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Quantum version of the Monty Hall problem
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A version of the Monty Hall problem is presented where the players are permitted to select quantum
strategies. If the initial state involves no entanglement the Nash equilibrium in the quantum game offers the
players nothing more than that obtained with a classical mixed strategy. However, if the initial state involves
entanglement of the qutrits of the two players, it is advantageous for one player to have access to a quantum
strategy while the other does not. Where both players have access to quantum strategies there is no Nash
equilibrium in pure strategies, however, there is a Nash equilibrium in quantum mixed strategies that gives the
same average payoff as the classical game.
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I. INTRODUCTION quantum particle and three boxg3), |1), and|2). Alice
selects a superposition of boxes for her initial placement of
Inspired by the work of von Neumarit], classical infor-  the particle and Bob then selects a particular box. The au-
mation theorists have been utilizing the study of games othors make this a fair game by introducing an additional
chance since the 1950s. Consequently, there has been a ferticle entangled with the original one and allowing Alice to
cent interest in recasting classical game theory with quanturmake a quantum measurement on this particle as a part of her
probability amplitudes, to create quantum games. The semitrategy. If a suitable measurement is taken after a box is
nal paper by Meyer in 1992] pointed the way for gener- opened it can have the result of changing the state of the
alizing the classical theory of games to include quantunyyiginal particle in such a manner as to “redistribute” the
games. Quantum strategies can exploit both quantum supgsarticle evenly between the other two boxes. In the original
position [2,3] and quantum entanglemef®,5]. There are  y3me Bob has & chance of picking the correct box by
many paradoxes and unsolved problems associated wi tering his choice but with this change Bob Haprobabil-
quantum informatior{6] and the study of quantum game iy, of heing correct by either staying or switching.
theory is a useful tool to explore this area. Another motiva- * |, the literature there are various explorations of quantum
tion is that in the area of quantum communication, Opt'ma|games[2,4,5,8,11—1}3 For example, the prisoner’s dilemma
guantum eavesdropping can be treated as a strategic 9afe12,13, penny flip[2], the battle of the sexdd1,14), and
with the goal of extracting maximal informqtic{ﬂ]. It has others[15—19. In this paper we take a different approach to
also been suggested that a quantum version of the Montgef [g] and quantize theriginal Monty Hall game directly,
Hall problem may be of interest in the study of quantum,yith no ancillary particles, and allow the banker and/or
strategies of quantum measuremgsit _ player to access general quantum strategies. Alice’s and
~ The classical Monty Hall problerf®,10] has raised much  gopys choices are represented by qui§] and we suppose
interest because it is sharply counterintuitive. Also from anyat they start in some initial state. Their strategies are op-
informational viewpoint it illustrates the case where an ap-graiors acting on their respective qutrit. A third qutrit is used
parent null operation does indeed provide information abouf, represent the box “opened” by Alice. That is, the state of

the system. _ the system can be expressed as
In the classical Monty Hall game the bankgAlice” )

secretly selects one door of three behind which to place a
prize. The playe(“Bob” ) picks a door. Alice then opens a
different door showing that the prize is not behind it. Bob . ) )
now has the option of sticking with his current selection orvhere a=Alice’s choice of box,b=Bob’s choice of box,
changing to the untouched door. Classically, the optimum’ﬂndo:the box that hgs been opened. The initial state of the
strategy for Bob is to alter his choice of door and this, sur-System shall be designated pg). The final state of the
prigingly, doubles his chand8] of winning the prize fromt ~ System is

to 5.

|1)=oba), @

|s)=(Scosy+Nsiny)O(1@ B A)|4), 2)
II. QUANTUM MONTY HALL

A recent attempt at a quantum version of the Monty Hallwhere A= Alice’s choice operator or sAtrateg@,: Bob’s ini-

problem [8] is briefly described as follows: there is one tial choice operator or initial strategy,=€the opening box
operator, S Bob’s switching operatof\ =Bob’s not switch-
ing operator] =the identity operator, angte [0,7/2].
*Email address: aflitney@physics.adelaide.edu.au It is necessary for the initial state to contain a designation
TEmail address: dabbott@eleceng.adelaide.edu.au for an open box but this should not be taken literditydoes
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not make sense in the context of the ganwe shall assign A 1

the initial state of the open box to §@). O(l®B®@A)|y)= 3 > Jeijl (boj+baj+bap) (Age+ a
The open box operator is a unitary operator that can be I

written as

. 1
+5‘2k)|'Jk>+§ E,: (boj+bqj+Dby))

0= el ke k| + iiveiil, 3 .
% |eijil INjk)(€ K| % Imiiy¢ijl 3) X (0, + a; + a2 |mii), @

where | |=1, if i,j,k are all different and O otherwise,
m=(j+€+1) (mod3, andn=(i +¢) (mod3.
The second term applies to states where Alice would have

AA A A A 1
SO(|®B®A)|'M>:§ %:4 | €ijic| (boj+byj+ byj) (@gk+ ag

a choice of box to open and is one way of providing a unique . 1

algorithm for this choic¢21]. Here and later the summations +ay)|ikk) + 3 % | €jkml (boj + by
are all over the range 0,1,2. We should not considéo ®e .

the literal action of opening a box and inspecting its contents +by;j) (agj+ ay; +azj)|mkl>,

that would constitute a measurement, but rather it is an op-
erator that marks a bof.e., sets the qutrit) in such a way Wherem=(j+1) (mod3. This gives
that it is anticorrelated with Alice’s and Bob’s choices. The 1
coherence of the system is maintained until the final stage of _ 2
L = —cog 1—68,)|boi+ by +byi|?|ag+a
determining the payoff. ($a)=3 123 i) |Bo; + b + bz "o+ Ak
Bob’s switch box operator can be written as

1.
. +a2k|2+§sm2y; |boj+ b+ by ap; +ay;
5:”% |€ije||i€k><ijk|+i2j: liij )ij |, 4

+a2]'|2. (8)

where the second term is not relevant to the mechanics of the \we are now in a position to consider some simple cases.

game but is added to ensure unitarity of the operator. Both GF Alice chooses to apply the identity operator, which is
and Smap each possible basis state to a unique basis statgquivalent to her choosing a mixed classical strategy where
N is the identity operator on the three-qutrit state. TFhe each of the boxes is chosen with equal probability, Bob’s
=(ajj) andB= (bj;) operators can be selected by the playerspayoff is
to operate on their choice of bdthat has some initial value
to be specified lat¢rand are restricted to members of &).
Bob also selects the parametethat controls the mixture of
staying or switching.
In the context of a quantum game it is only the expecta-Unitarity of B implies that
tion value of the payoff that is relevant. Bob wins if he picks
the correct box, hence

2 1
<$B>=(§co§y+§sin2y)§j) |boj+ byt (9)

> |bi|?2=1 for i=0,1,2, (10)
k

($a)=22 (il )l (5)
and ; bibj=0 for i,j=0,1,2 with i #j,
Alice wins if Bob is incorrect, sq$,)=1—($g).
which means that the sum in E@) is identically 3. Thus,
ll. SOME RESULTS

2 1
In quantum game theory it is conventional to have an <$B>=§co§y+ §sin27, (11)
initial state |000) that is transformed by an entanglement
operatord [4]. Instead we shall simply look at initial states
with and without entanglement. Suppose the initial state o
Alice’s and Bob’s choices is an equal mixture of all possible
states with no entanglement:

hich is the same as a classical mixed strategy where Bob
hooses to switch with a probability of cas(payoff ) and
not to switch with probability sifiy (payoff 3).
The situation is not changed where Alice uses a quantum
L L strategy and Bob is restricted to applying the identity opera-
tor (leaving his choice as an equal superposition of the three
[4)=10)® ﬁ(|0>+|1>+ 2))® ﬁ(|o>+|1>+ 12)). possible boxes Then Bob’s payoff becomes

(6)
2, (12

($g)= ( cosy+ = smzy E |agj+ay; +ay

We can then compute
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which, using the unitarity of\, gives the same result as Eq.
(12).
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Alice can then make the game fair by selecting an operator
whose diagonal elements all have an absolute value ¢2 1/

If both players have access to quantum strategies, Alicand whose off-diagonal elements all have absolute value

can restrict Bob to at mog6 ) =% by choosingﬁ\: I, while
Bob can ensure an average payoff of at léasty choosing
B=1 andy=0 (switch). Thus this is the Nash equilibrium of

the quantum game and it gives the same results as the clas-

One such SU(3) operator is

sical game. The Nash equilibrium is not unique. Bob can also

choose either of

01 0 0 0 1
M,={0 0 1| orK1,=1 0 0], (13
1 0 O 010

1 1 1
2 2 2
. 1 3—i\7  1+iy7
A= -5 N " (18)
—1-iV7 —=3+4i\J7 5+i\7
4.2 8 8

which amount to a shuffling of Bob’s choice, and then switchThis yields a payoff to both players of, whether Bob

boxes.

chooses to switch or not.

It should not be surprising that the quantum strategies The situation where Alice is limited to the identity opera-

produced nothing new in the previous case since there w
no entanglement in the initial stai22]. A more interesting

situation to consider is an initial state with maximal en-

tanglement between Alice’s and Bob’s choices:

1
|l/fi>:|0>®ﬁ(|00>+|11>+|22>)- (14
Now
An & A 1 .
O(|®B®A)|¢i>:ﬁ i% | €ijk|bejacdlijk)
1 .
+ﬁ]2€ bejag|mjj), (15

U 1 .
SO(I®B®A)|¢//i)=ﬁ ”Ek( | €ijc|bjaclikk)

1 .
+ ﬁ % | €jkmlbejaej|mki),
where agairm=(j +1) (mod3. This results in

1
<$B>=§Sln2y; |b0jaoj+b1ja1j+b2jazj|2

1
+ §CO§’}/% (1_ 5jk)|boja0k+ blja1k+ b2]32k|2.

(16)

First consider the case where Bob is limited to a classic
mixed strategy. For example, settily=| is equivalent to

the classical strategy of selecting any of the three boxes wit

equal probability. Bob’s payoff is then
1. 2 2 2, 1 2
<$B>:§5m27(|aoo| +|ag®+az)*) + §C0327(|301|

7

+|agd ?+ |agg *+ agd >+ [agd *+ az?) .

asr (or any other classical stratejgig uninteresting. Bob can
achieve a payoff of 1 by setting=1 and then not switching.
The correlation between Alice’s and Bob’s choice of boxes
remains, so Bob is assured of winning. Bob also wins if he
appliesM or M, and then switches.

As noted by Benjamin and Haydém2], for a maximally
entangled initial state in a symmetric quantum game, every
quantum strategy has a counterstrategy since for dny
e SU(3),

(0@?)%(|00>+|11>+|22>)
=(T®0T)i(|00)+|11>+|22>). (19

V3

Since the initial choices of the players are symmetric, for any
strategyA chosen by Alice, Bob has the count&t :

1

V3

(A*®A) —(|00)+|11) +]22))

=(|“®AAT)i3(|oo>+|11>+ 122))

\/_
—
= —

The correlation between Alice’s and Bob’s choices remains,
so Bob can achieve a unit payoff by not switching boxes.
Similarly for any strategyl% chosen by Bob, Alice can
Jpnsure a win by countering with=B* if Bob has chosen
y=0, while ay=1 strategy is defeated * M, whereM
'hs M, or M, given in Eq.(13). As a result there is no Nash
equilibrium amongst pure quantum strategies. Note that Al-
ice can also play a fair game, irrespective of the value,of
by choosingB*H, giving an expected payoff of to both
players. A Nash equilibrium amongst mixed quantum strate-
gies can be found. Where both players choose to plady
or M, with equal probabilities neither player can gain an

(100)+]11)+]22)). (20
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advantage over the classical payoffs. If Bob chooses taoes not, the game is fair, since Alice can adopt a strategy
switch all the time, when he has selected the same operatavith an expected payoff of for each person, while if Bob
as Alice, he loses, but the other two times out of three héias access to a quantum strategy and Alice does not he can
wins. Not switching produces the complementary payoff ofwin all the time. Without entanglement the quantum game
($)=13, so the situation is analogous to the classical gameconfirms our expectations by offering nothing more than a
classical mixed strategy.
IV. CONCLUSION

For the Monty Hall game where both participants have
access to quantum strategies, maximal entanglement of the
initial states produces the same payoffs as the classical game. This work was supported by GTECH Corporation Austra-
That is, for the Nash equilibrium strategy the player, Bob,lia with the assistance of the SA Lotteries Commisgiaos-
wins two-thirds of the time by switching boxes. If the tralia). Useful discussions with David Meyer, UCSD, and
banker, Alice, has access to a quantum strategy while BolVanli Li, Princeton University, are gratefully acknowledged.
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