered.

Synaptic plasticity ability for reproducing experimental

data. As already mentioned, the proposed design is able to

regenerate the outcomes of a variety of synaptic plasticity

experiments. These experiments are not reproducible by any of

the previous circuits designed for PSTDP rule. However, they can

be replicated using a number of previously proposed TSTDP

circuits, as well as a few other synaptic plasticity designs. Table 2

shows a detailed comparison among investigated circuits.

This table demonstrates that all PSTDP and TSTDP circuits

are able to account for a BCM-like behaviour. However,

simulation results presented in [35] suggest that, using a TSTDP

circuit, a much nicer and smoother BCM-like behaviour is

attainable and since there are more parameters available in the

circuit, there will be a higher degree of control over the sliding

threshold of the BCM rule. In addition, there is no evidence, if any

of the circuits proposed in [36] or [24] are capable of showing a

BCM-like behaviour with sliding threshold feature.

The table also summarizes the ability of the proposed TSTDP

circuit in reproducing other required experiments. Although a

number of other synaptic plasticity circuits that are shown in the

table, are also capable of qualitatively generating the required

experiments [23,37], they need changes in their synaptic

parameters or in their initial implementations, in order to be able

to mimic biological experiments closely and with a small error.

The table shows that the TSTDP designs proposed in [17,32,38]

as well as the proposed design in this paper are able to account for

all experiments using shared set of bias parameters. This is a useful

feature of the synaptic plasticity circuit, to be able to reproduce as

many experimental outcomes as possible, using a single set of

parameters, and by means of a fixed design. As a result, this new

plasticity circuit can be used in developing large-scale networks of

spiking neurons with high synaptic plasticity abilities.

When implementing a large-scale network of spiking neurons,

the synaptic plasticity circuits should be as area- and power-

efficient as possible. This leads to the essential requirements of a

Figure 7. BCM-like behaviour with sliding threshold feature
can be approximated using the minimal TSTDP circuit.
Simulation results are produced under Poissonian protocol for BCM,
and using the second minimal TSTDP circuit. The circuit bias parameters
for generating the synaptic weight changes shown in this figure
correspond to the visual cortex (second) set of bias parameters shown
in Table 1. In this simulation, the pre-synaptic frequency, rpre was kept
fixed at 10 Hz, and the post-synaptic frequency, rpost was swept (see

the text for more details).
doi:10.1371/journal.pone.0088326.g007

Figure 8. BCM-like behaviour with sliding threshold feature
can be approximated using the minimal TSTDP circuit.
Simulation results are produced under Poissonian protocol for BCM,
and using second minimal TSTDP circuit. The circuit bias parameters for
generating the synaptic weight changes shown in this figure
correspond to the visual cortex (second) set of bias parameters shown
in Table 1. In this simulation, the pre-synaptic frequency, rpre was
swept, while the neuron is linear and rpre = rpost (see the text for more

details).
doi:10.1371/journal.pone.0088326.g008
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large scale neuromorphic design, which include low power

consumption and small area occupation. Despite these essential

needs, most of the previously available synaptic plasticity VLSI

designs do not meet these requirements. Some of these designs

have good biological strength, but at the same time are large scale

and power hungry such as the design presented in

[17,23,24,37,38]. Some other designs such as the synaptic

plasticity circuits presented in [15,16,22,25,39], have improved

power and area features, but do not have most of the required

biological abilities. Therefore, a circuit with low power and area

consumption and at the same time with high synaptic plasticity

capabilities is required. The design presented in this paper aims at

reaching these goals. This design has high synaptic weight

modification ability, while it is low power and occupies small

silicon area.

Area and power consumption. Since the proposed design

only uses a small number of transistors to reach its required

synaptic plasticity features compared to many previous designs

with less or equal synaptic capabilities, the area and power

consumption in this design are lower than all previous designs with

similar capabilities, and close to other design with much less

synaptic strength. Table 3 compares the proposed design, with

some of the previous synaptic plasticity designs available in the

literature, in terms of complexity (required number of transistors

and capacitors), which has a direct relation with the needed silicon

area, and their estimated power consumption.

Power consumption of a synaptic plasticity circuit is directly

linked to its synaptic biasing parameters such as its synaptic time

constants e.g. Vtp1, Vtd1, Vtp2, Vtd2, as well as its synaptic

amplitude parameters e.g. VAz
2

, VA{
2

, VAz
3

, VA{
3

. In addition,

consumed power is in a direct relation with the supply power, as

well as the spike pulse width. Therefore, in order to have a fair

comparison among synaptic plasticity circuits, they should all be

compared under similar conditions. The presented results in the

last six rows of Table 3, depict the simulation results for various

circuits under similar conditions. The synaptic parameters, for all

these synaptic circuits are firstly optimised to reach the best

NMSEs for the hippocampal data set. The optimisation process

determines the value of synaptic biasing parameters, which

significantly influence the power consumption of these circuits.

For instance, the high power consumption observed in the TSTDP

circuit proposed in [17] is due to large time constants required for

reaching a small NMSE~1:74, which results in transistors being

on for longer period of time and this leads to high power

consumption. Table 3 reports the energy consumption per spike

for a number of the mentioned designs. The energy consumption

is measured on both pre-synaptic and post-synaptic spikes. Due to

differences in depressions and potentiations biasing parameters,

different energy consumptions are measured for pre- and post-

synaptic spikes, but the larger one is reported in Table 3.

The energy consumption per spike for the first three designs in

Table 3, are extracted from related papers. These circuits are

PSTDP circuits, which do not posses the high biological

plausibility available in TSTDP circuits including the low power

TSTDP design presented in this paper. Although two of these

designs are low power and consumes very low energy per spike,

they require a high number of transistors/capacitors that require

large silicon area. Note that in the best case, the NMSE of these

Table 2. Comparison of various synaptic plasticity VLSI circuits.

Plasticity Circuit\Experiment STDP window Pairing frequency Triplet Quadruplet BCM

PSTDP [15] ! 6 6 6 !

PSTDP [21] ! 6 6 6 !

PSTDP [16] ! 6 6 6 !

PSTDP [30] ! 6 6 6 !

PSTDP [51] ! 6 6 6 !

PSTDP [47] ! 6 6 6 !

PSTDP [22] ! 6 6 6 !

PSTDP [49] ! 6 6 6 !

PSTDP [52] ! 6 6 6 !

PSTDP [25] ! 6 6 6 !

PSTDP [39] ! 6 6 6 !

SDSP [36] !* !** !** !** !**

Voltage-based BCM [23] ! ! ! !* !

Iono-neuromorphic [24] !* !** !** !** !**

Iono-neuromorphic [37] !* !** !** !** !

TSTDP [32] ! ! ! ! !

TSTDP [38] ! ! ! ! !

TSTDP [17] ! ! ! ! !

Proposed TSTDP ! ! ! ! !

! means that the outcomes of experiments can be closely mimicked using the circuit.
!*means that the related study has not investigated the corresponding experiment, but according to its plasticity rule, it can most likely reproduce the expected
experiment, though using a different set of plasticity parameters.
!**means that the related study has not investigated the corresponding experiment, but according to its plasticity rule, it might be able to reproduce the expected
experiment.
6means that the outcomes of experiments cannot be generated using the circuit.
doi:10.1371/journal.pone.0088326.t002
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designs that implement the same STDP rule as the design

presented and simulated in [32,38], will be .10, which is not

acceptable as a fitting error.

In addition, there is no energy consumption information

available for the other three designs shown in the fourth to sixth

rows of the table. Two of these designs are biophysically-based

synaptic plasticity circuits, which are bulky detailed VLSI circuits

implemented with more than 100 transistors, and the other one

that implements the voltage-based BCM rule, imposes an

inevitable interference with the neuron circuit and also needs

more than 100 transistors for the design [5,23].

Considering both area and power consumption, under similar

conditions to other synaptic plasticity circuits, Table 3 suggests

that the proposed design outweighs all other designs in terms of

energy consumption, silicon real estate, and biological accuracy.

In addition to operating the transistors in the subthreshold

region of operation, which makes the proposed circuit low-power,

the accelerated time scale is another factor that results in a lower

energy consumption, compared to other designs, which are

implemented on real time scales. This is due to the fact that the

static current, which is usually the dominant power consumption

cause, is reduced [8].

This allows the proposed design to be a suitable learning and

computational component for large scale and low power

neuromorphic circuits with high biological capability. However,

one should keep in mind that, any analog VLSI design will be

affected by the mismatch due to fabrication imperfections.

Therefore, besides area and energy consumption, mismatch may

also be taken into account when considering design of an analog

synaptic plasticity circuit for learning and computational purposes.

Process variation and transistor mismatch. Apart from

power consumption and silicon area, transistor mismatch is

another challenge that is always associated with all analog VLSI

designs, specially designs for synaptic plasticity circuits. The

functionality of these circuits are dependent on the synaptic

parameters and changes in the values of these parameters, which

can happen due to process variations, results in deviation from the

synaptic circuit expected behaviour. These deviations can bring

about degradation of synaptic plasticity capability. The mismatch

may be taken into account from two different design perspectives.

First, is a mismatch that occurs between the targeted design and

the implemented design, and results in the physically implemented

transistor to be different from the designed one. Second, is a

mismatch that occurs among the transistors all over the fabricated

design. These transistors suppose to have similar behaviour and

functionality inter- or intra-chip. The design of large neuro-

morphic circuits become challenging due to these mismatches.

Transistor mismatch becomes more challenging when the

transistor works in its subthreshold region of operation. This is

due to the changes to the threshold of the transistor, and therefore

affect its subthreshold current characteristics. Due to the

exponential behaviour and also low power consumption of

transistors in their subthreshold regime, many spiking neural

circuits, including neurons and synaptic weight change compo-

nents are implemented in this region. In addition, many

neuromorphic VLSI designs employ mismatch susceptible com-

ponents such as current mirrors and differential pairs in their

current- or voltage-mode structures. Therefore, these neural

systems are seriously susceptible to device mismatches

[17,23,38,40].

There are various approaches to reduce the transistor mismatch

problem in Neuromorphic VLSI design. These approaches

include (i) fine-tuning the design after fabrication [17,41], (ii)

alleviating the device mismatch [21,42], (iii) exploiting the device

mismatch for neural learning [43], (iv) utilising newly developed

threshold voltage variation tolerant processes [44] for ultra-low-

power subthreshold neuromorphic designs [24,40], and (v) wide

dynamic range neuromorphic circuit design approach that

employs source degeneration and other negative feedback design

techniques to increase the dynamic range of the input voltages to

the neuromorphic circuits and therefore decrease their vulnera-

bility to device mismatches [37,40,45].

Each of these approaches has its own advantages and

disadvantages. For instance the approach used in [24,37] requires

specially designed process tolerant circuits with negative feedbacks

and source degeneration features, which lead to increased number

of transistors and therefore result in larger circuits. In addition, the

fine-tuning approach that has been successfully utilised in [17], is

not applicable for large-scale neuromorphic circuits. Nonetheless,

this approach could be used for a set of circuits with shared

Table 3. Area and power comparison for various synaptic plasticity circuits.

Plasticity Circuit\Comparison Measure Transistor No. Capacitor No. Energy per spike NMSE*

PSTDP [25] with weight dependence 15 5 0.3 pJ .10

PSTDP [39]** .100 4 0.37 pJ .10

PSTDP [22]*** 18 3 42 pJ .10

Voltage-based BCM [23] .100 2 NA NA

Iono-neuromorphic [24] .100 2 NA NA

Iono-neuromorphic [37] .100 2 NA NA

PSTDP [15] without weight dependence part 15 3 1.5 pJ 10.76

PSTDP [16] 12 1 3 pJ 11.3

TSTDP [32] 26 1 0.03 pJ 3.46

TSTDP [38] 44 7 1.5 pJ 2.25

TSTDP [17] 37 5 60 pJ 1.74

Proposed minimal TSTDP 14 1 0.02 pJ 2.04

*The biases are optimised for the hippocampal (first) data set and then the energy consumptions are measured.
**This design has been implemented in a 90 nm CMOS process with a supply voltage of 0.6 V.
***This design has been implemented in a 0.25 mm CMOS process, while power supply = 3.3 V has been equal to the other presented designs in this table.
doi:10.1371/journal.pone.0088326.t003
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synaptic parameters across the chip, or even inter-chips, in order

to reach the required functionality.

In order to have a process tolerant design, it is essential to use

less components susceptible to mismatch including current mirrors

[17,38], differential pairs [46], and OTAs [39,47]. The proposed

design in this paper does not use any of these components and it is

less susceptible to process variations than many previous designs.

Fig. 9 shows the variation in NMSE for visual cortex data set,

when a rigorous case mismatch scenario happens in the

fabrication. In the applied scenario, all transistors in the design

independently go under a 1000 Monte Carlo (MC) threshold

voltage variation, with three standard deviations from their typical

process technology threshold voltage. This may cause deviations in

the threshold voltage of any transistors up to 30 mv. This level of

variation in the thresholds of transistors is very unlikely to occur.

This variation scenario was used in a previous design proposed in

[17], where under the same protocol the worst case NMSE can go

up to 80 (See Fig. 13 in [17]). So the proposed design is much

more stable compared to the previous designs and that is because

of not using of process variation susceptible circuit modules, such

as current mirrors, which are extensively used in the previous

designs (See Fig. 1 of [17], as well as Fig. 2 of [38]). Note that the

circuit bias parameters for all 1000 MC runs are fixed and

correspond to the parameters for visual cortex parameters shown

in Table 1. However, as the results presented in [17] show, the

bias parameters can be justified again and bring the circuit back to

a significantly low NMSE.

Identical to the mismatch analysis performed in Fig. 9, the

proposed TSTDP circuit is subjected to another variation analysis,

this time using the first minimal TSTDP circuit and while

stimulated under the pairing, triplet and quadruplet experiments,

in order to measure the variation effect. Fig. 10 represents 1000

MC runs, and the NMSE deviation, for the mismatch scenario

explained earlier. The NMSE obtained using the new proposed

circuit is significantly smaller than that of the design presented in

[17,38].

According to Figures 9 and 10, in both cases of mismatch

analysis, more than 60% of NMSEs are very close to the best

reached NMSEs in simulations. In addition, even the worst

NMSEs shown in these figures that are due to severe unlikely

mismatch, are still better than PSTDP circuit NMSEs even

without considering variation in them. Furthermore, it should be

noted that, the applied variation scenario considers independent

changes in the design. This means that the threshold voltage of

every single transistor in the design changes independently, which

is not likely in the case of closely positioned transistors in the

proposed compact design. Considering this fact a mismatch

tolerant synaptic circuit design is expected after fabrication.

However, these independent changes can happen globally and in

the replicates of the proposed plasticity circuit across the chip, in

the case of a large scale neuromorphic design. This means that

shared fine-tuning for various sets of synaptic circuits, which are

positioned in a close neighbourhood on the chip, could be an

effective way of tackling the mismatch problem.

In general, Figures 9 and 10 suggest that the proposed circuit is

not heavily affected by process variation, and an acceptable

synaptic behaviour compatible with several synaptic plasticity

protocols is expected after fabrication. This feature along with low

power consumption, small area requirement, and high biological

accuracy, make the proposed circuit an ideal synaptic plasticity

component that can be utilised in large scale neuromorphic

systems. These systems will have higher capability to mimic more

biological experiments, while enjoying a compact structure, which

consumes little power. This is significant progress toward

developing biologically plausible systems on scales approaching

that of the brain.

Limitations of Study and Future Works

Despite the performance advantages that the proposed circuit

presents, it has a number of limitations that need to be considered

when integrating it within a network configuration. As Fig. 1

demonstrates, in order to induce weight changes using the triplet

circuit, current pre- or post-synaptic spike i.e. Vpre(n) or Vpost(n), as

well as the immediate previous pre- or post-synaptic spike i.e.

Vpre(n-1) or Vpost(n-1) are needed. This results in the need for

introducing a delay into the design that provides the circuit with a

delayed version of pre- and post-synaptic spike trains.

In our simulation setup, we have delayed the input pre- and

post-synaptic spike trains, generated in software, for one spike

width of 1 ms, and produced the required delayed spike trains, i.e.

Vpre(n-1) and Vpost(n-1). However, in the physical implementation of

the proposed TSTDP circuit, the mentioned delay element should

Figure 9. Transistor mismatch effects on the proposed design.
This figure shows 1000 Monte Carlo (MC) runs. In each run, the
threshold voltage of all transistors are independently varied, based on a
three-sigma deviation. The NMSE in each MC run shows the fitting error
of the design, which is affected by that run deviated transistors
thresholds. Similar to Fig. 6, simulation results are produced under
frequency-dependent pairing protocol and using the second minimal
TSTDP circuit. The circuit bias parameters correspond to those for the
visual cortex region shown in Table 1.
doi:10.1371/journal.pone.0088326.g009

Figure 10. Transistor mismatch effects on the proposed design.
This figure shows 1000 Monte Carlo (MC) runs. In each run, the
threshold voltage of all transistors are independently varied, based on a
three-sigma deviation. The NMSE in each MC run shows the fitting error
of the design, which is affected by transistor threshold deviation.
Simulation results are produced under pairing, triplet and quadruplet
protocols and using the first minimal TSTDP circuit. The circuit bias
parameters correspond to those for the hippocampal region shown in
Table 1.
doi:10.1371/journal.pone.0088326.g010
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be combined with either neuron or synapse circuit, in order to

produce the required delayed spike trains. Since the density of

neurons is significantly lower than that of synapses in a

neuromorphic system, it is therefore preferred to integrate the

required delay element into the neuron design, hence saving

precious silicon real estate and reduced power consumption.

Another viable method for implementing a delay into the system is

to delay the spike while transmitting it via an Address Event

Representation (AER) protocol in the system. Since in the AER,

we only transfer spike time stamps, we can easily delay the spike

time for any specified value. Because the AER is an unavoidable

part of any neuromorphic system, it is beneficial to use AER

instead of any extra circuitry (whether part of the neuron or

synapse) for introducing the required delay times into the system.

Another limitation in the proposed circuit is the use of a large

weight capacitor, in order to retain the synaptic weight for

required period of times, needed for adopted experimental

protocols. The utilised capacitor can be implemented using Metal

Oxide Semiconductor Capacitors (MOSCAPs), which approxi-

mately consumes up 20|20 mm2 of silicon real estate. Therefore,

compared to the Full TSTDP circuit body that is composed of 18

transistors all with 1.05 mm width and 0.35 mm length, the

capacitor takes up about 90% of the whole area required for the

TSTDP circuit.

In a recent study we have shown that a similar version of the

proposed circuit can use a 50 fF capacitor instead of the very large

1 pF one, while retaining its ability to reproduce the STDP

learning window, and the triplet and quadruplet experimental

data [48]. This becomes possible if we use a modified version of

the experimental protocols, which consider only one pair, triplet or

quadruplet of spikes, instead of the original protocols that use 60

spike sets with a frequency of 1 Hz. The design in [48], cannot

account for the frequency-dependent pairing experiments, or

other complicated experiments shown in this paper, and is suitable

only for experiments with high spike frequencies. On the contrary,

the utilised experimental protocols in this paper introduce 60

pairs, triplet, or quadruplet of spikes with frequency of 1 Hz, into

the TSTDP circuit, and the resulting weight change is the

summation of the weight changes of all these 60 spike sets.

Therefore, the synaptic weight change after each of these spike sets

should be strongly preserved during the rest period before the

arrival of the next spike set, or for longer times when there is no

spike. However, due to the capacitor leakage, the synaptic weight

stored on the capacitor, will leak away resulting in the learnt

weight will be eventually altered/lost. This is the reason why we

have used a large capacitor in our design to minimise this loss.

Similarly, many of the previous designs [15,16,25], which only

possess synaptic weight changes for the STDP protocol, with only

one spike pair, also utilised large capacitors, for the same reason.

However, with large capacitors, and even accelerated time, the

leakage current still has a significant effect on the stored synaptic

weight value. In the performed simulations throughout this paper,

we have reported the voltage difference between the synaptic

weight values stored on the capacitor, at the start of the

experiments and just after the experiment is finished. During the

experiment, the leakage is not significant and can be compensated

for, using the parameter tuning performed for the TSTDP circuit.

However, after the experiment is finished, namely when there is no

spike coming, the updated weight stored on the capacitor will leak

away in less than a second. For an example, see the STDP

measurement results from a similar accelerated-time neuro-

morphic chip reported in [8].

In order to save the latest weight status of the synapse after

learning, its weight can be categorized into two potentiated/

depressed states, if the weight on the capacitor is above/below a

predetermined threshold. This is a bistability mechanism such as

the one utilised in [16] and can be employed along with our

circuit, so that the synaptic weight will be either potentiated or

depressed, depending on the latest changes TSTDP circuit made

on the synaptic weight. In this condition, since the synaptic weight

is quantised into a binary high (potentiated) or low (depressed)

state, it loses its analog value. Although this approach results in a

decrease in the synaptic weight capacitor size, it compromises the

analog nature of the synaptic weight, which may be essential for

some specific applications, where high degree of synaptic weight

precision is necessary. In future work we suggest the use of TSTDP

synapses that are driven to two bistable states, using a bistability

circuit similar to the one used in [16]. This may lead to further

reduction in the size of the weight capacitor, hence, the area of the

TSTDP synapse.

Note that, even with the use of a bistable mechanism, the final

synaptic weight ought to be in a nonvolatile storage element for

later use. Therefore, there is always need for long-term synaptic

weight storage. There exist a number of nonvolatile weight storage

methods in neuromorphic engineering such as (i) memory cells

[41], (ii) floating gate [49], and (iii) memristive devices [50], which

could be utilised for this task.

Conclusion

A low-power, compact, and tunable neuromorphic circuit with

high synaptic plasticity capabilities is proposed. Simulation results

demonstrate how the proposed circuit can mimic the outcomes of

several biological synaptic plasticity experiments. The presented

design is compared with many previous synaptic plasticity circuits,

in terms of power consumption, area consumed, biological

accuracy, and tolerance to transistor mismatch and process

variation. The comparison of results shows that the proposed

circuit possesses good synaptic plasticity capabilities that can be

used in the implementation of large scale neuromorphic systems,

which may potentially lead to neuromorphic systems with higher

learning and computational abilities.
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