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Abstract

Background: Motion tracking based on spatial-temporal radio-frequency signals from the pixel representation of magnetic
resonance (MR) imaging of a non-stationary fluid is able to provide two dimensional vector field maps. This supports the
underlying fundamentals of magnetic resonance fluid motion estimation and generates a new methodology for flow
measurement that is based on registration of nuclear signals from moving hydrogen nuclei in fluid. However, there is a need
to validate the computational aspect of the approach by using velocity flow field data that we will assume as the true
reference information or ground truth.

Methodology/Principal Findings: In this study, we create flow vectors based on an ideal analytical vortex, and generate
artificial signal-motion image data to verify our computational approach. The analytical and computed flow fields are
compared to provide an error estimate of our methodology. The comparison shows that the fluid motion estimation
approach using simulated MR data is accurate and robust enough for flow field mapping. To verify our methodology, we
have tested the computational configuration on magnetic resonance images of cardiac blood and proved that the theory of
magnetic resonance fluid motion estimation can be applicable practically.

Conclusions/Significance: The results of this work will allow us to progress further in the investigation of fluid motion
prediction based on imaging modalities that do not require velocity encoding. This article describes a novel theory of
motion estimation based on magnetic resonating blood, which may be directly applied to cardiac flow imaging.
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Introduction

Medical imaging techniques such as velocity-encoded (VENC)

phase contrast magnetic resonance imaging [1,2,3] is able to

produce flow measurements of blood in heart structures and

enables a clear evaluation of the cardiac functions. However,

phase contrast magnetic resonance image scans take a longer

duration than non velocity-encoded imaging protocols such as

True FISP (Fast Imaging in Steady State Free Precession) [4,5,6].

This creates a need to have a magnetic resonance imaging

velocimetry methodology, which requires less processing time and

is unaffected by the absence of the velocity-encoding protocol.

Multi-resolution motion estimation [7] on intensity magnetic

resonance (MR) images is able to predict fluid motion information,

within signal images, without direct and physical measurement of

the fluid velocity field. Different degrees of turbulence in fast flowing

blood as well as inconsistency in magnetic resonance due to flow

from different directions produce de-phasing of proton spins at

different levels and results in intensity contrast of the image pixels

[8,9]. We propose a methodology for computationally determining

the movement of fluid in a vessel based on motion estimation of the

contrasting MR-signals, instead of encoding velocity information

onto flow images during scanning. However, such medical scanning

modalities cannot be applied to any fluid to enable flow field

generation. The lack of hydrogen nuclei in most flow media such as

air results in void signal registration. On the contrary, it works

relatively well on magnetic resonating blood flow.

This paper explains the theory of magnetic resonance fluid

motion estimation in detail. It includes a study to evaluate the MR

fluid motion estimation technique by matching a computationally

predicted flow with an analytically determined one. In our

experiments, we assume the analytical information to be the true

reference (i.e. ground truth) data for comparison. Flow vector

differencing in the Cartesian and radial grid can be carried out to

determine the error of the motion estimation and assess the

accuracy of the computational algorithm used in the motion

tracking system.

The verification process indicates that extension of motion

estimation onto magnetic resonance images of dynamic fluids,

such as blood within the heart chamber, within this prototypical

framework can be carried out. The estimation of blood flow field

within the human heart chamber can be performed to give an

indication of the flow behavior and can be used to investigate

cardiac functions.
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We examine some of the well-established velocimetry systems

that exist to generate accurate vector fields of fluid flow of one

temporal and up to three spatial dimensions. It is interesting to

highlight that such flow tracking can be classified as either optical-,

magnetic resonance- and ultrasonic- image velocimetry. More

importantly, we are interested to look at in-plane flow field

generation using the different types of imaging systems. Particle

image velocimetry (PIV) can serve as a validation tool for verifying

magnetic resonance imaging velocimetry (MRIV). For example,

two dimensional phase contrast flow measurement [10] has been

verified against experimental methods using PIV [11] previously.

On the other hand, phase contrast magnetic resonance imaging of

cardiac flow has been compared against that of ultrasonic imaging

in various studies [12,13].

A. Optical-based Image Velocimetry
Over the past few decades, particle image velocimetry [14,15]

has been an established method of performing flow tracking based

on optical scanning of fluid suspended particles. Nano-particles in

the form of glass beads can act as velocity trackers when

illuminated by a two-dimensional sheet of high-powered laser

source. Cross-correlation of concomitant images [16] is performed

based on snap shots of the flow scenario at two instances dictated

by a measurement interval that is dependent on the speed of the

flow. The computation of collective particle displacements gives a

two-dimensional flow visualization of the fluid. However, the

limitation of PIV in imaging flow through non-compatible optic

structures has been an obstacle in studying cardiovascular flow in

the human body.

Although the particle image velocimetry system utilizes the

cross-correlation of particle windows in the optically captured

image to compute the localized direction of flow, the motion

estimation scheme can also be used for such optical-based

experimental flow studies [17,18,19]. Parametric flow fields

generated by the optical flow algorithms used in these studies

compared favorably with results obtained from the well-estab-

lished computational component used in particle image veloci-

metry.

B. Magnetic Resonance-based Image Velocimetry
The magnetic resonance-based image velocimetry is VENC

phase contrast MR imaging, which encodes velocity information

onto images in real-time during scanning. In contrast to predicting

fluid motion based on illuminated nano-track particles in optically

compatible vessels, this approach extracts MR signals produced by

nuclear spins within a fluid, determines the phase shift of the

transverse magnetization during movement of the spin ensemble

from the stationary spins, and encodes this information as pixel

intensity onto an image [10,20]. Since the phase shift is directly

proportional to the velocity of the fluid, deciphering velocity

components from the intensity images pertaining to the in-plane

horizontal and vertical orientations, and reconstructing them,

provides motion fields of up to one vector per pixel. For MR

image-based velocimetry, we are able to image through the heart,

whereas PIV is optical-based, and therefore flow imaging within

opaque cardiac structures is impossible.

C. Ultrasonic-based Image Velocimetry
Doppler ultrasound, as its name implies, is based on Doppler

shift caused by blood scatter movement and is a widely accepted

technique for visualization of blood flow patterns. Analysis of the

flow field obtained by ultrasound methods enables useful results in

cardiac diagnosis [21]. However, the Doppler ultrasound output is

usually represented as a two dimensional image.

Medical ultrasound works by generating high frequency

electrical pulses and using piezoelectric elements of a transducer

to convert them into mechanical vibrations. The emission of ultra-

frequency sound and detection of sound waves from the resulting

echoes is performed by transducers. After conversion into

electrical signals, processing is carried out to decipher blood flow

velocities [22].

Real-time blood motion imaging using color sonograms can be

utilized. For this medical imaging modality, the speckle pattern

from the blood flow signal is preserved, enhanced, and visualized

[23,24]. In this technique, a high frame rate is necessary for

acquiring speckle pattern motion due to the rapid decorrelation of

the speckle pattern from blood flow. In addition, good spatial

resolution of the speckle pattern is essential.

A huge limitation of ultrasound imaging is that the Doppler shift

is only sensitive to the velocity component in the orientation of the

ultrasonic beam. However, clinical examination can be achieved

with low cost and produces real-time flow visualization. In addition,

ultrasound systems can be highly portable now [25]. This makes

Doppler sonography more clinically attractive to use than magnetic

resonance imaging. Despite these system advantages, a flow

projection onto a plane for an accurate slice assessment of the

cardiac flow is difficult to perform. Based on this aspect, it is inferior

to velocity-coded MR imaging that can reconstruct accurate

temporal flow grids of up to three spatial dimensions [26].

Materials and Methods

A. Theory
A.1. True FISP Magnetic Resonance Imaging. We

examine nuclear magnetic resonance (NMR) imaging at a basic

level to aid clarity of the quantum mechanical concepts. An

organic structure positioned within the centre of an external

magnetic field becomes itself partially magnetized with a

magnitude of comparatively lower order. The assemblage of

hydrogen nuclei (protons) in the water molecules within the body

can be perturbed with radiofrequency radiation. The nuclear spins

then realign with the magnetic field and emit radiofrequency (RF)

waves during this longitudinal relaxation period [27]. Time 1 (T1)

is defined as the duration for nuclear realignment and emission of

RF signals that can be registered onto the MR images that we use

for examination. Since the rate of emission of the RF waves is

dependent on the type of material that contains the nuclei,

different intensity of pixels representing the tissues can distinguish

various anatomical structures.

Based on a similar type of magnetic field configuration, pulses of

radio waves that have their magnetic moments perpendicular to

the magnetic field applied can cause the hydrogen nuclei to have

magnetic moment transverse to their original orientation.

Realignment of nuclear spins after this transverse magnetization

has a decay time constant labeled as Time 2 (T2) for this transverse

relaxation. Likewise, for tissue classification, the rate of decay is

dependent upon the material nuclei, and therefore registers

differently onto the MR image that is made up of pixels with

varying intensity.

True FISP MR imaging is a modality capable of imaging cross-

sections of cardiac structures with unsurpassed soft tissue contrast

[28]. It is one of the most popular medical imaging modality for

registration of physiological properties of the heart and arteries.

True FISP MR imaging combines both longitudinal and

transverse magnetization [29]. It is characterized by a complex

T2/T1-contrast configuration [30] and refocuses all gradients over

a repetition interval, thereby achieving fast imaging with high

signal [29].

MR Fluid Motion Tracking
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A.2. Asynchronous Precession of Hydrogen Nuclei in

Turbulent Flow. This section describes the theory governing

the concept of void signal registration due to turbulence within

fluid whose atomic nuclei have been aligned either parallel or anti-

parallel to a powerful and uniform magnetic field. As the high-

energy nuclei relax and realign, they emit energy with certain

properties that are recorded to provide information about the

medium. Image contrast is created by weighting the energy signal

during realignment of the nuclear spins with the magnetic field.

A signal image is generated as a result of this quantum

mechanical activity. As the fluid is transported, the same signal

from nuclei that is retained within the fluid follows the

displacement. In a turbulent flow, the diffusion of magnetic

moments occurs [31]. Protons in the hydrogen nuclei of molecules

can be given a phase spin and the de-phasing (asynchronous

precession) of spin due to turbulence in flow gives a low MR signal

during imaging [8,9]. Therefore, there is a reduction in the signal

registration onto the image. Effectively, diffusivity of spin protons

at a point is represented by a reduction in signal intensity in the

image [31]. Because the diffusivity follows the movement of the

fluid in a channel, there exists an intensity change in the direction

of flow. The intensity contrast of the diffusion in the image

becomes greater as the speed of the fluid flow increases.

A.3. Non-stationary Patterns of Varying Intensity in

Cine-MR Imaging. In the previous section, we discuss the

non-uniform and temporal intensity of nuclear signal registration

of chaotic flow due to de-phasing of the proton spins. We also

discuss the nuclear characteristics of blood within the human heart

that is quantum excited under the magnetic resonance scheme. It

must also be emphasised that in the heart chambers, the nuclear

spins may move perpendicularly in and out of the imaging plane.

Therefore, spins that receive the original excitation may, in

turbulent flow, not experience magnetic resonance gradient

refocussing. Likewise, spins that do not receive the original

excitation may in fact move into the imaging plane after the RF

excitation pulse, and since they are not quantum mechanically

stimulated to begin with, no MR-signal may be returned.

Extrapolating this concept further, some signal loss due to fast

flowing jets are probably due to spins moving too quickly to be

excited and refocussed, creating signal voids [32].

Due to the inhomogeneous presence of asynchronous proton

spins, nuclear signals emitted from dynamic fluid displays on MR

images as varying patterns of intensity depicting the blood flow

movement. It may be worthwhile mentioning that poor temporal

and spatial resolution imaging may blur the observation of blood

movement between consecutive images. At some phases of scans,

the presence of low-turbulent regions may also weaken the

intensity contrast variation in blood images, so that visual tracking

of blood motion declines in accuracy.

A.4. Motion Estimation of MR-signals. A series of MR

images are presented in cine-mode as the fluid is in motion. The

velocity of dynamic fluid is quantified in real time by numerically

computing the shift of intensities within the quantized regions of

each set of temporally consecutive images. A velocity flow field can

be constructed using a graphical plot and other fluid dynamics

properties can be derived from the velocity flow measurement.

From the results, the characteristics of the fluid flow can be

analyzed using these properties.

We have developed a methodology for computationally

determining the movement of fluid in a vessel based on motion

estimation of the contrasting MR-signals. The motion of localized

turbulence is influenced by the general flow globally. Motion

estimation using multi-resolution optical flow technique is able to

track the movement of the flow at various resolutions and resolve

them to produce a global flow field in two dimensions. Therefore,

we term this approach as MR fluid motion estimation, as it is able

to compute the motion of MR imaged fluid.

Application of flow based on the use of motion estimation

algorithm allows us to produce flow vectors over the region of

analysis defined. The technique makes use of images from two

subsequent phases to predict the flow field. Typically, cine MR

image scanning results in a sequence of N phases. Post-processing

of the data from (N21) pairs of images gives a series of flow field

displays for evaluation and analysis. As such, predicting the

ensemble movement of asynchronous proton spins represented in

magnetic resonance images of a heart chamber can be technically

feasible (Figure 1).

A.5. Computational MR Fluid Motion Estimation. A

method of performing fluid motion tracking using True FISP MR

images of non-stationary flow has been suggested recently. In our

approach, the optical flow algorithm which belongs to a class of

motion estimation [33] is utilized. It generates flow vectors that

correspond to the apparent motion of brightness or intensity

patterns in the image (Figure 2). We have described prediction of

the intensity flow displacement based on optical flow constraint

mentioned in Appendix S1.

Figure 1. Motion estimation of in-plane MR-signals. Based on schematic display of a right atrial flow, the ensembles of asynchronous proton
spins that show up as contrasting signal intensity on the cine-magnetic resonance images are represented by grey patches of varying intensity. Using
a fluid motion estimation scheme, velocity vector fields pertaining to the blood flow images of arbitrary (n21), n and (n+1) phases in a cardiac cycle
of N phases can be predicted.
doi:10.1371/journal.pone.0004747.g001

MR Fluid Motion Tracking
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In our optical flow scheme, the pyramidal Lucas Kanade optical

flow method [7], which incorporates a multi-scale approach, has

been applied to support large scale fluid motion and for improved

accuracy. A top-down estimation of the flow by using an image

pyramid is performed, with the apex representing the MR image

at a coarse scale. Computational results from this level are passed

to the next and this process is carried on based on the flow

estimated at the preceding scale until the original scale is reached.

We refer to the diagram in Figure 3 to illustrate the computational

aspect of pyramidal optical flow. Projection of the computed

coarse-level flow field onto the next finer pyramid level is

continued for each level of the pyramid until the finest pyramid

level has been reached.

For signal emitting nuclei motion that are represented by

intensity pixels on MR images, the application of multi-resolution

optical flow scheme that predicts fluid motion is based on grey-

level constancy assumption or the optical flow constraint [33]. The

accuracy of motion estimation critically depends on the magnitude

of image motion. In fact, depending on the spatial image

frequency, very large motions even may cause aliasing along the

time frequency axis. For a fixed global velocity, spatial frequencies

moving more than half of their period per frame cause temporal

aliasing [17]. Therefore, a suitable temporal resolution of the

imaging is required for accurate tracking.

B. Generation of Test Data
The validation of a proposed or an implemented system can be

achieved if analytical data can be created to calibrate its

performance deviation from the perfect situation. We examine

its characteristics and make necessary improvements to the

configuration. This section presents the equations for describing

analytical flow field that will be used in our system performance

calibration.
B.1. Analytical Formulation of Vortex. The Oseen

vortex [34,35,36] has analytically defined velocity, vorticity and

circulation. If C0 is the circulation, and L is the length scale

corresponding to one standard deviation of the Gaussian vorticity

distribution of the vortex, we can define the angular velocity v(r) in

Eq. 1 as

v rð Þ~ C0

2pL2
e
{ r2

2L2

� �
: ð1Þ

We express the tangential velocity Vh(r) as a function of r in Eq.

2 such that

Vh rð Þ~~
C0

2pr
1{e

{ r2

2L2

� �
: ð2Þ

The parameters for our data generation are set as C0 = 1 mm2/

s, and L = 1 mm. The computational domain range is

220L#r#20L. We can digitize the analytic velocity field over a

Cartesian grid with each coordinate denoted by (x,y), and with

velocity interrogation spacing, d to produce a velocity vector flow

Figure 2. Estimating spatial motion of pixel using optical flow. Assume the shift of pixel from position (x, y, t) to (x+dx, y+dy, t+dt). The
derivatives of x and y with respect to t gives the x and y components of the spatio-temporal signal flow respectively. The optical flow motion
constraint allows us to derive these velocities up to one vector per pixel.
doi:10.1371/journal.pone.0004747.g002
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field, ux,y at a resolution of d/L. This allows us to quantify the effect

of velocity field resolution based on the analytical data produced

for our computational approach. The velocity profiles generated

by these equations are plotted as a function of r (Figure 4). The

angular and tangential velocities vary with respect to the radius of

the vortex and their magnitudes can be represented using gray-

scale intensity. Note that the tangential velocity at the core is zero

despite having a finite vorticity. The velocities v and vh vary from

0 to maximum values of vmax and vhmax respectively.

B.2. Generating Vortex Tracks for Artificial Data. We

map the analytical velocity field onto a rotational grid to generate

discrete vortical tracks with radial intervals in polar coordinates.

We shade alternatively spaced intervals and use the gray-scale

intensity based image configuration as test data for the fluid

motion estimation technique. The spatial dimensions of the track

intervals can be varied to quantify the error due to decrement of

feature quality.

The contrasting intensity for alternating track intervals provides

track features for the motion estimation algorithm in this

experiment. The motion of the grid is then represented using a

series of these intensity based images that display the change in

positions of the segments according to each track angular velocity

to give an optical effect of the rotation. This causes track rings

corresponding to specific radial locations to rotate at different

Figure 3. Multi-resolution motion estimation using pyramid implementation. Diagrammatic view of the Gaussian pyramid with optical
flow applied onto every image level (0 to L) is presented in (a). Each level in the pyramid is a sub-sampled version of the level below. In the first step,
the optical flow between the top level images is computed. We project the computed coarse-level flow field onto the next finer pyramid level and
continue this at each level of the pyramid until the finest pyramid level has been reached. The system block diagram in (b) gives an illustration of the
algorithmic operation of this pyramidal implementation.
doi:10.1371/journal.pone.0004747.g003

MR Fluid Motion Tracking
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speeds uniformly and according to the profile of the angular

velocity in Figure 5. Such a configuration gives a velocity profile

that has discrete values. It then is possible to quantify this rotation

Figure 4. Velocity Characteristics of Oseen Vortex. Variation of
profiles with respect to vortex radius r is shown for the angular and
tangential velocities labelled as v and vh in (a) and (b) respectively. The
profile of magnitudes from the core to boundary of vortex can be
represented using varying gray-scale intensity. We have computed the
variation of the presented vortex based on analytical formulations.
doi:10.1371/journal.pone.0004747.g004

Figure 5. Artificial flow grid based on Oseen vortex formula-
tion. Gray-scale intensity based polar grid with alternating contrast
track intervals in a rotational fashion representing the vortical tracks of
motion is demonstrated with (a) and (b) describing the variation of
angular and tangential velocities respectively. The velocity variation is
discrete based on the configuration of the grid, which is constructed
using alternating dark and bright segments in the radial and angular
directions.
doi:10.1371/journal.pone.0004747.g005
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from the optical perspective using established motion-tracking

algorithms.

B.3. Fluid Motion Estimation Flow Prediction. An

applied computer algorithm [37] enables a multi-resolution Lucas

Kanade feature tracker. Flow map at the pixel resolution; wherein, a

dense velocity field (one velocity vector per pixel) is generated. We

also implement removal of outliers which we classify as high

magnitude flow vectors. Replacement of void flow vectors from this

removal is performed by means of image field synthesis from

neighborhood flow maps which we will describe in the next section.

Then, calculated vectors are scaled to match the analytical vector set.

B.4. Filtration of Flow Outliers and Vector

Synthesis. We sought to devise a way of removing outliers in

the flow vector field. Optical flow vectors that pertain to very large

pixel displacements relative to that of the pixels in its adjacent

region are isolated using the median test [15]. We perform

clustering of optical flow vectors with magnitudes above a user

defined threshold. The cluster of flow vectors is classified as

outliers provided that two conditions are fulfilled: (1) the difference

between the vector magnitude U and the median magnitude Um in

the flow field of size (X,Y) exceeds a threshold denoted by tmag

which can be arbitrary set, and (2) the number of vector items

within the group that is encapsulated by a sampling window size

(wx,wy) which met the first condition do not fall below a specific

value tn. The two conditions that qualify the vectors in the flow

field as outliers are stated mathematically as follows:

V x,yð Þ[ wx|wy

� �
,

U x,yð Þ{Umj jwtmag:
ð3Þ

V x,yð Þ[ wx|wy

� �
,

count U x,yð Þ{Umj jð Þvtn:
ð4Þ

Voids due to removal of these outliers must be filled in with new

vectors for the flow to be continuous. We devised a simple

approach of growing vectors using a flow field synthesising

approach. This technique is analogous to the occlusion fill-in

algorithm used in texture synthesis by non-parametric sampling

[38] except that the sampled elements are flow vectors instead of

texels (texture elements). We also can apply reduction in resolution

to the flow field. The averaging of vectors within interrogation

windows results in a lower resolution of flow field but also can help

in smoothing of flow data by negating the effect of high magnitude

outliers with more accurate vectors in its neighborhood regions.

B.5. Variation of Vortical Track Interval Size. We vary

the resolution of track intervals in the vortex to investigate flow

tracking accuracy of fluid motion estimation. This may be

achieved by varying the spatial density of contrasting grid

intervals pertaining to vortical track items of the intensity image

in the polar directions. We define the count of track intervals

within the entire polar grid to be u so that

u~r rð Þl hð Þ ð5Þ

and r(r) and l(h) denote the number of tracks and radial sections

respectively at each configuration of the vortical tracks.

B.6. Configuration of Tracking Features. The

configuration of the intensity based polar grid will affect the

feature quality used in our tracking experiments. This has to

coincide with the settings of the motion estimation algorithm. We

design three parameters for conducting our error estimates of the

computational approach. The algorithm sampling size W is varied

with increments at 1 pixel from 2 to 20 pixels along with the same

number of increments of image size, I at 10 pixels from 160 to 320

pixels. We have specified the number of tracks r and radial

sections l for levels 1 to 3 as tabulated in Table 1.

A higher value of l or more sectioning of the polar grid into

tracks at angular intervals gives a smaller track-interval size, and

generates finer features that are densely located near the core of

rotation. This corresponds to more intensity based track features

but at the expense of quality reduction, which has an effect on

tracking accuracy of the fluid motion estimation. Adjustment to

the optical flow algorithm, such as the sampling window size, can

be carried out to improve tracking.

B.7. Variation of Image Size and Optical Flow Window

Size. We demonstrate the effect of the test image size, denoted

by I, and also the pyramidal window size, W on the accuracy of

the optical flow algorithm. We increase the resolution of the track

outlines using increments of image size. Therefore, a larger image

size will result in a higher resolution image and quality of features

used for tracking. The improvement in quality of signals will have

an effect on tracking, and increasing the size of the sampling

window, which is the interrogation mask used in the tracking, will

capture a larger quantity of the signals but at the expense of overly

smoothing the velocity flow field due to the larger relative size of

the sampling window with respect to the image.

B.8. Variation of Noise Addition and Smoothing Filter

Mask Size. In a separate study, we used a standard test intensity

image. We applied multiplicative Gaussian noise to it at various

percentages, followed by smoothing using a filter based on pixels

averaging within a mask of size n. The addition of noise to the

images will cause the tracking to lose accuracy; however,

smoothing of the images subsequently suppresses noise and

reduces the error. Nevertheless, there is still a specific threshold

to the addition of noise such that this suppression is able to still

maintain accurate tracking.

C. Methods of Computational Data Validation
Our objective is to compare the velocity field estimate with that

of the analytical one based on the direction and magnitude of the

vectors represented using a flow image whereby every pixel stores

each of the velocity in the x and y directions. Note that the spatial

resolutions of analytical and computational flow images have to be

the same for flow image differencing to take place.

C.1. Magnitude of Velocity Vectors in Radial

Direction. For a track grid of radius R, the average magnitude

of tangential vectors (from various angles) obtained from the track

Table 1. Configuration characteristic of gray-scale track grid.

level r l u

1 20 10 200

2 20 22 440

3 20 30 600

level -Identification number of configuration.
r -Number of tracks.
l -Number of vortical track intervals.
n -Total number of track intervals.
Variation of r and l will adjust the density of the signal features used in motion
tracking. The number of track intervals is an indication of the resolution of
features in the track grid represented as an image.
doi:10.1371/journal.pone.0004747.t001
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location that is extended by a circumference of radius r, is compared

with the analytical velocity magnitude based on the same radius of r.

For each track at that radius, the computational velocity is

computed by taking the average of Nh number of tangential

velocity vectors arranged circumferentially about the centre of

rotation. This procedure is performed based on Nr numbers of r

variables from the vortex centre to edge of the computational

domain up to R. Note that Va
h and Vc

h represent the analytical and

computational tangential velocity respectively. Error based on the

difference between the computational velocity and the analytical

velocity at the defined polar coordinates can be generated using

Dr rð Þ~ 1

Nh

XNh

n~1

Vc
h r,

2np

Nh

� � !
{Va

h rð Þ,

for r~ 1,2, . . . ,Nrð Þ| R

Nr

:

ð6Þ

A graph of Dr versus r can be produced for detecting regions of

unacceptable errors due to image signal aliasing, which usually

results from poor definition of closely packed track features.
C.2. Magnitude of Velocity Vectors in Cartesian

Grid. The average magnitude of tangential vectors is compared

with the analytical velocity magnitude at every coordinate (x, y)

where (Ix, Ix) is the size of the flow field in the x and y directions. Note

that (ua, va) and (uc, vc) represent the velocity at x and y directions

pertaining to the analytical and computational velocity image grid

respectively. The error function based on Dv(%) for u and v velocity

components at every x and y coordinates is given by

Dv %ð Þ~ 1

IxIy

XIx

x~1

XIy

y~1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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� �2
r
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where Va
max~max

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ua

x,y

� �2

z va
x,y

� �2
r

for 1ƒxƒIx,1ƒyƒIy:

ð7Þ

The system response that is based on Dh(%) can be plotted. This

error value will be high if sampling window sizes that falls below a

specific threshold value. The mismatch of interrogation sampling

window sizes with respect to image size will result in sub-optimal

tracking accuracy.
C.3. Direction of Velocity Vectors in Cartesian

Grid. We take the angular difference in the sets of flow vectors

produced using two different systems by performing the following

mathematical operation to produce the average of all absolute

angular vector differences in percentage, Dh(%) where ha and hc

represent the orientation of vectors for analytical and computational

flow fields respectively. This means the difference between the

computed and the Oseen vortex velocity values such that

Dh %ð Þ~ 1

IxIy

XIx

x~1

XIy

y~1

hc
x,y

��� ���{ ha
x,y

��� ���� ���� ���
hc{a

max

|100%

where hc{a
max ~max hc

x,y

��� ���{ ha
x,y

��� ���� ���� ���
for 1ƒxƒIx,1ƒyƒIy and {pƒha

x,yƒp,{pƒhc
x,yƒp:

ð8Þ

A graph based on this error function for variation of image size,

I and sampling window size, W can be plotted to demonstrate the

effect of improvement in feature quality that follows the increment

in image size, and the required proportional increase in sampling

window for interrogation of the features.

Results

Here, we describe the results of velocity field estimates based on

variation of the various parameters described in the previous

sections. The aim of this study is to evaluate the performance of

fluid motion tracking in terms of computational accuracy.

A. Velocity in Image Representation
Error analysis is carried out to give an indication of the angular

difference of the analytical and computational results. We

prepared the error surface response curve that depicts the

influence of image and sampling window sizes on the discrepancies

in the flow vectors for analytical and computational flow results.

High fluctuation of error estimates exist due to small sampling

window sizes with dimensions of 2 to 10 pixels (Figure 6). Such

sampling configurations are undesirable for the motion tracking

algorithm. The increment of sizes from sampling window widths of

11 pixels onwards shows relatively small variation in the tracking

accuracy.

Larger image sizes give a reduction in error estimates and can

be further reduced by a corresponding increment in the sampling

window size used by the algorithm for image sizes from 260 by 260

pixels onwards (Figure 7). The improvement in tracking accuracy

due to increase in image size can be explained by the

enhancement of feature quality due to the larger number of pixels

used to represent varying space of high and low intensity track

intervals. In addition to this observation and explanation, we can

further deduce that an increase of sampling window size at the

right image proportion will improve tracking accuracy due to

capture of the required features at appropriate interrogation space.

Image and sampling window sizes at the lower and upper limits

of I and W dimensions respectively gives a high error. Note that I

and W at the upper and lower limits also give a relatively high

error. Both I and W at the upper limits of their dimensions

respectively give the smallest error. There is a reduction in error

following an increase in image size. However, for large images,

coupling with a proportionally incremented sampling window size

used in motion estimation can further reduce error.

B. Velocity in Radial Direction
We observed the deviation of velocities in the radial direction

for both computational and analytical values based on variation

resolution, noise and smoothing of track features.

B.1. Variation of Track Feature Resolution. Motion

estimation is performed using a sampling window size of 20 by

20 pixels for a 260 by 260 pixel image. These dimensions are

arbitrarily chosen such that the size of the image is 13 times that of

the sampling window. The image is a spatial representation of the

circular track grid based on three configurations (labeled as levels 1

to 3). A series of images can provide temporal representation of the

intensity grid that is rotating. The image and sampling

configurations have been set in such a way that the

computational profile of the velocity tracking clearly deviates

from the analytical one and can provide a good illustration of how

the track density can affect the motion estimation algorithm.

Therefore, it is irrelevant to set high image resolutions for

achieving accurate motion tracking here.

We have sampled the tangential velocity values in the radial

directions for Nh at 10 counts from 0 to 360 degrees at an interval

of 36 degrees circumferentially about the centre of rotation. The
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Figure 6. Tracking accuracy based on tangential velocities. Flow vector velocity differences based on variation of sampling window size
versus image size with different levels of track interval sizes are demonstrated. In this experiment, the sampling window and raw image size
dimensions are varied to analyse the tracking effect of the system. The results demonstrate that tracking improves when the image size increases
which can be accredited to the increase in resolution and corresponding upgrade of the quality of track features.
doi:10.1371/journal.pone.0004747.g006
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Figure 7. Tracking accuracy based on angular velocities. Flow vector angular differences are shown based on variations of sampling window
size versus image size with different levels of track interval dimensions (i.e. levels 1 to 3). Similar to the results shown for variation of angular velocity,
this set of graphs demonstrates that the tracking is more stable for sampling window sizes from a recommendation of 11 pixels onwards. Angular
velocity error decreases as the image becomes dimensionally bigger.
doi:10.1371/journal.pone.0004747.g007
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counts Nr is taken to be 50 samples from r = 0 to 5 mm at intervals

of 0.1 mm. Note that velocities Vh and DVh
both have units of

mms21. For a standard comparison, we scale the maximum peak

velocity to be 10 mms21.

Our analysis is based on 10 samples taken in the angular

direction. The accuracy of profile of computational velocities can

be increased by more sampling. We observed that as spatial

density of the tracks increases from levels 1 to 3, average error

becomes smaller for radius ranging from 1 to 5 mm due to

increment of track features. However, if the track layout becomes

too compact from radius 0 to 0.5 mm, error increases due to poor

feature quality.

The results demonstrated that the tracking accuracy decreases

in regions towards the centre as the grid intervals become denser

(Figure 8). However, where definition of the tracks becomes

clearer due to better spacing, tracking improves. Increase in track

quality can enhance tracking capabilities but is limited to regions

away from the vortex centre. Degrading of track features quality

results in higher deviation from the true flow field; nevertheless, it

is able to give a more moderate variation of this error and also

prevent signal aliasing in the compact grid region.

B.2. Variation of Noise and Smoothing. Using the same

experimental setup in the previous section, we have analyzed the

accuracy of profile of computational velocity decline because of

the addition of noise to images used in tracking, and try to

understand the balance between suppression of noise and loss of

signal features due to smoothing. It may be worthwhile noting that

we are also interested to examine the tracking effectiveness due to

blur track features as well. For this reason, we implement the mean

filter for reduction of noise by blurring the image.

We have applied different smoothing filter masks that have

widths at 1 by 1, 5 by 5 and 9 by 9 pixels. Gaussian noise is added

to the images at percentage (%) of 0, 10, 30 and 50 incrementally.

Note that the overall average error increases for radius ranging

from 1 to 5 mm for every stage of additional noise input into the

tracking images. However, when smoothing is applied to the

images, the velocity profile improves in accuracy with respect to

the analytical one as a result of the suppression of noise signals.

This can be illustrated by parts (a) to (h) of Figure 9, that

corresponds to velocity and error profiles derived from tracking

based on 0, 10, and 30% noise to image addition. Nevertheless, we

also observed that for higher noise added to images with

percentages such as 30% or 50%, over smoothing using a (969)

pixel filter mask size reduces the tracking accuracy relative to that

when a (565) pixel smoothing mask is applied. The results

describe the effect of over-smoothing after the noise addition has

reached a certain threshold.

Discussion

The tracking can be performed using intensity images to

produce in-plane flow field without velocity encoding during

scanning. Therefore, the overall processing time is still significantly

shorter than deciphering velocity-encoded phase contrast images

into similar flow field information. However, we acknowledge the

offset in accuracy that is dependent on parameters such as the

tracking effectiveness of the motion estimation algorithm, temporal

resolution and the quality of the track features in the intensity

images. This can render the computational prediction of flow to an

unrealistic extent.

The performed experiments have shown that the proposed

method using motion estimation of intensity images can be used to

produce flow fields for qualitative analysis. We have varied a few

study parameters such as the image size, sampling window size of

the motion estimation algorithm, signal to noise ratio of the image

and smoothing filter mask size. Further studies based on different

methods of motion estimation such as block matching or affine flow

models [39] can be carried out to test the tracking system.

Nevertheless, in order to maintain the focus of our study, which is to

understand the parameters that affect tracking, we use the

pyramidal Lucas Kanade optical flow algorithm [33,40] as the role

model here. This optical flow has been effectively applied onto

tracking of rigid objects with no changes of shape. This implies that

it actually captures the motion of scene objects with the exclusion of

expansions or contractions, as well as deformations [41].

We have proposed a method of varying spatial features within the

images. Increment in the spatial dimension of the vortical track size

was followed by a reduction in features and this lowered the tracking

accuracy as demonstrated by our surface response error graphs. As

the image or sampling window size of the optical flow algorithm

increased, the error decreased and tracking can reach an optimal

level. The use of analytical data enabled us to validate information

for the motion estimation approach as outlined in this paper. The

same principles can be tested using different track feature layout

such as Cartesian grids instead of polar ones. In addition, translation

of grids in addition to rotation can be studied as well. But since we

are interested to examine rotation of blood using fluid motion

tracking, a system validation of tracking rotational features will be

more important and therefore studied here.

Although our results demonstrated that the flow prediction

discrepancies are not significant, the accuracy of a computed

motion estimation approach could have been limited by the

quality of signal representation using the magnetic resonance

images in real life. In our experiments, we had devised artificial

intensity images simulating the presence of low MR-signals

corresponding to incoherent proton spins in an idealized layout.

The data set will not, however, reflect the organization of these

signal registrations in non-continuous distribution from the MR

image of a vortex. However, since our study was to verify the

underlying computational algorithm of the system, it is feasible

and justifiable to test the technique with a non-realistic signal

registration in the simulated images at the initial stage.

Fluid motion tracking on real data such as the True FISP MR

intensity images is trialled for human right atrial flow generation.

Configuration of the imaging is optimally set to produce the best

intensity quality pertaining to magnetic resonating blood clouds of

asynchronous proton spins. Two case study subjects are chosen for

this experiment. Both sets of flow results (Figure 10) revealed a

dominant counter-clockwise vortex in the right atrial flow at one

stage of the cardiac cycle. Sample sets of magnetic resonance

images pertain to phases numbered from 10 to 13 and from 17 to

20 out of 25 phases for the first and second subject respectively can

be referred to in Appendix S2. These results are based on

preliminary testing of the tracking framework using a few test

cases. Further validation using well-established velocity-encoded

imaging modalities such as phase contrast magnetic resonance

imaging can be performed to establish its reliability.

Conclusion
We were able to provide some form of validation for a

computed motion estimation approach in flow tracking and

visualization. We have created artificial signal image data based on

an analytical vortex. The images were simulated with an

unrealistic assumption of perfect signal intensity contrast at equal

geometrical intervals. However, since our main objective was to

test the computational tracking mechanism of the approach, it was

practical and instructive to produce idealised data sets for

calibration and error estimation. Once proven reliable, the
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proposed system in our study will be useful for non-invasive

tracking of blood flow using magnetic resonance images without

modification of the standard True FISP MR image scanning.

Additionally, there may be a need to verify fluid motion

estimation using experimental data generated from other imaging

modalities. The same experiments can be performed using

Figure 8. Tracking accuracy of rotation using motion estimation algorithm. Comparison of analytical and computational flow velocities in
the radial direction is illustrated. Velocity profiles and their differences are shown in (a) and (b). Quadrant of the vortical grid is displayed in (c).
Variation of feature density adjusts the moderation and extent of flow grid prediction.
doi:10.1371/journal.pone.0004747.g008
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Figure 9. Tracking accuracy of rotation based on variation of noise in image. Comparison of analytical and computational flow velocities in
the radial direction is illustrated. Velocity profiles and their differences are shown in (a,d,g,j) and (b,e,h,k) respectively. Quadrant of the vortical grid is
displayed in (c,f,i,l). Variation of feature density adjusts the moderation and extent of flow grid prediction.
doi:10.1371/journal.pone.0004747.g009
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information from other flow measurement techniques as input to

fluid motion tracking. For future studies, we can describe

experiments that perform system verification of our methodology

using flow fields derived from phase contrast magnetic resonance

imaging. The whole purpose of this study is to perform a thorough

performance evaluation of the suggested theory and implemented

system before it can be further validated using real magnetic

resonance images and well-established velocity encoded magnetic

resonance imaging. We saw the need to organise information

related to the system and to present the parameter dependencies in

the best light possible before proceeding to the next stage.

Supporting Information

Figure S1 Cine-magnetic resonance images of the heart. *The

flow patterns of blood in the heart chambers can be traced by

observation using cine-magnetic resonance images that are played

at an appropriate speed to register the cardiac flow motion into

our brains. We extended this activity based on the implementation

of a computer vision program to perform the same ‘tracking’

Found at: doi:10.1371/journal.pone.0004747.s001 (2.93 MB EPS)

Appendix S1 Definition of optical flow constraint

Found at: doi:10.1371/journal.pone.0004747.s002 (0.04 MB

DOC)

Appendix S2 Magnetic resonance images of case study subjects

Found at: doi:10.1371/journal.pone.0004747.s003 (0.21 MB

DOC)
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Figure 10. Cardiac flow results based on case study subjects. The tracking accuracy is dependent very much on the spatial and temporal
resolution of the images. In addition, the existence of asynchronous proton spins must be present in order to present feature trackers for the motion
estimation algorithm. Magnetic resonance (MR) fluid motion tracking can produce a quick insight into the flow behavior of blood before making
decision for more detailed but time-consuming velocity-encoding scans.
doi:10.1371/journal.pone.0004747.g010

MR Fluid Motion Tracking

PLoS ONE | www.plosone.org 14 March 2009 | Volume 4 | Issue 3 | e4747



References

1. Maier SE, Meier D, Boesiger P, Moser UT, Vieli A (1989) Human abdominal

aorta: comparative measurements of blood flow with MR imaging and
multigated Doppler US. Radiology 171: 487–92.

2. Powell AJ, Maier SE, Chung T, Geva T (2000) Phase-Velocity Cine Magnetic
Resonance Imaging Measurement of Pulsatile Blood Flow in Children and

Young Adults: In Vitro and In Vivo Validation. Pediatric Cardiology 21:

104–110.
3. Lotz J, Meier C, Leppert A, Galanski M (2002) Cardiovascular Flow

Measurement with Phase-Contrast MR Imaging: Basic Facts and Implemen-
tation. Radiographics 22: 651–671.

4. Carr JC, Simonetti O, Bundy J, Li D, Pereles S, Finn JP (2001) Cine MR

Angiography of the Heart with Segmented True Fast Imaging with Steady-State
Precession. Radiology 219: 828–834.

5. Fuchsa F, Laubb G, Othomoc K (2003) TrueFISP—technical considerations
and cardiovascular applications. European Journal of Radiology 46(1): 28.

6. Kellman P, Zhang Q, Larson AC, Simonetti OP, McVeigh E, et al. (2004)
Cardiac First-pass Perfusion MRI using 3D trueFISP Parallel Imaging using

TSENSE. Proc Intl Soc Mag Reson Med 11: 310.

7. Bouguet JY (2000) Pyramidal implementation of the Lucas Kanade feature
tracker, Technical report. OpenCV documentation, Microprocessor Research

Labs, Intel Corp.
8. Globits S, Higgins CB (1995) Assessment of valvular heart disease by magnetic

resonance imaging. American Heart Journal 129(2): 369–81.

9. Lawson MA (1999) Cardiovascular imaging in the new millennium. Proc Baylor
University Medical Center (BUMC) 12: 115–120.

10. Markl M, Chan FP, Alley MT, Wedding KL, Draney MT, et al. (2003) Time-
resolved three-dimensional phase-contrast MRI. Journal of Magnetic Resonance

Imaging 17: 499–506.
11. Elkins CJ, Markl M, Iyengar A, Wicker R, Eaton J (2004) Full field velocity and

temperature measurements using magnetic resonance imaging in turbulent

complex internal flows. International journal of heat and fluid flow 25: 702–710.
12. Jung B, Schneider B, Markl M, Saurbier B, Geibel A, et al. (2004) Measurement

of left ventricular velocities: phase contrast MRI velocity mapping versus tissue-
doppler-ultrasound in healthy volunteers. J Cardiovasc Magn Reson 6(4):

777–783.

13. Seitz J, Strotzer M, Schlaier J, Nitz WR, Völk M, et al. (2006) Comparison
Between Magnetic Resonance Phase Contrast Imaging and Transcranial

Doppler Ultrasound With Regard to Blood Flow Velocity in Intracranial
Arteries: Work in Progress. Journal of Neuroimaging 11(2): 121–128.

14. Alahyari A, Longmire E (1994) Particle Image Velocimetry in a Variable
Density Flow: Application to a Dynamically Evolving Microburst. Experiments

in Fluids 17: 434–440.

15. Raffel M, Willert C, Kompenhans J (1998) Particle Image Velocimetry. Berlin
Heidelberg, Germany: Springer-Verlag.

16. Weng W, Fan W, Liao G, Jin J (2001) An improved cross-correlation method for
(digital) particle image velocimetry. Acta Mechanica Sinica 17(4): 332–339.

17. Ruhnau P, Kohlberger T, Nobach H, Schnorr C (2005) Variational optical flow

estimation for particle image velocimetry. Exp fluids 38(1): 21–32.
18. Corpetti T, Heitz D, Arroyo G, Mëmin E, Santa-Cruz A (2006) Fluid
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19. Cuzol A, Hellier P, Mémin E (2007) A Low Dimensional Fluid Motion
Estimator. International Journal of Computer Vision 75(3): 329–349.

20. Yu Q, Kong X, Liu D (2003) Differential diagnosis of arachnoid cyst from

subarachnoid space enlargement by phase-contrast cine MRI. Chinese Medical

Journal 116(1): 116–120.

21. Hatle L, Angelsen B (1982) Doppler ultrasound in cardiology: Physical Principles
and Clinical Applications. Philadelphia: Lea and Febiger.

22. Wolbarst AB (1999) Looking within how X-ray, CT, MRI, Ultrasound, and

other medical images are created, and how they help physicians save lives. USA:
University of California Press.

23. Loevstakken L, Bjaerum S, Martens D, Torp H (2004) Real-time Blood Motion
Imaging – A 2D Blood Flow Visualization Technique. IEEE Ultrasonics

Symposium 1: 602–605.

24. Kasai C, Namekawa K, Koyano A, Omoto R (1985) Real-time two-dimensional
blood flow imaging using an autocorrelation technique. IEEE Transactions on

Sonics and Ultrasonics 32(3): 458–464.

25. Tang A, Kacher D, Lam E, Brodsky M, Jolesz F, Yang E (2007) Multi-modal

Imaging: Simultaneous MRI and Ultrasound Imaging for Carotid Arteries
Visualization. Proc 29th Annual International Conference of the IEEE (EMBS

2007), Lyon, France. pp 2603–2606.

26. Fyrenius A, Wigström L, Ebbers T, Karlsson M, Engvall J, Bolger AF (2001)

Three dimensional flow in the human left atrium. Heart 86: 448–455.

27. Philips Medical Systems Clinical Education (1984) Basic principles of MR
imaging. Philips Medical Systems.

28. Worthley SG (2001) Magnetic Resonance Imaging of Altherosclerotic Plaque,

PhD thesis, University of Adelaide.

29. Chen Q, Storey P, Levine D, Li W, Edelman R (2001) A Breath-hold Three

Dimensional True FISP Sequence for Abdominal MRI. Proc Intl Soc Mag
Reson Med 9.

30. Herborn CU, Vogt FM, Debatin JF, Ruem SG (2002) Assessment of pancreatic

lesions by MRI: TrueFlSP versus HASTE. Proc Intl Soc Mag Reson Med 10.

31. Kuethe DO (1989) Measuring distributions of diffusivity in turbulent fluids with

magnetic-resonance imaging. Phys Rev A 40: 4542–4551.

32. Lee VS (2005) Cardiovascular MRI: Physical Principles to Practical Protocols
Lippincott Williams & Wilkins.

33. Horn BKP, Schunck BG (1981) Determining optical-flow. Artificial Intelligence
17(1–3): 185–203.

34. Saffman P (1992) Vortex Dynamics first edition, Cambridge University Press.

35. Meunier P, Dizes SL, Leweke T (2005) Physics of Vortex Merging. Comptes

Rendus Physique 6(4–5): 431–450.
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