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The two-envelope problem (or exchange problem) is one of maximizing the payoff in
choosing between two values, given an observation of only one. This paradigm is of
interest in a range of fields from engineering to mathematical finance, as it is now known
that the payoff can be increased by exploiting a form of information asymmetry. Here, we
consider a version of the ‘two-envelope game’ where the envelopes’ contents are governed
by a continuous positive random variable. While the optimal switching strategy is known
and deterministic once an envelope has been opened, it is not necessarily optimal when
the content’s distribution is unknown. A useful alternative in this case may be to use a
switching strategy that depends randomly on the observed value in the opened envelope.
This approach can lead to a gain when compared with never switching. Here, we quantify
the gain owing to such conditional randomized switching when the random variable
has a generalized negative exponential distribution, and compare this to the optimal
switching strategy. We also show that a randomized strategy may be advantageous when
the distribution of the envelope’s contents is unknown, since it can always lead to a gain.

Keywords: two-envelope problem; two-envelope paradox; exchange paradox; game theory;
randomized switching; information asymmetry

1. Introduction

The two-envelope problem and the associated two-envelope paradox (also known
as the exchange problem, and the exchange paradox) are intriguing conundrums
that have captured the attention of mathematicians, economists, philosophers
and engineers for over half a century—see a brief review in McDonnell & Abbott
(2009). Further areas of potential impact to applications areas and open questions
arising are discussed by Abbott et al. (2010).

There are many versions of the two-envelope problem/paradox (Nalebuff 1989;
Nickerson & Falk 2006). However, it can be quickly demonstrated that any
apparent paradox seen when analysing such problems is the result of incorrect
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mathematical reasoning that overlooks Bayes’ theorem (Linzer 1994; Brams &
Kilgour 1995a; Blachman et al. 1996). An example that illustrates this is provided
herein as a remark in appendix A; the source of the problem is essentially
that what is actually a conditional probability is incorrectly assumed to be an
unconditional probability.

We now give an overview of the two-envelope problem considered in this paper
and then discuss the relevance of optimization of gain.

(a) The two-envelope problem

The two-envelope problem can be thought of as a game where there is a ‘house’
and a ‘player.’ The objective for the player is to gain money from the house.
The version of the two-envelope problem that we consider is one in which the
house selects a value x and seals the amounts $x and $(2x) into two identical
envelopes. We assume here that x is an outcome of a continuously valued non-
negative random variable, X . The player chooses one envelope at random, opens
it, observes the value, y, then decides whether to keep or switch envelopes in
order to maximize the payoff.

Suppose the player repeats this two-envelope game many times with different
values of x chosen independently from the same distribution. Then whether
or not the player knows what that distribution is, it can be shown that
they cannot improve their average return by employing ‘switching strategies’
based on either (i) a deterministic decision that is independent of the observed
value, i.e. always keeping or always switching; or (ii) switching with a
constant probability that is independent of the observed value. However, the
existence of conditional randomized strategies by which the player can on
average make a gain by switching, compared with not switching, has been
recently demonstrated and explored in McDonnell & Abbott (2009). These
conditional strategies make use of the player’s observation of the value y in the
opened envelope.

This fact that conditional randomized switching can lead to a gain has also
been recognized in a brief proof by Ross (1994) in response to Christensen &
Utts (1992), and in a comment in the last paragraph of the response of Blachman
et al. (1996) to the same paper.

Such conditional randomized switching strategies are not actually optimal if
the distribution of the money sealed into the envelope is known to the player.
When the distribution is known, the optimal strategy is to switch envelopes
with probability 1 when the observed amount, y, satisfies a simple condition
that depends on the distribution of the money, as pointed out by Christensen &
Utts (1992), Brams & Kilgour (1995a) and Blachman et al. (1996). That is,
the conditional randomized strategy of Ross (1994) and McDonnell & Abbott
(2009) is suboptimal. Appendix A contains three different proofs of the optimal
strategy, which is presented as theorem 2.4. We include the three proofs here as
they each provide different insights into the two-envelope problem and the two-
envelope paradox—these are summarized immediately after the presentation of
theorem 2.4.

However, since the optimal strategy is derived under the assumption that the
distribution that governs the selected value, x , is known, a randomized strategy
may still be of value in the absence of such knowledge.
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In mathematical finance, there is a body of work on two-state Markov switching
models that embed both drift and volatility (Elliott et al. 2008), and thus future
research that examines how the incorporation of these effects alter the optimality
of the two-envelope switching process would be of interest in the field.

In this paper, we focus on determining exactly how suboptimal the conditional
randomized switching strategy of McDonnell & Abbott (2009) is, in comparison
with the optimal switching strategy. We also demonstrate that the conditionally
randomized strategy may be a superior choice in a scenario where the player
does not know the distribution of X or the probability with which they receive
the smaller amount, in comparison with a conditional non-randomized strategy.

(b) Genesis of the two-envelope problem and relevance to finance

The origins of the problem trace back to Kraitchik (1930), who first described
the so-called necktie paradox. The essential features of this problem were then
recast, in 1953, in terms of two wallets containing money (Kraitchik 1953), which
then became known as the wallet game (Gardner 1982). Also in 1953, the essence
of the problem was independently attributed to the physicist Erwin Schrödinger
(Bollobás 1997). In 1988, the problem was restated in its present form as the
two-envelope game (Zabell 1988).

In 2003, Tom Cover suggested the remarkable idea that if the player swaps
to the second envelope with a probability that is a function of the observed
amount, possible conditions exist that give rise to expectation of positive payoff
for multiple independent plays (McDonnell & Abbott 2009). In 2009, this was
formally demonstrated and this switching policy was dubbed Cover switching
(McDonnell & Abbott 2009; Abbott et al. 2010). This scheme is now known to
work if the probability of switching envelopes is chosen to be a monotonically
decreasing function of the observed amount in the first envelope. The origins
of Cover’s thought can be traced to a paper in 1987, where he proposed a
similar strategy for improving the chances of decidability for picking the largest
of two randomly selected numbers conditioned upon observing one of them
(Cover 1987).

The two-envelope problem is motivated by the fact that it encapsulates the task
of maximizing payoff between two possible choices embedded with uncertainty
(Agnew 2004). This type of decision-theoretic scenario is of significance, appearing
in a number of fields ranging from physics and engineering to economics, as it
touches upon decision theory, game theory and probability theory (Langtree
2004). It has been shown that a simple threshold decision can be adopted
to increase a player’s payoff (McDonnell & Abbott 2009) in the two-envelope
problem, and this may be of interest in economic decision making such as in the
optimization of a threshold or barrier level for path-dependent exotics such as
barrier options (Rich 1994).

In the two-envelope problem, it has been pointed out that the act of swapping
envelopes, after observing a value in one envelope, and adopting the Cover
switching policy, breaks the symmetry that existed before an envelope was opened
(Abbott et al. 2010). Discrete-time processes that produce a growth in some
payoff, owing to symmetry-breaking, are what are called discrete-time Brownian
ratchets (Abbott 2010) and are in the class of what are called Parrondo games
(Harmer & Abbott 1999); see also Ivanitskii (2010).
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Parrondian phenomena are of increasing interest in the area of finance (Johnson
et al. 2003), because of the exploitation of asymmetry for ratcheting up payoffs. In
terms of the stockmarket, Boman et al. (2001) has used a Parrondian framework
for studying the dynamics of insider information. A number of models, in the
Parrondian class, for increasing payoff by switching between poorly performing
investments are well-known. For example, Maslov & Zhang (1998) demonstrate a
model where switching between volatile assets and non-performing cash reserves
produces increased payoff in a fashion not too dissimilar from Luenberger’s
volatility pumping method (Luenberger 1997).

There are also closely related models such as the excess growth model of
Fernholz & Shay (1982) and Cover’s universal portfolio (Cover & Ordentlich
1996). Stutzer (2010) shows connections between essential features of Parrondo
effects and portfolio rebalancing. Further investigation into the two-envelope
problem is, therefore, of interest for building mathematical foundations in these
areas. Future studies that build on our work to extend the results to fat-tailed
(heavy-tailed) distributions (Jacquier et al. 2004), such as the t and alpha-stable
families, would thus be of interest in economics and finance.

In economic theory and finance, the study of information asymmetry is
of importance where a party gains an advantage by having better access to
information (Aboody & Lev 2000). The two-envelope problem now motivates the
study of a fascinating type of situation where symmetry initially exists, but one
party gains an advantage by breaking the symmetry and extracting information
that is not apparently of prima facie value.

(c) Outline

In this paper, we explore the extent of suboptimality of conditional randomized
switching. In order to proceed, in §2, we define our notation, and discuss further
the optimal switching strategy for the two-envelope problem. Section 3 then
provides mathematical analysis of the expected gain for two cases of switching
strategies. This includes a comparison of the gain for two concrete examples of
the distribution of the amount selected by the house, for each switching strategy.
Simulations of repeated ‘plays’ of the two-envelope problem were presented in
McDonnell & Abbott (2009). Here, §4 provides analytical support to those
simulations, via a derivation of the variance of the gain. We then use this
to produce confidence intervals for the gain, and compare with simulations.
We conclude the paper and suggest future work in §5. Appendix A contains
three proofs of the optimal switching strategy, while appendix B (the electronic
supplementary material) contains all other necessary mathematical proofs.

2. Mathematical background

(a) Mathematical definitions and notation

Consider the two-envelope problem where a non-negative continuous random
variable X , with finite mean, is drawn according to density fX (x), x ∈ [0, ∞),
and the player is offered

Y = (I + 1)X , (2.1)
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where I ∈ {0, 1} is Bernoulli with Pr(I = 0) = p ∈ (0, 1). Thus, the player will be
presented with X stochastically, with probability p = PY |X (x |x), and with 2X
with probability 1 − p = PY |X (2x |x). The player observes Y but not X . The player
can either keep the amount Y , or switch to the complementary amount.

Suppose the player randomly switches with probability 0 ≤ PS(y) ≤ 1 upon
observation of y. We introduce the function g(x), which was defined in
McDonnell & Abbott (2009) as

g(x) = pfX (x) − 1 − p
4

fX
(x

2

)
. (2.2)

Then following McDonnell & Abbott (2009, equations (2.1) and (2.2)), the
average gain with switching function PS(y) is

G =
∫∞

0
ffX (f)[pPS(f) − (1 − p)PS(2f)] df (2.3)

G =
∫∞

0
fPS(f)

[
pfX (f) − 1 − p

4
fX

(
f

2

)]
df (2.4)

and G =
∫∞

0
fPS(f)g(f) df, (2.5)

where average gain is defined as the difference between the average return when
using a switching strategy and the average return a player will obtain when never
switching, which is the benchmark return (McDonnell & Abbott 2009)

Rb := E[Y ] = (2 − p)E[X ].
We denote the mean return as

Rm = Rb + G. (2.6)

Clearly, the average gain can be both positive and negative, and, from
equation (2.4), must be bounded in the interval [−(1 − p)E[X ], pE[X ]].

We now state three lemmas that will be useful in subsequent sections. Note
that appendix B (the electronic supplementary material) contains mathematical
proofs for all lemmas and corollary 3.3.

Lemma 2.1. Suppose the player switches with a constant probability k, regardless
of the observed value, y. That is, PS(y) = k, with k ∈ [0, 1] a constant. Then the
maximum average gain in this case, Gk , is

Gk = max
k

G =
{
(2p − 1)E[X ] p ∈ [0.5, 1),
0 p ∈ (0, 0.5),

(2.7)

where the region with non-zero gain is achieved with k = 1, and the region with
zero gain with k = 0.

In §3, we shall use this lemma to calculate a benchmark gain for comparison
with other switching strategies.

Lemma 2.2. A positive gain is obtained for any density fX (x) when p > 0.5 and
PS(y) is a monotonically decreasing function of y.
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This lemma tells us that a suitable choice of randomized switching strategy
will always provide a gain when p > 0.5. It does not however tell us anything
regarding the special case of p = 0.5 (or indeed for p < 0.5).

Lemma 2.3. If fX (x) is a monotonically decreasing function of x , then a negative
gain is obtained for p < 1/5 unless PS(y) = 0 ∀ y (i.e. the player never switches).

This lemma allows us to exclude consideration of values p < 1/5 in later sections
of the paper.

(b) The ‘non-blind’ two-envelope problem

Unless otherwise specified, in this paper it is assumed that the player knows p
and fX (x), as well as y (but not the outcome of I or X). Since the player has full
information on the probability with which the player will receive the envelope
containing the smaller value, and the density from which that value is drawn, we
refer to this situation as the ‘non-blind’ two-envelope problem.

Under these assumptions, the optimal switching strategy based on the observed
value y has been derived for the case of p = 0.5 (Christensen & Utts 1992; Brams &
Kilgour 1995a; Blachman et al. 1996). Note that Brams & Kilgour (1995a) provide
a correct derivation, while Blachman et al. (1996), with reference to the work of
Brams & Kilgour (1995a), demonstrate why the derivation of Christensen & Utts
(1992) contains an error (one that has been repeated in Castell & Batens (1994)).
Note that the form of the optimal solution is slightly different, by a factor of 2,
if X were a discrete distribution—as considered in Linzer (1994)—rather than
continuous, e.g. Brams & Kilgour (1995a). As pointed out by Blachman et al.
(1996), the expression of Christensen & Utts (1992) would be correct if a discrete
distribution had been assumed rather than a continuous one.

Here, we extend this optimal strategy for continuously valued X to arbitrary
p, and present it as a theorem.

Theorem 2.4. The optimal switching function P∗
S(y) for the ‘non-blind’ two-

envelope problem is

P∗
S(y) =

⎧⎨
⎩1 g(y) = pfX (y) − 1 − p

4
fX

(y
2

)
≥ 0

0 otherwise.
(2.8)

As a consequence of theorem 2.4, it is clear that there will be intervals of
y for which it is optimal to switch with probability one, and complementary
intervals where it is optimal to switch with probability zero. For the special case of
p = 0.5, theorem 2.4 recovers the ‘exchange condition for continuous distributions’
of Brams & Kilgour (1995a).

Appendix A provides three proofs of this theorem. The third proof relies
on Bayesian analysis, and is essentially the same as that of Brams & Kilgour
(1995a) and Blachman et al. (1996) (which, however, considers only p = 0.5). We
state it here as it provides complementary insights to the first two proofs, via a
transparent demonstration of how a two-envelope ‘paradox’ can arise through
incorrect mathematics. Our second proof uses calculus of variations, but is
actually just a more elaborate version of the first proof, which is a concise proof
by contradiction. Both do not rely on Bayesian analysis.

Proc. R. Soc. A (2011)

http://rspa.royalsocietypublishing.org/


Suboptimal two-envelope random switching 2831

The second proof is amenable to several interesting extensions, where there are
additional convex constraints on the switching function, PS(y). For example, one
could consider a modified version of the problem where it costs the player c(y)
to switch when the observed value is y. The player may have an average cost
constraint (again a linear constraint on PS(y)),

∫
c(f)PS(f) df − C ≤ 0. (2.9)

This constraint can be easily accommodated in the formulation of the second
proof. If c(f) and C are such that

∫
P∗

S(f)c(f) df ≤ C then P∗
S(y) remains

optimal. If P∗
S(y) is ‘too expensive’, there will be a new optimal switching function.

It can be verified that this function will again take values from {0, 1} and the only
difference will be the location of the threshold(s), which will be modified to meet
the cost constraint.

(c) The ‘blind’ two-envelope problem

Unlike the ‘non-blind’ two-envelope problem, the situation considered in
McDonnell & Abbott (2009) is that where the player knows only y but not
p and fX (x). Without knowing fX (x) and p, while the player cannot use the
optimal strategy of theorem 2.4, it is shown in McDonnell & Abbott (2009) that
a conditionally randomized switching strategy where the probability of switching
monotonically decreases with the observed value y always leads to a gain G > 0
for p ≥ 0.5, and it may lead to a gain for p < 0.5.

The example of such a strategy considered in McDonnell & Abbott (2009) and
Abbott et al. (2010) is given by

PS(y) = exp (−ay), (2.10)

for some parameter a > 0. Here, we refer to this as negative exponential switching.
In McDonnell & Abbott (2009) and Abbott et al. (2010), this switching rule is
referred to as Cover switching.

The second strategy of McDonnell & Abbott (2009) uses a deterministic
decision rule, in which the envelopes are switched if the observed value is less
than some threshold value, b. It was shown that this strategy leads to a gain for
any value of b for p = 0.5. We refer to this strategy as threshold switching, and
write the switching function as

PS(y) =
{
1 y ≤ b
0 y > b.

(2.11)

This switching strategy has a similar form to the optimal switching strategy of
theorem 2.4. However, the optimal strategy may include multiple regions of y for
which it is optimal to switch with probability one, and multiple complementary
regions where it is optimal to switch with probability zero. Therefore, threshold
switching must be assumed to be suboptimal, unless proved otherwise.

The results presented in McDonnell & Abbott (2009) are based on the
assumption, made entirely for the purposes of illustration, that the smaller
value X (which is not observed by the player) is drawn from a negative
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Figure 1. Gain in the ‘blind’ two-envelope function, for negative exponential X with unity mean,
and p = 0.5, as a function of the parameters a and b, where the reciprocal of b is used to facilitate
comparison. Solid line, a; dashed line, 1/b.

exponential probability density function (PDF) with mean (and standard
deviation) equal to 3,

fX (x) = exp(−x/3)
3

. (2.12)

One of the goals of this paper is to generalize the results of McDonnell & Abbott
(2009) in several ways, including (i) examining the effect of generalizing the
distribution of X to that of a generalized negative exponential; and (ii) finding
the maximum gain that can be achieved for both negative exponential switching
and threshold switching, for a given density of X , and the parameter in each case
(a and b). Since we wish to maximize the gain with these (generally) sub-optimal
strategies as a function of fX and p, we are in fact addressing the ‘non-blind’
two-envelope problem in most of this paper.

For the family of distributions we consider here, the optimal value of b
will result in the same solution for maximum gain as that obtained by using
the optimal strategy from theorem 2.4. The outcome of our analysis will
be to establish exactly how sub-optimal negative exponential switching is, in
comparison with optimal switching.

However, before progressing to this, we firstly demonstrate using the results
plotted in figure 1, that if a or b are arbitrarily chosen without knowledge of
fX , there are large ranges of choices for which negative exponential conditional
randomized switching outperforms threshold switching. Therefore, if through lack
of knowledge of fX one is unable to select the optimal value of b for threshold
switching, and is forced into ‘guessing’ a value, one might be better off guessing a
value for a and using the negative exponential conditional randomized switching
scheme instead. We do not address this in the present paper, but leave the
quantification of this scenario for future work.
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Figure 2. Plots of the probability density function for the generalized negative exponential
distribution, for various values of the parameter, a, and constant mean, m = 1. The case of a = 1 is
the negative exponential distribution, the case of a = 0 is the uniform distribution, and for a > 1,
the distribution is heavy tailed.

The plot in figure 1 also demonstrates the results derived in McDonnell &
Abbott (2009), that both switching strategies always lead to a gain G > 0 when
p = 0.5.

(d) The generalized negative exponential distribution

In this paper, we consider a specific family of distributions for fX (x), with
a focus on two special cases from this family. This is the generalized negative
exponential family, which has PDF

fX (x) = c1

aG(a)
exp (−(c1x)1/a) x ∈ [0, ∞), (2.13)

where G(a) is the gamma function, G(a) = ∫∞
0 ta−1 exp (−t)dt (Spiegel & Liu

1999). The shape of the PDF is determined by the parameter a ∈ [0, ∞). Figure 2
shows fX (x) for a range of a-values, with a mean m = 1.

We chose this family for three reasons. First, the negative exponential
distribution is obtained when a = 1, and this is the example distribution
considered in McDonnell & Abbott (2009). Second, the shape of the density can
be varied all the way from uniform when a = 0, through ‘half-Gaussian’ when
a = 0.5 to heavy tailed when a > 1, and becoming more heavy tailed as a → ∞,
which is a case that is of interest in finance and economics (Jacquier et al. 2004).
Third, the negative exponential and uniform distributions are also considered
briefly by Brams & Kilgour (1995a), but only for p = 0.5. Below, we examine the
effect of varying a on the gains that the player may achieve.

It is convenient to reduce the parameter space by insisting that X has the same
mean m for all values of a. This implies that

c1 = G(2a)
mG(a)

, (2.14)
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and that the standard deviation, s, is given by

s = m

√
G(a)G(3a) − (G(2a))2

G(2a)
.

The first special case we consider is the negative exponential, for which a = 1,
m = s and the PDF is

fX ,1(x) = exp(−x/m)
m

x ∈ [0, ∞). (2.15)

The second special case is the uniform distribution, for which a = 0, m = √
3s and

the PDF is

fX ,2(x) = c[0,2m](x)
2m

x ∈ [0, ∞), (2.16)

where c[u,v](x) = 1, x ∈ [u, v] and zero otherwise.
Finally, we state a lemma that will be useful in subsequent sections.

Lemma 2.5. Any generalized negative exponential density fX (x) with a > 0 is a
monotonically decreasing function of x.

3. Maximizing the gain for the two cases of switching function

In this section, we begin by deriving conditions for optimality of the single
parameter within each of the two switching functions—negative exponential and
threshold—for arbitrary distributions of X . We then specialize to the case of
the generalized negative exponential distribution, for which it is shown that
optimized threshold switching is also the optimal switching strategy out of all
possible strategies for the ‘non-blind’ two-envelope problem.

(a) Arbitrary densities, fX (x)

We assume fX (x) is absolutely continuous and differentiable for x ∈ [0, ∞).

(i) Negative exponential switching

The switching function for this case is PS(y) = exp (−ay), and the gain G can
therefore be written as a function of a,

G1(a) = p
∫∞

0
ffX (f) exp (−af) df − (1 − p)

∫∞

0
ffX (f) exp (−2af) df. (3.1)

Note that since PS(y) = exp (−ay) is monotonically decreasing for a > 0, by
lemma 2.2 G1(a) > 0 ∀ p > 0.5, a > 0. However, by lemma 2.1, there will also
always be a gain from always switching when p > 0.5, which corresponds to a = 0.
It remains for us to determine the optimal value of a as a function of p.
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Differentiating equation (3.1) with respect to a, and setting the result to zero,
yields the functional equation

L(a) = 2(1 − p)
p

L(2a), (3.2)

where L(a) is the Laplace transform of f2fX (f) (Spiegel & Liu 1999). Any
solutions of equation (3.2) provide stationary points of G1(a). Since we seek
the value of a that maximizes G1, for arbitrary fX (x), we need to consider all
stationary points of G1(a) that are local maxima, as well as the boundary values,
a = 0 and a = ∞. We denote the global maximum of all such points as aopt, and
this value of a yields the maximum gain, G1(aopt).

If no solution to equation (3.2) exists for a ∈ [0, ∞) then we must have either
aopt = 0 or aopt = ∞. Both values correspond to special cases of the conditions
specified in lemma 2.1, i.e. a = 0 is equivalent to k = 1 and a = ∞ is equivalent
to k = 0. Thus, in this situation, the optimal gain is given by equation (2.7).

We now present a lemma that assists in determining the optimal value of a for
all values of p.

Lemma 3.1. For p ∈ [2/3, 1), and negative exponential switching, the optimal
value of a is aopt = 0, and the optimal gain is G1(aopt) = (2p − 1)E[X ].

We now demonstrate that for a certain class of fX that for p ∈ [1/5, 2/3) there
is at most one value of a that satisfies equation (3.2). This fact allows us to use
numerical optimization techniques to find the optimal value of a. To this end, we
make use of the following lemma.

Lemma 3.2. Let p > 1/5 so that g(0) > 0. Let r(x) be a continuous, increasing
function that is positive in (0, ∞). If g(x) has a single sign-change—
i.e. a sign-change occurs at x = A if there exists some value A such that
g(x) > 0 for x ∈ [0, A) and g(x) ≤ 0 for x ∈ [A, ∞)—then the function M (a) :=∫∞

0 r(f)g(f) exp (−af)df, has at most one real root.

This lemma leads us to the following corollary.

Corollary 3.3. If g(x) has a single sign-change, then the gain for negative
exponential switching, G1, has at most a single stationary point with respect to a,
and if it exists this stationary point is the maximum value of G1(a) for a ∈ [0, ∞)
provided p ∈ [0, 2/3].

(ii) Threshold switching

We begin by noting that the optimal switching function of theorem 2.4 may
have multiple threshold values of y at which g(y) = 0 that demarcate between
regions of always switching and never switching. The strategy we call threshold
switching has only one such threshold value, and must therefore be suboptimal
in comparison with the strategy of theorem 2.4, unless the distribution of X is
such that g(y) has exactly one solution for y.

Consequently, in this section, we are seeking the optimal parameter, b, for
threshold switching, without consideration of how many switching points should
be used according to the strategy of theorem 2.4. The gain for threshold switching
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as a function of the threshold parameter b can be written as

G2(b) = p
∫∞

0
ffX (f)u(b − f) df − (1 − p)

∫∞

0
ffX (f)u(b/2 − f) df, (3.3)

where u(·) is the Heaviside unit step function. We seek the value of b that
maximizes G2(b), and denote this as bopt. Differentiating equation (3.3) and
expressing the derivative of the Heaviside function as the Dirac delta function,
d(·), we find

vG2(b)
vb

= p
∫∞

0
ffX (f)d(b − f) df − 0.5(1 − p)

∫∞

0
ffX (f)d

(
b
2

− f

)
df

= pbfX (b) − 0.25(1 − p)bfX

(
b
2

)
= bg(b).

Setting this to zero gives a condition for any stationary points, bs, of G2,

g(bs) = 0. (3.4)

The optimal parameter, bopt, must be either zero, infinity or a value from the set
of all solutions to equation (3.4).

We may attempt to reduce this set by considering whether any of the stationary
points are maxima, by aiming to show that v2G2(b)

vb2 |b=bs< 0. We have

v2G2(b)
vb2

= p
(

fX (b) + b
vfX (b)

vb

)
− 1 − p

4

(
fX

(
b
2

)
+ b

2
vfX (q)

vq

∣∣∣∣
q=b/2

)
.

Assuming the existence of a solution bs ∈ [0, ∞) to equation (3.4), and then
substituting equation (3.4) into the above results in

v2G2(b)
vb2

∣∣∣∣
b=bs

= bs

[
p

vfX (b)
vb

∣∣∣∣
b=bs

− (1 − p)
8

vfX (q)
vq

∣∣∣∣∣
q=bs/2

⎤
⎦.

Thus, for any solution bs > 0 to be a local maximum, we have a sufficient condition

8p
1 − p

vfX (b)
vb

∣∣∣∣
b=bs

≤ vfX (b)
vb

∣∣∣∣∣
b=bs/2

. (3.5)

This condition needs to be considered for any specific choice of fX (x).

(b) Generalized negative exponential density

(i) Negative exponential switching

Although below we show that analytical solutions for the optimal parameter,
a, and the corresponding gain can be found for a = 1, for general a, we are
unable to find an explicit solution. We, therefore, seek a numerical solution to
equation (3.2). This is made simpler when it is noted that lemmas 2.3 and 2.5
together imply that if p ≤ 1/5, then a negative gain will result for generalized
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Figure 3. (a) Reciprocal of aopt (the optimal value of the parameter a for negative exponential
switching) as a function of a and p, when X has a generalized negative exponential distribution.
Note the discontinuity at p = 1/5. We have plotted the reciprocal of aopt so that the figure has
the same qualitative appearance as figure 3c. (b) Maximum gain from switching using negative
exponential switching. (c) Optimal value of the threshold value for threshold switching when m = 3.
Note the discontinuity at p = 1/5. (d) Maximum gain from threshold switching when m = 3. Note
the discontinuity in the gradient at p = 1/5.

negative exponential X , unless the player never switches. This is equivalent to
aopt = ∞. Also, from lemma 3.1, for p > 2/3 we have aopt = 0. Thus, we can restrict
the numerical procedure to the interval p ∈ (1/5, 2/3).

By lemma 3.2, there is at most one solution to equation (3.2) provided g(x)
has a single sign change. As we now show, this is the case for the generalized
negative exponential distribution for p > 1/5.

Lemma 3.4. If fX (x) is a distribution from the family of generalized negative
exponential distributions with a ∈ (0, ∞), and p ∈ (1/5, 1], then g(x) has a single
sign change.

Consequently, since there is a single solution to equation (3.2), G1(a) can
have at most one maximum with respect to a for p ∈ (1/5, 2/3), by corollary 3.3.
This allows us to use standard gradient descent numerical methods to maximize
equation (3.1), for any given p and a. The result of carrying out this maximization
for the interval p ∈ (1/5, 2/3)—combined with aopt = 0 for p ≥ 2/3 and aopt = ∞
for p ≤ 1/5 is shown in figure 3a,b.

Proc. R. Soc. A (2011)

http://rspa.royalsocietypublishing.org/


2838 M. D. McDonnell et al.

(ii) Threshold switching

For this switching strategy, we are able to obtain analytical solutions for the
optimal value of b, bopt and the corresponding optimal gain, G2(bopt).

Substituting equation (2.13) into equation (3.4) and simplifying yields the
condition for a stationary point for a > 0,

bs = 1
c1

(
log (4p/(1 − p))

1 − 2−1/a

)a

. (3.6)

By lemmas 2.3 and 2.5, the optimal value of b for p ∈ (0, 1
5 ] is bopt = 0 and the

resultant gain is zero. It can be seen that no solution to equation (3.6) exists
when p < 1/5.

For p ∈ (1/5, 1), we have a single stationary point, bs. It remains to check that
this is a global maximum. That this is true can be proved by substituting bs into
the sufficient condition (3.5) to get

fX (bs) ≥ 2−1/a 1 − p
4p

fX (0.5bs).

Using equation (3.4), the above condition becomes 1 ≥ 2−1/a, and the condition
is true for all a ≥ 0.

Consequently for a ≥ 0,

bopt =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 p ∈
(

0,
1
5

]

m
G(a)

G(2a)

[
log

(
4p/(1 − p)

)
1 − 2−1/a

]a

p ∈
(

1
5
, 1

)
.

(3.7)

The corresponding maximum gain for threshold switching can be written as

G2(bopt) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0 p ∈
(

0,
1
5

]

m

[
pP

(
2a,

log (4p/(1 − p))
1 − 2−1/a

)
− (1 − p)

P
(

2a,
log (4p/(1 − p))

21/a − 1

)]
p ∈

(
1
5
, 1

)
,

(3.8)

where P(·, ·) is the incomplete gamma function (Spiegel & Liu 1999),

P(u, v) = 1
G(u)

∫ v

0
tu−1 exp (−t) dt.

Notice that both bopt and G2(bopt) scale linearly with m for p ∈ (1/5, 1). Whatever
the value of m, the player can adjust the switching threshold to obtain a
maximum gain proportional to m. The special case of a = 0 is derived in the
following subsection.

The optimal parameter, bopt, and the corresponding maximum gain, G2(bopt),
are shown in figure 3c,d, as a function of p and a.
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With reference to theorem 2.4, since there is a single solution to equation (3.4),
optimized threshold switching is actually the optimal solution out of all
switching strategies.

It is difficult to directly compare the gains from negative exponential switching
and threshold switching based on figure 3c,d. Therefore, we now consider two
special cases of a.

(c) Examples from the generalized negative exponential distribution: uniform
(a = 0) and negative exponential (a = 1)

Now as illustrative examples, we derive closed-form expressions for the gain for
negative exponentially distributed X (i.e. a = 1) for both negative exponential
switching and threshold switching, and uniformly distributed X (i.e. a = 0) for
threshold switching. For negative exponential switching and a = 0, we present
a brief algorithm for numerically determining the optimal gain. The resulting
optimal parameters, aopt and bopt, the corresponding optimal gain and the
corresponding optimal return are each shown in figure 4.

(i) Negative exponential switching and negative exponential density (a = 1)

The a = 1 case (where m := E[X ] = s) is analytically tractable, since it is
straightforward to show that

L(ma) = 2m2

(1 + amm)3
.

Substitution into equation (3.2) leads to a single solution for p ∈ (1/5, 2/3), which
by corollary 3.3, and lemma 3.4 must maximize the gain. The solution can be
written as

aopt = k − 1
m(2 − k)

, (3.9)

where

k =
[
2(1 − p)

p

]1/3

.

Hence, using the comments above lemma 3.4, we can write

aopt =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

0 p ∈
(

0,
1
5

]
k − 1

m(2 − k)
p ∈

(
1
5
,
2
3

)

∞ p ∈
[
2
3
, 1

)
.

(3.10)
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Proc. R. Soc. A (2011)

 

http://rspa.royalsocietypublishing.org/


Suboptimal two-envelope random switching 2841

The corresponding value of the gain for all p is

G1(aopt) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

0 p ∈
(

0,
1
5

]
((

1 + 1
k2

)
p − 1

k2

)
(2 − k)2m p ∈

(
1
5
,
2
3

)

(2p − 1)m p ∈
[
2
3
, 1

)
.

(3.11)

(ii) Negative exponential switching and uniform density (a = 0)

For the a=0 case, we find L(a)=2/2ma3[1− (1+2ma +0.5(2ma)2) exp (−2ma)],
and L(2a) = 1/8ma3[1 − (1 + 4ma + 0.5(4ma)2) exp (−4ma)], so that, putting z =
2ma, we need to solve the following equation

1 − (1 + z + 0.5z2) exp (−z) =
(

1 − p
4p

)
[1 − (1 + 2z + 0.5(2z)2) exp (−2z)].

This cannot be carried out analytically, but the following iterative contraction
mapping yields accurate numerical results:

z ← log
[

1 + z + 0.5z2

1 − 0.25(1 − p)[1 − (1 + 2z + 0.5(2z)2) exp (−2z)]/p
]
.

From this we find aopt = 0.5zopt/m. It can be shown that
∫∞

0
ffX (f) exp (−af) df = 1 − (1 + 2ma) exp (−2ma)

2ma2
. (3.12)

The optimal gain is then obtained by substitution of aopt into equation (3.12),
and equation (3.12) into equation (3.1) to obtain

Gopt = 1
2ma2

opt
[p(1 − (1 + 2maopt) exp (−2maopt))

− 0.25(1 − p)(1 − (1 + 4maopt) exp (−4maopt))].
The corresponding value of the gain for all p is

G1(aopt) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 p ∈
(

0,
1
5

]
1

2ma2
opt

[p(1 − (1 + 2maopt) exp (−2maopt))

−0.25(1 − p)(1 − (1 + 4maopt) exp (−4maopt))] p ∈
(

1
5
,
2
3

)

(2p − 1)m p ∈
[
2
3
, 1

)
.

(3.13)
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(iii) Threshold switching and negative exponential density (a = 1)

For this case, since a > 0, the optimal solution is given by substituting a = 1
into equations (3.7) and (3.8) to obtain

bopt =

⎧⎪⎪⎨
⎪⎪⎩

0 p ∈
(

0,
1
5

]

2m log
(

4p
1 − p

)
p ∈

(
1
5
, 1

)
.

(3.14)

The corresponding maximum gain for threshold switching is

G2(bopt) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

0 p ∈
(

0,
1
5

]

m

[
pP

(
2, 2 log

(
4p

1 − p

))
− (1 − p)

P
(

2, log
(

4p
1 − p

))]
p ∈

(
1
5
, 1

)
,

(3.15)

which is in agreement with (McDonnell & Abbott 2009, p. 3317) when p = 1/2.

(iv) Threshold switching and uniform density (a = 0)

From equation (3.7),

bopt =
{
0 p ∈ (

0, 1
5

)
2m p ∈ [ 1

5 , 1
)
.

The corresponding optimal gain for a = 0 may be obtained from equation (3.3)
or equation (3.8), and is

G2(bopt) =
{
0 p ∈ (

0, 1
5

]
0.25m(5p − 1) p ∈ ( 1

5 , 1
)
.

(3.16)

(v) Discussion for a = 0 and a = 1

Figure 4a shows the optimal parameters, aopt (negative exponential switching)
and bopt (threshold switching) as a function of p, for each value of a. We have
plotted 1/bopt rather than bopt since this demonstrates limiting behaviour for both
switching functions at p = 1/5.

Figure 4b shows the optimal gain for each situation, as well as the gain that
would be obtained by switching according to the conditions of lemma 2.1, Gk .
In lemma 2.1, we showed that if switching is independent of the observed value,
y, then the player should either always switch, or never switch, in preference
to randomized switching. It is clearly shown in figure 4b that both y-dependent
switching functions fare better than deterministic switching for a large range of
values of p, for both a = 0 and a = 1.

Figure 4c shows the mean return to the player for each situation. From
equation (2.6), this is given by Rm = Rb + G, where Rb = (2 − p)m. The conditions
of lemma 2.1 are labelled as constant switching. While the gain owing to
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randomized switching is also clearly evident, interesting asymmetries in the mean
return with respect to p are visible. That is, the minimum mean return is not at
p = 0.5 except for the constant switching case.

4. Simulation results and their confidence intervals

As discussed in §1, this paper provides analytical support for the simulation
results on the two-envelope problem presented in McDonnell & Abbott (2009),
as well as extensions. In this section, we derive confidence intervals for the gain
in order to further strengthen the claims from that paper.

The function g(x) defined in equation (2.2) can be thought of as the expected
gain as a function of x , while G can be thought of as the mean gain with respect
to a density fX (x). We, therefore, here change the notation to mg := G.

The Monte Carlo simulations performed previously in McDonnell & Abbott
(2009) exhibit the customary convergence to the mean value as the number of
simulations, N , is increased. It is possible to set confidence limits on the values
obtained by simulation, which requires knowledge of the standard deviation of
the gain; we denote this as sg. Once this has been obtained, we may then use the
following well-known formula for the upper and lower 100x% confidence limits—
provided N is large enough to permit the use of the Gaussian central limit
approximation for the distribution of the mean:

CL± = mg ±
√

2
N

erf−1(x)sg.

To find sg, we must start with the return rather than the gain. Following
McDonnell & Abbott (2009), let Z denote the random variable describing the
amount in the final envelope left with the player. We denote the probability that
the player ends the trial with amount Z = z , given x and 2x are in the two-
envelopes, as PZ . The sample space of Y given x is the smaller amount is {x , 2x}.
So if Z = x , then

Px = p(1 − PS(x)) + (1 − p)PS(2x),

and if Z = 2x then

P2x = pPS(x) + (1 − p)(1 − PS(2x)).

These probabilities may be easily misinterpreted, so we provide some additional
clarification. They are not probabilities the player can use based on an observation
y. They are simply the probability of ending up with the smaller and larger
amounts, respectively, when a switching strategy PS(y), based on the observation
y is used. Deriving these equations is based on the fact that PS(x) is the
conditional probability of switching, given Y = x , and PS(2x) is the conditional
probability of switching, given Y = 2x , which is the only reason why we can
substitute for y = x and y = 2x into PS(·). It is irrelevant that x cannot be inferred
from an observation, y.
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We now introduce the conditional mean square return, given x is the
smaller amount,

Q(x) := x2Px + (2x)2P2x

= x2[p(1 − PS(x)) + (1 − p)PS(2x) + 4(pPS(x) + (1 − p)(1 − PS(2x)))]
= x2[4 − 3p + 3(pPS(x) − (1 − p)PS(2x))].

The mean square return is then

Rms :=
∫

fX (f)Q(f) df

= (4 − 3p)E[X 2] + 3
∫

f2fX (f)(pPS(f) − (1 − p)PS(2f)) df.

We now introduce the notation

I (n, m) :=
∫∞

0
fnPS(mf)fX (f) df.

The mean return stated in McDonnell & Abbott (2009) can be expressed as

Rm = (2 − p)E[X ] + pI (1, 1) − (1 − p)I (1, 2).

and the mean square return can be expressed as

Rms = (4 − 3p)E[X 2] + 3pI (2, 1) − 3(1 − p)I (2, 2).

Since the gain, mg, is defined as the mean return owing to switching, less the mean
return that would occur when there is no switching, i.e.

mg = Rm − (2 − p)E[X ], (4.1)

the variance of the gain is equal to the variance of the return. Consequently, the
standard deviation of the gain can be computed as

sg =
√

Rms − R2
m.

Several special cases are presented below.

(a) Negative exponential switching with negative exponential X (a = 1)

For negative exponential switching, PS(y) = exp (−ay), we have

I (n, m) = 1
m

∫∞

0
fn exp (−f(1/m + ma)) df.

A change of variable w = f(1/m + ma) reveals that this integral is a scaled
gamma-function, and we obtain

I (n, m) = mnn!
(1 + mma)n+1

.
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For p ∈ (1/5, 2/3), using the expressions derived above we can simplify I (n, m)
when a is optimally chosen for the negative exponential PDF. In this case

1 + mmaopt = (m − 1)k − (m − 2)
2 − k

and

I (n, m) = mnn!(2 − k)n+1

[(m − 1)k − (m − 2)]n+1
.

So we have

I (1, 1) = m(2 − k)2, I (1, 2) = I (1, 1)
k2

and

I (2, 1) = 2m2(2 − k)3 I (2, 2) = I (2, 1)
k3

.

(b) Threshold switching for generalized negative exponential X

For the threshold switching function we can derive

I (1, 1) = mP
(

2a,
A

1 − 2−1/a

)
I (1, 2) = mP

(
2a,

A
21/a − 1

)

I (2, 1) = m2FP
(

3a,
A

1 − 2−1/a

)
I (2, 2) = m2FP

(
3a,

A
21/a − 1

)
,

where A = log (4p/(1 − p)) and F = G(a)G(3a)/G2(2a).

(c) Simulation results

Figure 5 shows 20 simulation sample paths of how the gain varies through 2000
plays of the two-envelope problem for optimized negative exponential switching.
The parameters are p = 0.5 and a = 1, which are the same conditions used in
McDonnell & Abbott (2009). The 95% confidence intervals are superimposed on
the sample paths, and clearly show excellent agreement with the simulations. For
example, after about 1000 trials, only one of the sample paths is outside the 95%
confidence interval, which is precisely what is expected, on average, for a 95%
confidence interval.

5. Conclusions and suggestions for further work

In this paper, we have developed analytical proofs that support simulation
results in McDonnell & Abbott (2009), in order to build the mathematical
underpinnings of how conditionally randomized switching leads to a gain in the
two-envelope problem. In particular, we have shown that threshold switching,
when optimized for the switching threshold, b, is the best possible switching
strategy when the random variable X is from an generalized negative exponential
family, and therefore is always superior to negative exponential conditionally
randomized switching.
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Figure 5. Plots of 20 simulation ensembles of the gain to a single player after each trial. Also
shown is the theoretical mean gain (dashed lines) and 95% confidence intervals (solid thick line).
The optimized negative exponential switching case is shown for a = 1 (negative exponential) and
p = 0.5. The traces are very similar for threshold switching, although when optimized the mean
gain is larger.

One of the reasons we chose the generalized negative exponential family for the
distribution of X is that the parameter a allowed us to consider the special cases of
uniformly and exponentially distributed, X , but also to consider the heavy-tailed
case, which occurs when a > 1. Given the relevance of heavy-tailed distributions
in mathematical finance, it is suggested that further work investigates the two-
envelope problem for other heavy-tailed distributions of X , in particular those
with infinite variance.

We have also highlighted that both negative exponential switching and
threshold switching will always provide a gain for p = 0.5, for any value of
their parameters, a and b, respectively, when compared with never switching, or
switching independently of the observed value, y. Moreover, for the ‘blind’ two-
envelope problem where the optimal value of a and b cannot be chosen since the
player does not know fX or p, an arbitrary choice of these parameters can easily
lead to negative exponential switching being superior to threshold switching, as
shown in figure 1. Precise mathematical formulation and derivation of optimal
strategies for the ‘blind’ two-envelope problem would be a fascinating extension
of this paper in future work.

Mark D. McDonnell is the recipient of an Australian Research Fellowship funded by the Australian
Research Council (project number DP1093425).

Appendix A. proofs of theorem 2.4

In this appendix, we provide three proofs of theorem 2.4, the third of which
repeats the proof technique of Christensen & Utts (1992) and Blachman et al.
(1996). As well as extending the proof to arbitrary p, we restate this proof here
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in order to highlight one of the sources of the two-envelope ‘paradox.’ The first
new proof is the simplest of the three given here, while the second uses calculus
of variations, and thus suggests ways to extend this form of analysis to the ‘blind’
two-envelope problem, via the introduction of constraints.

(a) Proof by contradiction

Proof. We can choose each value 0 ≤ PS(y) ≤ 1 independently, and we assume
there are no constraints—e.g. continuity or smoothness—on PS, other than the
given pointwise bounds.

We will proceed by contradiction. Suppose PS(y) �= P∗
S(y) is optimal. Consider

the contribution to G at any point y0 for which PS(y0) �= P∗
S(y0). There are two

cases to consider. First, suppose

pfX (y0) ≥ 1 − p
4

fX
(y0

2

)
. (A1)

Then PS(y0) may be increased (since PS(y0) �= P∗
S(y0) = 1), resulting in an increase

in G, contradicting optimality of PS. Similarly, if

pfX (y0) <
1 − p

4
fX

(y0

2

)
, (A2)

then PS(y0) can be decreased (since PS(y0) �= P∗
S(y0) = 0), again resulting in an

increase in G, contradicting optimality of PS. �

(b) Proof by calculus of variations

Proof. The functional G(PS) is linear in PS, and 0 ≤ PS(f) ≤ 1 satisfies linear
inequality constraints. Hence, the theorem may also be proved by considering the
Karush–Kuhn–Tucker (KKT) conditions for optimality, which are both necessary
and sufficient for a linear programme (Boyd & Vandenberghe 2004, p. 224).

The Lagrange dual incorporating the constraints on PS is

L = G −
∫

l1(f)PS(f) df +
∫

l2(f)(PS(f) − 1) df (A3)

and the conditions for optimality are

f

[
pfX (f) − 1 − p

4
fX (f/2)

]
+ l1(f) − l2(f) = 0

−PS(f) ≤ 0

and PS(f) − 1 ≤ 0, l1(f) ≥ 0, l2(f) ≥ 0, l1(f)PS(f) = 0, l2(f)(PS(f) − 1) = 0.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(A4)
Now PS(f) �= 0 �⇒ l1(f) = 0 and PS(f) �= 1 �⇒ l2(f) = 0. These conditions are
exclusive, hence either l1(f) �= 0 or l2(f) �= 0, but not both at the same time.
If 0 < PS(f) < 1, both Lagrange multipliers are zero, and equation (A4) cannot
be satisfied.

So there are only two cases. If pfX (f) ≥ (1 − p)fX (f/2)/4 then we require
l2(f) > 0 to satisfy equation (A4), and hence for such values of f, we have
l1(f) = 0 and PS(f) = 1. Conversely, if pfX (f) < (1 − p)fX (f)/4, we must have
l1 > 0 and consequently l1(f) = 1 and PS(f) = 0. �
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(c) Proof using an estimation perspective and Bayesian analysis

This proof is essentially the same as that of Brams & Kilgour (1995a) and
Blachman et al. (1996), but we state it here—extended to arbitrary p—as
it provides complementary insights to the first two proofs, and a transparent
demonstration of erroneous reasoning that leads to the two-envelope paradox.

Proof. We introduce a binary random variable W such that the event that the
player keeps the envelope is W = 1, and that they switch is W = 0. Optimizing
the gain is equivalent to optimizing the conditional distribution of W given Y ,
which we denote as PW |Y . We further introduce a continuous random variable Z
to describe the amount in the final envelope. The objective for the player is to
maximize the expected value of Z , i.e.,

E[Z ] = E[E[Z |Y ]] =
∫
Y

PY (y)E[Z |Y = y] dy. (A5)

This is maximum if E[Z |Y = y] is maximized for all Y = y (sufficient condition).
To proceed, we note that E[Z |Y = y] = E[E[Z |Y = y, W ]]. Thus

E[Z |Y = y] = PW |Y (1|y)E[Z |Y = y, W = 1] + PW |Y (0|y)E[Z |Y = y, W = 0]
= (1 − PS(y))E[Z |Y = y, W = 1] + PS(y)E[Z |Y = y, W = 0]
= (1 − PS(y))y + PS(y)E[Z |Y = y, W = 0]
= y + PS(y)(E[Z |Y = y, W = 0] − y). (A6)

The second line follows because the switching function PS(y) is equivalent to the
conditional probability PW |Y (0|Y = y). In the third line, E[Z |Y = y, W = 1] = y
because when the player does not switch, the final amount will always be Z = y.

The remaining term E[Z |Y = y, W = 0] is more difficult, as it is dependent on
the random variable X , i.e. the amount chosen by the ‘house’ as the lower of
the two values. We capture this dependence through the introduction of another
binary random variable D, such that D = 0 if the player initially has the lower
valued envelope, i.e. y = x , and D = 1 if the player initially has the higher valued
envelope, i.e. y = 2x . If the player switches and D = 0 then Z = 2y and if the
player switches and D = 1 then Z = y/2. Thus

E[Z |Y = y, W = 0] = E[E[Z |Y = y, W = 0,D]]
= PD|Y (0|y)E[Z |Y = y, W = 0, D = 0]

+ PD|Y (1|y)E[Z |Y = y, W = 0, D = 1]
= PD|Y (0|y)2y + PD|Y (1|y)y/2. (A7)

To proceed, we need to derive the probabilities PD|Y (0|y) and PD|Y (1|y). When
D = 0 we have y = x and PY |D(y|0) = PX (y), and when D = 1 we have y = 2x ,
so PY |D(y|1) = 0.5PX (y/2). So the unconditional distribution of Y is PY (y) dy =
pPX (y) dy + 0.5(1 − p)PX (y/2) dy. Then, by Bayes’ rule,

PD|Y (0|y) = PD(0)PY |D(y|0)
PY (y)

and PD|Y (1|y) = PD(1)PY |D(y|1)
PY (y)

.

The necessity to use Bayes’ rule was recognized by Christensen & Utts (1992).
However, a small oversight was made in Christensen & Utts (1992), which used
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an expression equivalent to PX (y/2) dy rather than 0.5PX (y/2) dy. This problem
was pointed out by Blachman et al. (1996) in deriving the same expressions as
those given here.

Substituting the above into equation (A7) gives

E[Z |Y = y, W = 0] = 2y
pPX (y)
PY (y)

+ 0.5y
0.5(1 − p)PX (y/2)

PY (y)

= 2ypPX (y) + 0.25y(1 − p)PX (y/2)
PY (y)

.

Substituting this into equation (A6), the end result is

E[Z |Y = y] = y + PS(y)
(

2ypPX (y) + 0.25y(1 − p)PX (y/2)
PY (y)

− y
)

= y + yPS(y)
(

pPX (y) − 0.25(1 − p)PX (y/2)
PY (y)

)
.

Let us write this as E[Z |Y = y] = y + yPS(y)a(y), which is a linear function in
PS(y). Therefore, the function is maximum either for PS(y) = 0, when a(y) < 0
or PS(y) = 1, when a(y) > 0. We wish to choose PS(y) that maximizes E[Z |Y =
y] ∀ y. However, since y ≥ 0 and PS(y) ∈ {0, 1}, it is clear that we must choose

PS(y) =
⎧⎨
⎩1 pPX (y) >

(1 − p)PX (y/2)
4

0 otherwise.

�
Remark A.1. Since PY (y) dy = pPX (y) dy + 0.5(1 − p)PX (y/2) dy,

E[Y ] =
∫

ypPX (y) dy +
∫

y0.5(1 − p)PX (y/2) dy

= (2 − p)E[X ].
Substituting E[Z |Y = y] into equation (A5) gives

E[Z ] =
∫
Y

PY (y)
(

y + yPS(y)
(

pPX (y) − 0.25(1 − p)PX (y/2)
PY (y)

))
dy

= E[Y ] +
∫
Y

yPS(y)(pPX (y) − 0.25(1 − p)PX (y/2))dy

= (2 − p)E[X ] +
∫
Y

yPS(y)(pPX (y) − 0.25(1 − p)PX (y/2)) dy,

This is the return that would be obtained if the player switches—see
equation (2.6). Thus, the gain can be expressed as

G =
∫
Y

yPS(y)(pPX (y) − 0.25(1 − p)PX (y/2)) dy,

which recovers equation (2.2) from McDonnell & Abbott (2009), i.e.
equation (2.3) as stated above.
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Remark A.2. Recall that before switching, the probability that the player
received the smaller amount is p. Thus, by switching the player will get the
larger amount with probability 1 − p. If the dependence on X is overlooked in
the calculation of PD|Y (d|y), the following erroneous reasoning would result:

E[Z |Y = y, W = 0] = PD(0)2y + PD(1)y/2 = 0.5y(3p + 1).

In the event p = 0.5, this would be E[Z |Y = y, W = 0] = 1.25y, which would result
in an optimal switching function PS(y) = 1 ∀ y. This means switching for any
observed value maximizes the gain, which is the two-envelope apparent paradox.

Thus, this proof makes it very clear where fallacious reasoning leads to the
apparent paradox, i.e. by overlooking that the probability of initially receiving the
lower/higher amount, conditioned on the observed amount, y, is not independent
of the observed amount. Further discussion of a different source of incorrect
mathematical reasoning is given by Brams & Kilgour (1995b) in response to the
letter of Mixon (1995).
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