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Suprathreshold stochastic resonance �SSR� is a form of noise-enhanced signal transmission that occurs in a
parallel array of independently noisy identical threshold nonlinearities, including model neurons. Unlike most
forms of stochastic resonance, the output response to suprathreshold random input signals of arbitrary magni-
tude is improved by the presence of even small amounts of noise. In this paper, the information transmission
performance of SSR in the limit of a large array size is considered. Using a relationship between Shannon’s
mutual information and Fisher information, a sufficient condition for optimality, i.e., channel capacity, is
derived. It is shown that capacity is achieved when the signal distribution is Jeffrey’s prior, as formed from the
noise distribution, or when the noise distribution depends on the signal distribution via a cosine relationship.
These results provide theoretical verification and justification for previous work in both computational neuro-
science and electronics.
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I. INTRODUCTION

The term “stochastic resonance” describes the situation
where a system’s response to some signal is optimized by the
presence of random noise, rather than its absence. It occurs
in a wide variety of nonlinear physical �1� and biological �2�
systems.

In many of the systems and models in which stochastic
resonance �SR� has been observed, the essential nonlinearity
is a single static threshold, e.g., �3–6�. It is generally thought
that SR cannot occur in such systems for suprathreshold sig-
nals, meaning that the amplitude of the input signal needs to
be restricted to values smaller than the amplitude of the
threshold for SR to occur �7�.

However, the 2000 discovery of a novel form of SR—
known as suprathreshold stochastic resonance �SSR�—
showed that this is not always true �8�. SSR occurs in an
array of identical threshold nonlinearities, each of which is
subject to independently random additive noise. We refer to
this array as the SSR model—see Fig. 1. In this model SR
occurs regardless of whether the input signal is entirely sub-
threshold or not. Furthermore, SSR occurs even for very
large input signal-to-noise ratios �SNRs�. This is a further
difference from conventional SR, for which the signal is re-
quired to be weak compared to the noise.

SSR is a form of aperiodic stochastic resonance �4,9,10�
that was first shown to occur by calculating Shannon’s aver-
age mutual information for the SSR model �8�. It was sub-
sequently found that the performance achievable via SSR is
maximized when all threshold values are set to the signal
mean �11�, and that, for sufficiently small input SNRs, modi-
fying the thresholds in the model cannot improve informa-
tion transfer �12�.

The SSR model was originally motivated as a model for
parallel sensory neurons, such as those synapsing with hair
cells in the inner ear �13�. Although the basic SSR model is
nondynamical, and does not model the many complexities of
real neurons, each threshold nonlinearity is equivalent to a
Pitts-McCulloch neuron model, and encapsulates the neural
coding properties we are interested in—i.e., the generation of
action potentials in response to a noisy aperiodic random
stimulus. The small input SNRs we focus on are biologically
relevant �14�, particularly so for hair cells, which are subject
to substantial Brownian motion �15�. This leads to much ran-
domness in the release of neurotransmitters at synapses with
afferent neurons leading to the cochlear nucleus.

Further justification of the SSR model’s relevance to neu-
ral coding is discussed in �16–18�, and by extensions of the
model to include more biologically realistic neural features.
For example, the parallel array has been modified to consist
of parallel FitzHugh-Nagumo neuron models �19�, leaky
integrate-and-fire neuron models �16,17�, and Hodgkin-
Huxley models �16�, and for the case of signal-dependent
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FIG. 1. SSR model: There are N parallel threshold devices, each
with the same threshold value �. The common input signal is a
continuously valued random signal X, consisting of a sequence of
discrete time-uncorrelated samples. Each device receives indepen-
dently noisy versions of X. The noise signals �i are i.i.d. additive
random signals that are independent of X. The output from the ith
device, yi, is unity if X+�i�� and zero otherwise. The overall
output y is the sum of the individual outputs yi.
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�multiplicative� noise �18�. In all cases the same qualitative
results as for the simple threshold model were obtained. The
SSR effect has also led to a proposal for improving the per-
formance of cochlear implants for suprathreshold stimuli
�13�, based on the idea that the natural randomness present in
functioning cochlear hair cells is missing in patients requir-
ing implants �20�.

The purpose of this paper is to analyze, in a general man-
ner, the information theoretic upper limits of performance of
the SSR model. This requires allowing the array size N to
approach infinity. Previous work has discussed the scaling of
the mutual information through the SSR model with N for
specific cases, and found conditions for which the maximum
mutual information—i.e., channel capacity—occurs
�11,16,21�. In a neural coding context, the question “What is
the optimal stimulus distribution?” for a given noise distri-
bution is discussed numerically for the SSR model in �16�.

In Sec. II, we significantly extend the results in
�11,16,21�, by showing that the mutual information and out-
put entropy can both be written in terms of simple relative
entropy expressions—see Eqs. �21� and �22�. This leads to a
very general sufficient condition, Eq. �25�, for achieving ca-
pacity in the large-N regime that can be achieved by either
optimizing the signal distribution for a given noise distribu-
tion, or optimizing the noise for a given signal. Given the
neuroscience motivation for studying the SSR model, this
result is potentially highly significant in computational neu-
roscience, where both optimal stimulus distributions and op-
timal tuning curves are often considered �16,22�.

Furthermore, the optimal signal for the special case of
uniform noise is shown to be the arcsine distribution �a spe-
cial case of the Beta distribution�, which has a relatively
large variance and is bimodal. This result provides theoreti-
cal justification for a proposed heuristic method for analog-
to-digital conversion based on the SSR model �23�. In this
method, the input signal is transformed so that it has a large
variance and is bimodal.

As a means of verification of our theory, in Sec. III our
general results are compared to the specific capacity results
contained in �11,16,21�. This leads us to find and justify im-
provements to these previous results.

Before we proceed, however, the remainder of this section
outlines our notation, describes the SSR model, and derives
some important results that we utilize.

A. Information theoretic definitions

Recent work using the SSR model has described perfor-
mance using measures other than mutual information
�24–29�. However, in line with much theoretical neuro-
science research �14�, here we use the information theoretic
viewpoint where the SSR model can be considered to be a
communications channel �8�.

Throughout, we denote the probability mass function
�PMF� of a discrete random variable � as P��·�, the probabil-
ity density function �PDF� of a continuous random variable �
as f��·�, and the cumulative distribution function �CDF� of �
as F��·�.

All signals are discrete-time memoryless sequences of
samples drawn from the same stationary probability distribu-

tion. This differs from the detection scenario often consid-
ered in SR research, in which the input signal is periodic.
Such a signal does not convey new information with an in-
creasing number of samples, and cannot be considered from
an information theoretic viewpoint �7�.

Consider two continuous random variables X and Y, with
PDFs fX�x� and fY�x�, with the same support S. The relative
entropy—or Kullback-Liebler divergence—between the two
distributions is defined as �30�

D�fX�fY� = �
��S

fX���log2� fX���
fY���

�d� . �1�

Suppose X and Y have joint PDF fXY�x ,y�. Shannon’s mutual
information between X and Y is defined as the relative en-
tropy between the joint PDF and the product of the marginal
PDFs �30�,

I�X,Y� = �
x
�

y

fXY�x,y�log2� fXY�x,y�
fX�x�fY�y�

�dx dy

= H�Y� − H�Y	X� bits per sample, �2�

where H�Y� is the entropy of Y and H�Y 	X� is the average
conditional entropy of Y given X.

The definition of mutual information also holds for dis-
crete random variables, and for one variable discrete and one
continuous. The entropy of a discrete random variable Y is
given by

H�Y� = − 

n=0

N

PY�n�log2 PY�n� , �3�

while a continuous random variable X has differential en-
tropy

H�X� = − �
��S

fX���log2�fX����d� . �4�

In this paper we are interested in the case of X continuous
with support S and Y discrete, with N states, in which case
the average conditional entropy of Y given X is

H�Y	X� = − �
x�S

fX�x�

n=0

N

PY	X�n	x�log2�PY	X�n	x��dx .

�5�

In information theory, the term channel capacity is de-
fined as being the maximum achievable mutual information
of a given channel �30�. Suppose X is the source random
variable, and Y is the random variable at the output of the
channel. Usually, the channel is assumed to be fixed and the
maximization performed over all possible source PDFs fX�x�.
The channel capacity C can be expressed as the optimization
problem

Find C = max
�fX�x��

I�X,Y� . �6�

Usually there are prescribed constraints on the source distri-
bution such as a fixed average power, or a finite alphabet
�30�. In Sec. III we will also consider the more stringent
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constraint that the PDF of the source is known other than its
variance. In this situation, channel capacity is determined by
finding the optimal source variance, or, as is often carried out
in SR research, the optimal noise variance.

B. SSR model

Figure 1 shows a schematic diagram of the SSR model.
The array consists of N parallel threshold nonlinearities—or
“devices”—each of which receive the same random input
signal X with PDF fX�·�. The ith device in the model is sub-
ject to continuously valued independent and identically dis-
tributed �i.i.d.� additive random noise �i �i=1, . . . ,N�, with
PDF f��·�. Each noise signal is required to also be indepen-
dent of the signal X. The output of each device, yi, is unity if
the input signal X plus the noise on that device’s threshold,
�i, is greater than the threshold value �. The output signal is
zero otherwise. The outputs from each device, yi, are
summed to give the overall output signal, y=
i=1

N yi. This
output is integer valued, y� �0, . . . ,N�, and is therefore a
quantization �digitization� of X �28�.

The conditional PMF of the output given the input is
Py	X�y=n 	X=x�, n� �0, . . . ,N�. We abbreviate this to
Py	X�n 	x�. The output distribution is

Py�n� = �
x

Py	X�n	x�fX�x�dx, n � 0, . . . ,N . �7�

The mutual information between X and y is that of a semi-
continuous channel �8�, and can be written as

I�X,y� = H�y� − H�y	X�

= − 

n=0

N

Py�n�log2 Py�n�

− �− �
−�

�

fX�x�

n=0

N

Py	X�n	x�log2 Py	X�n	x�dx� .

�8�

To progress further we use the notation introduced in �8�.
Let P1	x be the probability of the ith threshold device giving
output yi=1 in response to input signal value X=x. If the
noise CDF is F��·�, then

P1	x = 1 − F��� − x� . �9�

As noted in �8�, Py	X�n 	x� is given by the binomial distribu-
tion as

Py	X�n	x� = �N

n
�P1	x

n �1 − P1	x�N−n, n � 0, . . . ,N , �10�

and Eq. �8� reduces to

I�X,y� = − 

n=0

N

Py�n�log2
Py�n�

�N

n
� � + N�

x

fX�x�P1	x log2 P1	xdx

+ N�
x

fX�x��1 − P1	x�log2�1 − P1	x�dx . �11�

Numerically evaluating Eq. �11� as a function of input SNR
for given signal and noise distributions shows that the mutual
information has a unimodal stochastic resonance curve for
N�1, even when the signal and noise are both
suprathreshold—i.e., the threshold value � is set to the signal
mean �11,24�.

Further analytical simplification of Eq. �8� is possible in
the case where the signal and noise PDFs are identical, with
the same variance, i.e., fX�x�= f���−x� ∀ x �11�. The result is

I�X,y� = log2�N + 1� −
N

2 ln 2
−

1

N + 1

n=2

N

�N + 1 − 2n�log2 n .

�12�

What is quite remarkable about this result is that the mutual
information is independent of the shape of the PDFs of the
signal and noise, other than that fX�x�= f���−x� ∀ x. This
means that both PDFs have the same shape, but may possibly
have different means, and be mutually reversed along the x
axis about their means. In Sec. II D we compare the mutual
information of Eq. �12� with our calculations of the general
channel capacity.

C. Describing SSR using a single PDF fQ„�…

We now show that the mutual information in the SSR
model depends solely on N and an auxiliary PDF fQ�·�. This
PDF is shown to be that of the random variable describing
the conditional average output of the SSR model, given that
the input signal is X=x.

1. fQ„�… as the PDF of the average transfer function

Although the output of the SSR model, y, is a discrete
random variable, the conditional expected value of y, given
the input is X=x, is a continuous random variable, since X is.

We label this random variable as Ȳ. Since the PMF of y
given X=x is the binomial PMF as in Eq. �10�, we know that

Ȳ is the random variable that results from ȳ=E�y 	X=x�
=NP1	x. Inverting this gives x=�−F�

−1�1− ȳ /N�.
The PDF of Ȳ can be derived from fX�·�, since ȳ=NP1	x

provides an invertible transformation of X, with PDF fX�x�,
to Ȳ, with PDF f Ȳ�ȳ�. Using the well-known expression for
the resultant PDF, and provided the support of fX�x� is con-
tained in the support of f���−x�—since otherwise dx /dȳ
does not necessarily exist—we have
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f Ȳ�ȳ� = fX�x��� dx

dȳ
��

x=�−F
�
−1�1−ȳ/N�

= � fX�x�
Nf��� − x�

�
x=�−F

�
−1�1−ȳ/N�

, ȳ � �0,N� . �13�

Our condition regarding the supports of the signal and noise
ensures that f��·��0. If we make a further change to a new
random variable, Q, via 	= ȳ /N, the PDF of Q is

fQ�	� = � fX�x�
f��� − x�

�
x=�−F

�
−1�1−	�

, 	 � �0,1� , �14�

and the PDF of Ȳ can be written as

f Ȳ�ȳ� =
fQ�ȳ/N�

N
, �15�

which illustrates the physical significance of the auxiliary
PDF fQ�·� as the PDF of ȳ /N.

2. Mutual information in terms of fQ„�…

Making a change of variable in Eq. �11� from x to 	 via
	= P1	x=1−F���−x� gives

I�X,y� = − 

n=0

N

Py�n�log2
Py�n�

�N

n
� � + N�

	=0

	=1

fQ�	�	 log2 	 d	

+ N�
	=0

	=1

fQ�	��1 − 	�log2�1 − 	�d	 , �16�

where

Py�n� = �N

n
��

	=0

	=1

fQ�	�	n�1 − 	�N−nd	 . �17�

Equations �16� and �17� show that the PDF fQ�	� encapsu-
lates the behavior of the mutual information in the SSR
model.

3. Entropy of the random variable Q

If we make a change of variable from 	 to x, and note that
fX�x�dx= fQ�	�d	, the entropy of Q can be written as

H�Q� = − �
0

1

fQ�	�log2�fQ�	��d	

= − �
x

fX�x�log2� fX�x�
f��� − x��dx

= − D„fX�x��f��� − x�… , �18�

which is the negative of the relative entropy between the
signal PDF and the noise PDF reversed about x=0 and
shifted by �. In the event that the noise PDF is an even
function about its mean, and � is equal to the signal mean,
then the entropy of Q is simply the negative of the relative
entropy between the signal and noise PDFs.

4. Examples of the PDF fQ„�…

The PDF fQ�	� can be derived for specific signal and
noise distributions. Table I lists fQ�	� for several cases where
the signal and noise share the same distribution and a mean
of zero, but with not necessarily equal variances. The thresh-
old value � is also set to zero.

For each case considered, the standard deviation of the
noise can be written as a
�, where a is a positive constant,

TABLE I. The auxiliary PDF fQ�	� for five different matched signal and noise distributions �i.e., the same
distribution but with different variances�, as well as H�Q�, the entropy of fQ�	�. The threshold value � and the
signal and noise means are assumed to be zero, so that these results are independent of �. The noise intensity

=
� /
x is the ratio of the noise standard deviation to the signal standard deviation. For the Cauchy case, 
�

is the ratio of the full-width-at-half-maximum parameters. The label NAS indicates that there is no analytical
solution for the entropy.

Distribution fQ�	� H�Q�

Gaussian 
 exp��1−
2��erf−1�2	−1��2�
−log2�
�−

1

2 ln 2 � 1


2 −1�
Uniform, 
�1 �
, −

1

2

+0.5
	


1

2

+0.5,

0 otherwise � log2 


Laplacian �
�2	��
−1� for 0
	
0.5


�2�1−	���
−1� for 0.5
	
1 � −log2�
�−
1

2 ln 2 � 1



−1�

Logistic



�	�1−	���
−1�

�	
+ �1−	�
�2

NAS

Cauchy

�

1+tan2���	−0.5��

�1+
�
2tan2���	−0.5���

NAS
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and the standard deviation of the signal can be written a
x.
We find that fQ�	� in each case is a function of a single
parameter that we call the noise intensity, 
=
� /
x. Given
this, from Eq. �16�, it is clear that the mutual information
must be a function only of the ratio 
, so that it is invariant
to a change in 
x provided 
� changes by the same propor-
tion. This fact is noted to be true for the Gaussian case in �8�,
and the uniform case in �11�, but here we have illustrated
why.

We note however, that if � is not equal to the signal mean,
then fQ�	� will depend on the ratio � /
x, as well as � and 
,
and therefore so will the mutual information.

Table I also lists the entropy of Q for three cases where an
analytical expression could be found.

D. Large-N SSR: Literature review and outline of this paper

In the absence of noise, the maximum mutual information
is the maximum entropy of the output signal log2�N+1�. It
has been shown for very specific signal and noise distribu-
tions that the mutual information in the SSR model scales as
0.5 log2�N� for large N �11,21�. This means that the channel
capacity for large N under the specified conditions is about
half the maximum noiseless channel capacity. This situation
is discussed in Sec. III.

The only other work to consider SSR in the large-N re-
gime finds that the optimal noise intensity for Gaussian sig-
nal and noise occurs for 
�0.6 �16�. Unlike �21�—which
uses the exact expression of Eq. �12�, and derives a large-N
expression by approximating the summation with an
integral—�16� begins by using a Fisher-information-based
approximation to the mutual information.

In Appendix A 1 we rederive the formula of �16� in a
different manner, which results in new large-N approxima-
tions for the output entropy, as well as the mutual informa-
tion. These approximations provide the basis for the central
result of this paper, which is a general sufficient condition for
achieving channel capacity in the SSR model, for any arbi-
trary specified signal or noise distribution. This is discussed
in Sec. II. These new general results are compared with the
specific results of �11,16,21� in Sec. III.

II. A GENERAL EXPRESSION FOR THE SSR CHANNEL
CAPACITY FOR LARGE N

Fisher information �30,31� has previously been discussed
in numerous papers on both neural coding �32� and stochas-
tic resonance �33�, and both �34,35�. However, most SR stud-
ies using Fisher information consider only the case where the
signal itself is not a random variable. When it is a random
variable, it is possible to connect Fisher information and
Shannon mutual information under special conditions, as dis-
cussed in �16,22,34,36�.

It is demonstrated in �16� that the Fisher information at
the output of the SSR model as a function of input signal
value X=x, is given by

J�x� = �dP1	x

dx
�2

N

P1	x�1 − P1	x�
. �19�

In �16�, Eq. �19� is used to approximate the large-N mutual
information in the SSR model via the formula

I�X,y� = H�X� − 0.5�
x=−�

x=�

fX�x�log2�2�e

J�x�
�dx . �20�

This expression—which is derived under much more general
circumstances in �22,37�—relies on an assumption that an
efficient Gaussian estimator for x can be found from the
output of the channel, in the limit of large N.

In Appendix A 1 we outline an alternative derivation to
Eq. �20�—from which Eq. �19� can be inferred—that is spe-
cific to the SSR model, and provides additional justification
for its large-N asymptotic validity. This alternative derivation
allows us to find individual expressions for both the output
entropy and conditional output entropy. This derivation
makes use of the auxiliary PDF fQ�	� derived in Sec. I C.
The significance of this approach is that it leads to our dem-
onstration of the new results that the output entropy can be
written for large N as

H�y� � log2�N� − D„fX�x��f��� − x�… , �21�

while the mutual information can be written as

I�X,y� � 0.5 log2�N�

2e
� − D�fX�fS� , �22�

where fS�·� is a PDF known as Jeffrey’s prior,

fS�x� =
�J�x�
��N

. �23�

It is proven in Appendix A 2 that for the SSR model Eq. �23�
is indeed a PDF. This is a remarkable result, as in general
Jeffrey’s prior has no such simple form. Substitution of Eq.
�23� into Eq. �22� and simplifying leads to Eq. �20�, which
verifies this result.

By inspection of Eq. �19�, fS�x� can be derived from
knowledge of the noise PDF f����, since

fS�x� =
f��� − x�

��F��� − x��1 − F��� − x��
. �24�

A. A sufficient condition for optimality

Since relative entropy is always non-negative, from Eq.
�22� a sufficient condition for achieving the large-N channel
capacity is that

fX�x� = fS�x� ∀ x , �25�

with the resultant capacity as

C�X,y� = 0.5 log2�N�

2e
� � 0.5 log2 N − 0.3956. �26�

Equation �26� holds, provided the conditions for the approxi-
mation given by Eq. �20� hold. Otherwise, the right-hand
sides of Eqs. �21� and �22� give lower bounds. This means
that for the situations considered previously in �16,21�,
where the signal and noise both have the same distribution
�but different variances�, we can expect to find channel ca-
pacity that is less than or equal to that of Eq. �26�. This is
discussed in Sec. III.
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The derived sufficient condition of Eq. �25� leads to two
ways in which capacity can be achieved: �i� an optimal sig-
nal PDF for a given noise PDF, and �ii� an optimal noise
PDF for a given signal PDF.

B. Optimizing the signal distribution

Assuming Eq. �20� holds, the channel capacity achieving
input PDF fX

o�x� can be found for any given noise PDF from
Eqs. �24� and �25� as

fX
o�x� =

f��� − x�
��F��� − x��1 − F��� − x��

. �27�

1. Example: Uniform noise

Suppose the i.i.d. noise at the input to each threshold de-
vice in the SSR model is uniformly distributed on the inter-
val �−
� /2, 
� /2� so that it has PDF

f���� =
1


�

, � � �− 
�/2,
�/2� . �28�

Substituting Eq. �28� and its associated CDF into Eq. �27�,
we find that the optimal signal PDF is

fX
o�x� =

1

��
�
2/4 − �x − ��2

, x � �� − 
�/2,� + 
�/2� .

�29�

This PDF is in fact the PDF of a sine wave with uniformly
random phase, amplitude 
� /2, and mean �. A change of
variable to the interval 	� �0,1� via the substitution 	= �x
−�� /
�+0.5 results in the PDF of the Beta distribution with
parameters 0.5 and 0.5, also known as the arcsine distribu-
tion. As mentioned in Sec. I, this result provides some theo-
retical justification for the analog-to-digital conversion
method proposed in �23�.

This Beta distribution is bimodal, with the most probable
values of the signal those near zero and unity. Similar results
for an optimal input distribution in an information theoretic
optimization of a neural system have been found in �38�.
These results were achieved numerically using the Blahut-
Arimoto algorithm often used in information theory to find
channel capacity achieving source distributions, or rate-
distortion functions �30�.

2. Gaussian noise

Suppose the i.i.d. noise at the input to each threshold de-
vice has a zero mean Gaussian distribution with variance 
�

2 ,
with PDF

f���� =
1

�2�
�
2

exp�−
�2

2
�
2 � . �30�

Substituting Eq. �30� and its associated CDF into Eq. �27�
gives the optimal signal PDF. The resultant expression for
fX

o�x� does not simplify much, and contains the standard error
function erf�·� �39�.

We are able to verify that the resultant PDF has the cor-

rect shape via Fig. 8 in �16�, which presents the result of
numerically optimizing the signal PDF fX�x� for unity vari-
ance zero mean Gaussian noise, �=0, and N=10 000. As
with the work in �38�, the numerical optimization is achieved
using the Blahut-Arimoto algorithm. It is remarked in �16�
that the optimal fX�x� is close to being Gaussian. This is
illustrated by plotting both fX�x� and a Gaussian PDF with
nearly the same peak value as fX�x�. It is straightforward to
show that a Gaussian with the same peak value as our ana-
lytical fX

o�x� has variance 0.25�2. If the signal was indeed
Gaussian, then we would have 
=2/��0.6366, which is
very close to the value calculated for actual Gaussian signal
and noise in Sec. III.

Our analytical fX
o�x� from Eqs. �30� and �27�, with �=0, is

plotted on the interval x� �−3,3� in Fig. 2, along with a
Gaussian PDF with variance 0.25�2. Clearly the optimal sig-
nal PDF is very close to the Gaussian PDF. Our Fig. 2 is
virtually identical to Fig. 8 in �16�. It is emphasized that the
results in �16� were obtained using an entirely different
method that involves numerical iterations, and therefore pro-
vides excellent validation of our theoretical results.

C. Optimizing the noise distribution

We now assume that the signal distribution is known and
fixed. We wish to achieve channel capacity by finding the
optimal noise distribution. It is easy to show by integrating
Eq. �24� that the CDF corresponding to the PDF fS�·�, evalu-
ated at x, can be written in terms of the CDF of the noise
distribution as

FS�x� = 1 −
2

�
arcsin��F��� − x�� . �31�

If we now let fX�x�= fS�x�, then FX�s�=FS�x�, and rearrang-
ing Eq. �31� gives the optimal noise CDF in terms of the
signal CDF as

−3 −2 −1 0 1 2 3
0

0.05

0.1

0.15

0.2

0.25

x

N(0,0.25π2)
f
X

o(x)

FIG. 2. Optimal signal PDF fX
o�x� for zero mean, unity variance

Gaussian noise, and threshold value �=0, as obtained from Eq.
�27�. Superimposed is a Gaussian PDF with the same peak value as
fX
o�x�, so that it has variance 0.25�2. This figure uses our new the-

oretical results to analytically replicate Fig. 8 in �16�, which was
calculated numerically.
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F�
o�x� = sin2��

2
�1 − FX�� − x��� = 0.5 + 0.5 cos��FX�� − x�� .

�32�

Differentiating F�
o�x� gives the optimal noise PDF as a func-

tion of the signal PDF and CDF,

f�
o�x� =

�

2
sin���1 − FX�� − x���fX�� − x� . �33�

Unlike optimizing the signal distribution, which is the stan-
dard way for achieving channel capacity in information
theory �30�, we have assumed a signal distribution, and
found the “best” noise distribution, which is equivalent to
optimizing the channel, rather than the signal.

1. Example: Uniform signal

Suppose the signal is uniformly distributed on the interval
x� �−
x /2 ,
x /2�. From Eqs. �32� and �33�, the capacity
achieving noise distribution has CDF

F�
o�x� = 0.5 + 0.5 sin���x − ��


x
�, x � �� − 
x/2,� + 
x/2�

�34�

and PDF

f�
o�x� =

�

2
x
cos���x − ��


x
�, x � �� − 
x/2,� + 
x/2� .

�35�

Substitution of F�
o�x� and f�

o�x� into Eq. �19� finds the inter-
esting result that the Fisher information is constant for all x,

J�x� = N
�2


x
2 . �36�

This is verified in Eq. �37� below.

D. Consequences of optimizing the large-N channel capacity

1. Optimal Fisher information

Regardless of whether we optimize the signal for given
noise, or optimize the noise for a given signal, it is straight-
forward to show that the Fisher information can be written as
a function of the signal PDF,

J�x� = N�2�fX�x��2. �37�

Therefore, the Fisher information at large-N channel capacity
is constant for the support of the signal if and only if the
signal is uniformly distributed. The optimality of constant
Fisher information in a neural coding context is studied in
�32�.

2. The optimal PDF fQ„�…

A further consequence that holds in both cases is that the
ratio of the signal PDF to the noise PDF is

fX�x�
f��� − x�

=
2

� sin���1 − FX�x���
. �38�

This is not a PDF. However, if we make a change of variable
via 	=1−F���−x� we get the PDF fQ�	� discussed in Sec.
I C, which for channel capacity is

fQ
o �	� =

1

��	�1 − 	�
, 	 � �0,1� . �39�

This optimal fQ�	� is in fact the PDF of the Beta distribution
with parameters 0.5 and 0.5, i.e., the arcsine distribution. It is
emphasized that this result holds regardless of whether the
signal PDF is optimized for a given noise PDF or vice versa.

3. Output entropy at channel capacity

From Eq. �18�, the entropy of Q is equal to the negative of
the relative entropy between fX�x� and f���−x�. The entropy
of Q when capacity is achieved can be calculated from Eq.
�39� using direct integration as

H�Q� = log2��� − 2. �40�

From Eqs. �21� and �18�, the large-N output entropy at chan-
nel capacity in the SSR model is

H�y� = log2�N�

4
� . �41�

4. The optimal output PMF is Beta binomial

Suppose we have signal and noise such that
fQ�	�= fQ

o �	�—i.e., the signal and noise satisfy the sufficient
condition Eq. �25�—but that N is not necessarily large. We
can derive the output PMF for this situation, by substituting
Eq. �39� into Eq. �17�, to get

Py�n� = �N

n
� 1

�
�

0

1

	�n−0.5��1 − 	��N−n−0.5�d	

= �N

n
���n + 0.5,N − n + 0.5�

��0.5,0.5�
, �42�

where ��a ,b� is a Beta function. This PMF can be recog-
nized as that of the Beta binomial—or negative
hypergeometric—distribution with parameters N, 0.5, 0.5
�40�. It is emphasized that Eq. �42� holds as an exact analyti-
cal result for any N.

5. Analytical expression for the mutual information

The exact expression for the output PMF of Eq. �42� al-
lows exact calculation of both the output entropy and the
mutual information without need for numerical integration,
using Eq. �16�. This is because, when fQ�	�= fQ

o �	�, the inte-
grals in Eq. �16� can be evaluated exactly to get

Io�X,y� = − 

n=0

N

Py�n�log2
Py�n�

�N

n
� � + N log2� e

4
� . �43�

The exact values of Io�X ,y� and the corresponding output
entropy Ho�y� are plotted in Fig. 3�a� for N=1, . . . ,1000. For
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comparison, the exact I�X ,y� of Eq. �12�, which holds for
fX�x�= f���−x�, is also plotted, as well as the corresponding
entropy H�y�=log2�N+1�. It is clear that Io�X ,y� is always
larger than the mutual information of the fX�x�= f���−x�
case, and that Ho�y� is always less than its entropy, which is
the maximum output entropy.

To illustrate that the large-N expressions derived are
lower bounds to the exact formula plotted in Fig. 3�a�, and
that the error between them decreases with N, Fig. 3�b�
shows the difference between the exact and the large-N mu-
tual information and output entropy. This difference clearly
decreases with increasing N.

E. A note on the output entropy

The SSR model has been described in terms of signal
quantization theory in �28�, and compared with the related
process of companding in �41�. In this context quantization
means the conversion of a continuously valued signal to a
discretely valued signal that has only a finite number of pos-
sible values. Quantization in this sense occurs in analog-to-
digital converter circuits, lossy compression algorithms, and
histogram formation �42�. For a deterministic scalar quan-
tizer with N+1 output states, N threshold values are required.
In quantization theory, there is a concept of high-resolution
quantizers, in which the distribution of N→� threshold val-
ues can be described by a point density function ��x�. For
such quantizers, it can be shown that the quantizer output y

in response to a random variable X has entropy H�y�
� log2 N−D�fX ��� �42�. This is strikingly similar to our Eq.
�21� for the large-N output entropy of the SSR model. In fact,
since the noise that perturbs the fixed threshold value, �, is
additive, each threshold acts as an i.i.d. random variable with
PDF f���−x�, and therefore, for large N, f���−x� acts as a
density function describing the relative frequency of thresh-
old values as a function of x, just as ��x� does for a high-
resolution deterministic quantizer.

For deterministic quantizers, the point density function
can be used to approximate the high-resolution distortion
incurred by the quantization process. For the SSR model,
however, since the quantization has a random aspect, the
distortion has a component due to randomness as well as
lossy compression, and cannot be simply calculated from
f��·�. Instead, one can use the Fisher information to calculate
the asymptotic mean square error distortion, which is not
possible for deterministic high-resolution quantizers.

III. CHANNEL CAPACITY FOR LARGE N AND
“MATCHED” SIGNAL AND NOISE

Unlike the previous section, we now consider channel ca-
pacity under the constraint of matched signal and noise
distributions—i.e., where both the signal and noise, while
still independent, have the same distribution, other than their
variances. The mean of both signal and noise is zero and the
threshold value is also �=0. In this situation the mutual in-
formation depends solely on the ratio 
=
� /
x, which is the
only free variable. Finding channel capacity is therefore
equivalent to finding the optimal value of noise intensity 
.
Such an analysis provides verification of the more general
capacity expression of Eq. �26�, which cannot be exceeded.

Furthermore, inspection of Eq. �A10� shows that the
large-N approximation to the mutual information consists of
a term that depends on N and a term that depends only on 
.
This shows that for large N the channel capacity occurs for
the same value of 
—which we denote as 
o—for all N.

This fact is recognized in both �21� for uniform signal and
noise—where 
o→1—and �16� for Gaussian signal and
noise. Here, we investigate the value of 
o and the mutual
information at 
o for other signal and noise distributions, and
compare the channel capacity obtained with the case where
fX�x�= fS�x�. This comparison finds that the results of �16�
overstate the true capacity, and that large-N results in �11,21�
need to be improved to be consistent with the central results
of this paper.

From Eq. �22�, channel capacity for large N occurs for the
value of 
 that minimizes the relative entropy between fX
and fS. If we let

f�
� = �
x=−�

x=�

fX�x�ln� 1

J�x�
�dx , �44�

then from Eq. �20� it is also clear that this minimization is
equivalent to solving the following problem:
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FIG. 3. �a� Exact expressions obtained using fQ
o �	� for Io�X ,y�

and Ho�y�, as well as the exact mutual information and output en-
tropy when fX�x�= f���−x� �denoted as 
=1�, as a function of N.
�b� Difference between the exact expressions for Io�X ,y�, Ho�y�,
and I�X ,y� for fX�x�= f���−x�, and the corresponding large-N ex-
pressions given by Eqs. �22�, �41�, and �49�.
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o = min



f�
� . �45�

This is exactly the formulation stated in �16�. Problem �45�
can be equivalently expressed as


o = min


� f�
� = D�fX�f�� + �

x=−�

x=�

fX�x�log2�P1	x�dx� ,

�46�

where we have assumed that both the signal and noise PDFs
are even functions. The function f�
� can be found for any
specified signal and noise distribution by numerical integra-
tion, and problem �46� easily solved numerically. If an exact
expression for the relative entropy term is known, then only
g�
�=�x=−�

x=� fX�x�log2�P1	x�dx needs to be numerically calcu-
lated.

Table II gives the result of numerically calculating the
value of 
o, and the corresponding large-N channel capacity,
C�X ,y�, for a number of distributions. In each case,
C�X ,y�−0.5 log2�N��−0.3956, as required by Eq. �26�. The
difference between capacity and 0.5 log2�N� is about 0.4 bits
per sample. In the limit of large N, this shows that capacity is
almost identical, regardless of the distribution. However, the
value of 
o at which this capacity occurs is different in each
case.

As discussed in Sec. I B, the mutual information is iden-
tical whenever the signal and noise PDFs are identical, i.e.,

=1. It is shown below in Eq. �48� that for large N the
mutual information at 
=1 is I�X ,y�=0.5 log2�N�−0.6444.
Given that the channel capacity is slightly larger than this, as
indicated by Table II, for each case there is a constant differ-
ence between the channel capacity and the mutual informa-
tion at 
=1. This value is also listed in Table II.

A. Improvements to previous large-N approximations

We now use the results of Sec. II to show that previous
large-N expressions for the mutual information in the litera-
ture for the 
=1, Gaussian, and uniform cases can be im-
proved.

1. SSR for large N and �=1

We now consider the situation where fX�x�= f��x�, so that

=1. It is shown in �11� that in this case as N approaches
infinity, Eq. �12� reduces to

I�X,y� � 0.5 log2�N + 1

e
� � 0.5 log2�N + 1� − 0.7213.

�47�

To show that this expression can be improved, we begin with
the version of Eq. �20� given by Eq. �A10�. When 
=1 we
have fQ�	�=1 and H�Q�=0. The integrals in Eq. �A10� can
be solved to give the large-N mutual information at 
=1 as

I�X,y� � 0.5 log2�Ne

2�
� � 0.5 log2 N − 0.6044. �48�

Although Eqs. �47� and �48� agree as N→�, the constant
terms do not agree. It is shown in Appendix A 3 that the
discrepancy can be resolved by improving on the approxima-
tion to the average conditional entropy, H�y 	X�, made in
�11�. The output entropy at 
=1 can be shown to be simply
H�y�=log2�N+1� �11�. Subtracting Eq. �A18� from H�y� and
letting N approach infinity gives

I�X,y� � 0.5 log2� �N + 2�e
2�

� , �49�

which does have a constant term which agrees with Eq. �48�.
The explanation of the discrepancy is that �11� uses the
Euler-Maclaurin summation formula to implicitly calculate
log2�N!� in the large-N approximation to H�y 	X�. Using
Stirling’s approximation for N!, as done here, gives a more
accurate approximation.

The increased accuracy of Eq. �48� can be verified by
numerically comparing both Eq. �48� and Eq. �47� with the
exact expression for I�X ,y� of Eq. �12�, as N increases. The
error between the exact expression and Eq. �48� approaches
zero as N increases, whereas the error between Eq. �12� and
Eq. �47� approaches a nonzero constant for large N of
0.5 log2�e2 /2���0.117 bits per sample.

2. Uniform signal and noise

A derivation is given in �21� of an exact expression for
I�X ,y� for uniform signal and noise and 

1. In addition,
�21� finds a large-N approximation to the mutual informa-
tion. Using the same arguments as for the 
=1 case, this
approximation can be improved to

I�X,y� �



2
log2� �N + 2�e

2�
� + �1 − 
��1 − log2�1 − 
��

− 
 log2�
� . �50�

The accuracy of Eq. �50� can be verified by numerical com-
parison with the exact formula in �21�, as N increases. If one
replicates Fig. 3 of �21� in this manner, it is clear that Eq.
�50� is the more accurate approximation.

Differentiating Eq. �50� with respect to 
 and setting to
zero obtains the optimal value of 
 as


o =
��N + 2�

��N + 2� + ��8�/e�
. �51�

The channel capacity at 
o is

TABLE II. Large-N channel capacity and optimal 
 for matched
signal and noise.

Distribution C�X ,y�−0.5 log2�N� 
o C�X ,y�− I	�X ,y�	
=1

Gaussian −0.3964 0.6563 0.208

Logistic −0.3996 0.5943 0.205

Laplacian −0.3990 0.5384 0.205
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C�X,y� = 1 − log2�1 − 
o� = log2�2 +��N + 2�e
2�

� .

�52�

Clearly, limN→�
o=1, and the capacity approaches
0.5 log2��N+2�e / �2���, which agrees with Eq. �49�. Expres-
sions for 
o and the corresponding capacity for large N are
also given in �21�. Again, these are slightly different to Eqs.
�51� and �52�, due to the slightly inaccurate terms in the
large-N approximation to H�y 	X�. However, the important
qualitative result remains the same, which is that the channel
capacity scales with 0.5 log2�N� and the value of 
 which
achieves this asymptotically approaches unity.

3. Gaussian signal and noise

In �16�, an analytical approximation for 
o for the specific
case of Gaussian signal and noise is derived using a Taylor
expansion of the Fisher information inside the integral in Eq.
�20�. We give a slightly different derivation of this approach
that uses the PDF fQ�	�.

We begin with problem �46�. Solving this problem re-
quires differentiating f�
� with respect to 
 and solving for
zero. From Table I, the derivative of the relative entropy
between fX and f� is

d

d

D�fX�f�� =

1

ln 2
�
−1 − 
−3� . �53�

For the second term g�
�, we take the lead from �16� and
approximate ln�P1	x� by its second-order Taylor series expan-
sion �39�. The result is that

g�
� = − �
x=−�

x=�

fX�x�log2�P1	x�dx � 1 +
1

�
2 ln 2
. �54�

Numerical testing finds that the approximation of Eq. �54�
appears to be quite accurate for all 
, as the relative error is
no more than about 10% for 
�0.2. However, as we will
see, this is inaccurate enough to cause the end result for the
approximate channel capacity to significantly overstate the
true channel capacity.

Taking the derivative of Eq. �54� with respect to 
, sub-
tracting it from Eq. �53�, setting the result to zero and solving
for 
 gives the optimal value of 
 found in �16�, 
o

��1−2/��0.6028.
An expression for the mutual information at 
o can be

found by back substitution. Carrying this out gives the large-
N channel capacity for Gaussian signal and noise as

C�X,y� � 0.5 log2� 2N

e�� − 2�� , �55�

which can be written as C�X ,y��0.5 log2 N−0.3169.
Although Eq. �55� is close to correct, recall from Sec. II

that capacity must be less than 0.5 log2 N−0.3956 and hence
Eq. �55� significantly overstates the true capacity.
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APPENDIX A: DERIVATIONS

1. Mutual information for large N and arbitrary �

This appendix contains derivations of the large-N ap-
proximations to the output entropy and mutual information
discussed in Sec. II.

a. Conditional output entropy

An approximation to the conditional output entropy
H�y 	X� can be derived by noting that for large N the bino-
mial distribution can be approximated by a Gaussian distri-
bution with the same mean and variance—i.e., NP1	x and
NP1	x�1− P1	x�, respectively. Provided 0�NP1	x�N we have

Py	X�n	x� �
1

�2�NP1	x�1 − P1	x�
exp�−

�n − NP1	x�2

2NP1	x�1 − P1	x�
� .

�A1�

The average conditional output entropy is H�y 	X�
=�xfX�x�Ĥ�y 	x�dx, where

Ĥ�y	x� = − 

n=0

N

Py	X�n	x�log2�Py	X�n	x�� . �A2�

Using the well-known result for the entropy of a Gaussian
random variable �30�, we can write

Ĥ�y	x� � 0.5 log2�2�eNP1	x�1 − P1	x�� . �A3�

Multiplying both sides of Eq. �A3� by fX�x� and integrating
over all x gives

H�y	X� � 0.5 log2�2�eN�

+ 0.5�
x=−�

�

fX�x�log2�P1	x�1 − P1	x��dx

= 0.5 log2�2�eN� + 0.5�
	=0

	=1

fQ�	�log2�	�d	

+ 0.5�
	=0

	=1

fQ�	�log2�1 − 	�d	 . �A4�
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Equation �A4� can be verified for the case where
fX�x�= f���−x�, since this means fQ�	�=1 and
�	=0

	=1fQ�	�log2�	�d	=−log2�e�. Consequently Eq. �A4� re-
duces to H�y 	X��0.5 log2�2�N /e� which agrees precisely
with Eq. �A19�. This approximation breaks down when P1	x
is close to zero or unity. Furthermore, Eq. �A4� holds exactly
only for values of x for which Py	X�n 	x� is exactly Gaussian.
Otherwise, H�y 	X� is strictly less than the approximation
given.

b. Output distribution and entropy

For large N, since Py	X�n 	x� is Gaussian, y /N approaches
a � function located at P1	x=n /N. From Eqs. �7� and �17�,
this means that Py�n� can be written in terms of the PDF of
the average transfer function, fQ�·�, as

Py�n� �
fQ�n/N�

N
. �A5�

This result can be derived more rigorously using saddle-
point methods �22�.

Consider the case where the signal and noise both have
the same distribution but different variances. When the noise
intensity 
�1, then fQ�0�= fQ�1�=0, whereas for 
�1, we
have fQ�0�= fQ�1�=�. From Eq. �A5�, this means Py�0� and
Py�N� are either zero or infinite. However, for finite N, there
is some finite nonzero probability that all output states are on
or off. Indeed, at 
=1, we know that Py�n�=1/ �N+1� ∀ n,
and at 
=0, Py�0�= Py�N�=0.5. Furthermore, for finite N,
Eq. �A5� does not guarantee that 
n=0

N Py�n�=1. To increase
the accuracy of our approximation by ensuring that Py�0�
and Py�N� are always finite, and that Py�n� forms a valid
PMF, we define a new approximation as

Py��n� = �
fQ�n/N�

N
for n = 1, . . . ,N − 1,

0.5�1 − 

m=1

N−1
fQ�m/N�

N
� for n = 0, n = N . �

�A6�

Figure 4 shows that the approximation given by Py��n� is
highly accurate for N as small as 63, for 
 both smaller and
larger than unity.

Consider the entropy of the discrete random variable y.
Making use of Eq. �A5�, we have

H�y� = − 

n=0

N

Py�n�log2�Py�n��

= −
1

N


n=0

N

fQ� n

N
�log2� fQ� n

N
�� +

log2�N�
N



n=0

N

fQ� n

N
� .

�A7�

Suppose that the summations above can be approximated
by integrals, without any remainder terms. Carrying this out
and then making the change of variable 	=n /N gives

H�y� � log2 N − �
	=0

	=1

fQ�	�log2�fQ�	��d	 = log2 N + H�Q� ,

�A8�

where H�Q� is the differential entropy of the random variable
Q. Performing a change of variable in Eq. �A8� of 	=1
−F���−x� gives

H�y� � log2�N� − D„fX�x��f��� − x�… . �A9�

This result shows that H�y� for large N is approximately the
sum of the number of output bits and the negative of the
relative entropy between fX and f�. Therefore, since relative
entropy is always non-negative, the approximation to H�y�
given by Eq. �A9� is always less than or equal to log2�N�.
This agrees with the known expression for H�y� in the spe-
cific case of 
=1 of log2�N+1�, which holds for any N.

c. Mutual information

Subtracting Eq. �A4� from Eq. �A8� gives a large-N ap-
proximation to the mutual information as

I�X,y� � 0.5 log2� N

2�e
� + H�Q� − 0.5

��
	=0

	=1

fQ�	�log2�	�1 − 	��d	 . �A10�

As discussed in the main text, the mutual information scales
with 0.5 log2�N�. The importance of the N-independent terms
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FIG. 4. Approximation to the output PMF Py�n�, given by Eq.
�A6�, for N=63. Circles indicate the exact Py�n� obtained by nu-
merical integration and the crosses show approximations. 
= �a� 0.4
and �b� 1.6, Gaussian signal and noise.
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in Eq. �A10� is that they determine how the mutual informa-
tion varies from 0.5 log2�N /2�e� for different PDFs fQ�	�.

Figure 5 shows, as examples, the approximation of Eq.
�A10�, as well as the exact mutual information—calculated
by numerical integration—for the Gaussian and Laplacian
cases, for a range of 
 and increasing N. As with the output
entropy, the mutual information approximation is quite good
for 
�0.7, but worsens for smaller 
. However, as N in-
creases the approximation improves.

Equation �A10� can be rewritten via the change of vari-
able, x=�−F�

−1�1−	�, as

I�X,y� = 0.5 log2� N

2�e
� − �

x=−�

x=�

fX�x�log2�P1	x�1 − P1	x��dx

− D„fX�x��f��� − x�… . �A11�

Rearranging Eq. �A11� gives Eq. �20�—with the Fisher in-
formation J�x� given by Eq. �19�—which is precisely the
same as that derived in �16� as an asymptotic large-N expres-
sion for the mutual information. Our analysis extends �16� by
finding large-N approximations to both H�y� and H�y 	X�, as
well as the output distribution Py�n�. We have also illustrated
the role of the PDF fQ�	� in these approximations, and jus-
tified the use of Eq. �20� for the SSR model.

2. Proof that fS„x… is a PDF

As shown in �16�, the Fisher information for the SSR
model is given by Eq. �19�. Consider fS�x� as in Eq. �24�.
Since f��x� is a PDF and F��x� is the CDF of � evaluated at
x, we have fS�x��0 ∀ x. Letting h�x�=F���−x�, Eq. �24�
can be written as

fS�x� =
− h��x�

��h�x� − h�x�2
. �A12�

Suppose f��x� has support x� �−a ,a�. Integrating fS�x� over
all x gives

�
x=−a

x=a

fS�x�dx = �
x=−a

x=a − h��x�
��h�x� − h�x�2

dx

= −
1

�
�2 arcsin	��h�x��	x=−a

x=a �

= −
2

�
�arcsin�0� − arcsin�1�� = 1,

�A13�

which means fS�x� is a PDF.

3. H„y �X… for large N and �=1

Here we derive a large-N approximation to H�y 	X� used
in Sec. III A 1. For 
=1 the output PMF is Py�n�=1/
�N+1� ∀ n �11�. Using this, it can be shown that

− 

n=0

N

Py�n�log2�N

n
� = log2�N!� −

2

N + 1

n=1

N

n log2 n .

�A14�

We will now see that both terms of Eq. �A14� can be simpli-
fied by approximations that hold for large N. First, for the
log2�N!� term, we can make use of Stirling’s formula �39�,
which is valid for large N,

N! � ��2�N�NN exp�− N� . �A15�

This approximation is particularly accurate if the logarithm
is taken of both sides, which we require. Second, the sum in
the second term of Eq. �A14� can be approximated by an
integral and simplified by way of the Euler-Maclaurin sum-
mation formula �39�. The result is

2

N + 1

n=1

N

n log2 n � N log2�N + 1� −
N�N + 2�

2 ln 2�N + 1�

+ O� log N

N
� . �A16�
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FIG. 5. Large-N approximation to mutual information given by
Eq. �A10� and exact mutual information calculated numerically.
The exact expression is shown by thin solid lines, and the approxi-
mation by circles, with a thicker solid line interpolating between
values of 
 as an aid to the eye. The approximation can be seen to
always be a lower bound on the exact mutual information. �a�
Gaussian and �b� Laplacian.
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Subtracting Eq. �A16� from the logarithm of Eq. �A15� gives

− 

n=0

N

Py�n�log2�N

n
� � 0.5 log2� N

e2� −
N

2 ln 2
�2 −

N + 2

N + 1
�

+ 0.5 log2�2�� − O� log N

N
� , �A17�

where we have used N log2�1+1/N�=1/ ln 2+O�1/N�.
When Eq. �A17� is substituted into an exact expression for
H�y 	X� given in �11�, we get

H�y	X� =
N

2 ln 2
− 


n=0

N

Py�n�log2�N

n
�

� 0.5 log2 N + 0.5� N

N + 1
− 2�log2�e�

+ 0.5 log2�2�� − O� log N

N
� . �A18�

The final result is that, for large N,

H�y	X� � 0.5 log2�2�N

e
� . �A19�
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