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These games have attracted much interest in other fields, for example, quantum
information theory (Abbott et al . 2002; Flitney et al . 2002; Meyer & Blumer 2002a;
Lee et al . 2002a), control theory (Kocarev & Tasev 2002; Dinis & Parrondo 2003),
Ising systems (Moraal 2000), pattern formation (Buceta et al . 2002a, b; Buceta &
Lindenberg 2002), stochastic resonance (Allison & Abbott 2001b), random walks
and diffusions (Cleuren & van den Broeck 2002; Key et al . 2002; Kinderlehrer &
Kowalczyk 2002; Percus & Percus 2002; Pyke 2002), economics (Boman et al . 2001),
molecular motors in biology (Ait-Haddou & Herzog 2002; Heath et al . 2002) and bio-
genesis (Davies 2001). They have also been considered as quasi-birth–death processes
(Latouche & Taylor 2003) and lattice gas automata (Meyer & Blumer 2002b).

Parrondo’s two original games are as follows. Game A is a simple coin-tossing
game, where a player increases (decreases) his capital in one unit if heads (tails)
show up. The probability of winning is denoted by p and the probability of losing is
1 − p.

Game B is a capital-dependent game, where the probability of winning depends
upon the actual capital of the player, modulo a given integer M . Therefore, if the
capital is i, the probability of winning πi is taken from the set {π0, π1, . . . , πM−1} as
πi = πi mod M . In the original version of game B, the number M is set equal to three
and the probability of winning can take only two values, p1, p2, respectively, according
to whether the capital of the player is a multiple of three or not. Using the previous
notation we have p1 ≡ π0, p2 ≡ π1 = π2. The numerical values corresponding to
Parrondo’s original games (Harmer & Abbott 1999a) are

p = 1
2 − ε,

p1 = 1
10 − ε,

p2 = 3
4 − ε,

⎫⎪⎪⎬
⎪⎪⎭ (1.1)

where ε is a small biasing parameter introduced to control the three probabilities.
Although the original game B was based on a modulo rule, there are other versions

of Parrondo’s games where this rule has been replaced by a history-dependent rule
(Parrondo et al . 2000); combinations of two history-dependent games are also con-
sidered (Kay & Johnson 2002). Instead of a random alternation, chaotic alternation
between the games has been studied (Arena et al . 2003). The effects of cooper-
ation between players have also been considered in Parrondo’s games, where the
probabilities of game B depend on the actual state of the neighbours of the player
(Toral 2001). A redistribution of capital between the players has additionally been
considered (Toral 2002). Other variations of collective games have recently appeared
(Mihailović & Rajković 2003a, b). For a full review of Parrondo’s paradox see Harmer
& Abbott (2002).

Games A and B appearing in Parrondo’s paradox can be thought of as diffusion
processes under the action of an external potential. However, they do not have the
more general form of a natural diffusion process, because the capital will always
change with every game played, whereas in the most general diffusion process a
particle can either move up or down or remain in the same position at a given time.
In this article we present a new version of Parrondo’s games, where a new transition
probability is taken into account. We introduce a self-transition probability, that
is, the capital of the player now can remain the same after a game played with a
probability ρi, taken from the set {ρ0, ρ1, . . . , ρM−1} as ρi = ρi mod M . Again, for
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simplicity, we will only consider the case of M = 3 with just two possible self-
transition probabilities, r1, r2, depending only on the capital being a multiple of
three or not: r1 ≡ ρ0, r2 ≡ ρ1 = ρ2.

As we will show, the significance of this new version is a natural evolution of
Parrondo’s games, which can now be rigorously derived from the Fokker–Planck
equation, based on a physical flashing ratchet model.

The outline of this paper is as follows. In § 2 we briefly review two relations con-
cerning Parrondo’s games and the Fokker–Planck equation. In both relations the
inclusion of self-probabilities is straightforward. In § 3 we give a mathematical analy-
sis of the new games using discrete-time Markov chains (DTMCs) and derive con-
ditions for the paradox to appear. In § 4 we calculate the rates of winning, describe
the parameter space and present numerical simulations which confirm and extend
the theoretical analysis. Finally, in § 5 we provide a brief discussion of the results.

2. The flashing ratchet and the Fokker–Planck equation

Despite the fact that Parrondo’s paradox was inspired by the flashing ratchet, the
relation between both has only been made quantitative recently, when two different
approaches have established a formal relation between Parrondo’s games and the
physical model of the flashing ratchet (Allison & Abbott 2002; Toral et al . 2003a).
We now very briefly review both approaches.

In the scheme proposed by Allison & Abbott (2002), the starting point is the follow-
ing general Fokker–Planck equation (see Horsthemke & Lefever 1984), for the prob-
ability P (x, t) of a Brownian particle moving in a time-dependent one-dimensional
potential V (x, t):

D
∂2P

∂x2 − P
∂α

∂x
− α

∂P

∂x
− ∂P

∂t
= 0, (2.1)

where α and D are referred to as the infinitesimal first and second moments of
diffusion, respectively; D has a constant value (Fick’s law constant), while α(x, t) is
a function related to the applied potential V (x, t) by the equation

α(x, t) = −u
∂

∂x
V (x, t), (2.2)

where u denotes the mobility of the Brownian particle.
Equation (2.1) is then discretized using a finite-difference approximation, to obtain

Pi,j = ai,j
−1 · Pi−1,j−1 + ai,j

0 · Pi,j−1 + ai,j
+1 · Pi+1,j−1, (2.3)

where

ai,j
−1 =

{
Dτ

λ2 +
α(i, j)τ

2λ

}(
α(i + 1, j − 1) − α(i − 1, j − 1)

2λ
τ + 1

)−1

, (2.4)

ai,j
0 =

{
− 2

Dτ

λ2 + 1
}(

α(i + 1, j − 1) − α(i − 1, j − 1)
2λ

τ + 1
)−1

, (2.5)

ai,j
+1 =

{
Dτ

λ2 − α(i, j)τ
2λ

}(
α(i + 1, j − 1) − α(i − 1, j − 1)

2λ
τ + 1

)−1

. (2.6)
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Here the index i denotes the discretized space x = iλ, whereas j denotes the
discretized time t = jτ ; λ and τ account for the space- and time-discretization steps,
respectively.

This discretized form (2.3) of the Fokker–Planck equation is compared with the
master equation for any of the gambling games used in Parrondo’s paradox:

Pi,j = πi−1 · Pi−1,j−1 + ρi · Pi,j−1 + (1 − πi+1 − ρi+1) · Pi+1,j−1, (2.7)

where Pi,j denotes the probability that the player has a capital i at the jth play. In
the original Parrondo games the self-transition probability is zero, so that the term
ρi is set to zero in the following calculations.

Combining (2.3) and (2.7) we get

πi−1

1 − πi+1
=

ai,j
−1

ai,j
+1

=
(

1 +
λ

2Dτ
α(i, j)

)(
1 − λ

2Dτ
α(i, j)

)−1

, (2.8)

and it follows that the function α(i, j) ≡ αi is independent of the time index j:

αi =
2D

λ

πi−1 − (1 − πi+1)
πi−1 + (1 − πi+1)

. (2.9)

Finally, the discretized values of the potential are obtained by combining (2.2) with
(2.9),

Vi = −2D

u

i∑
k=0

{
1 −

(
1 − πk+1

πk−1

)}(
1 +

(
1 − πk+1

πk−1

))−1

. (2.10)

This equation allows one to obtain the discretized version of the physical potential
Vi in terms of the probabilities πi of the games.

A second relation between the Fokker–Planck equation and the master equation
has been proposed by Toral et al . (2003a). Unlike the first approach described
above,the starting point is now not the Fokker–Planck equation but rather the
rewriting of the master equation (2.7) in the form of a continuity equation for the
probability:

Pi,j − Pi,j−1 = −[Ji+1,j − Ji,j ], (2.11)

where the current Ji,j is given by

Ji,j = 1
2 [FiPi,j + Fi−1Pi−1,j ] − [DiPi,j − Di−1Pi−1,j ] (2.12)

and
Fi = 2πi + ρi − 1, Di =

1 − ρi

2
. (2.13)

These coefficients can be related with their analogous terms corresponding to a
discretization of the Fokker–Planck equation for a probability P (x, t),

∂P (x, t)
∂t

= −∂J(x, t)
∂x

, (2.14)

with a current
J(x, t) = F (x)P (x, t) − ∂[D(x)P (x, t)]

∂x
(2.15)

for a general drift F (x) and diffusion D(x).
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Again considering the case ρi = 0, we have

Di ≡ D = 1
2 , Fi = −1 + 2πi (2.16)

and the following form for the current:

Ji,j = πi−1Pi−1,j − (1 − πi)Pi,j , (2.17)

which is merely the probability flux from state i − 1 to state i.
The relation between the external potential Vi and the games probabilities is in

this formulation written as

Vi = −1
2

i∑
k=1

ln
[
1 + Fk−1

1 − Fk

]
= −1

2

i∑
k=1

ln
[

πk−1

1 − πk

]
, (2.18)

where the value V0 = 0 has been adopted for convenience. This equation is the main
result concerning the relation between the games probabilities πi and the discretized
version of the potential Vi. As with (2.10), through (2.18) we can obtain the potential
that corresponds to a Parrondo game. Notice that both approaches yield different val-
ues for the potential Vi corresponding to a set of games probabilities {π0, . . . , πM−1}.
For instance, in the case of a fair game, the potential given by (2.18) is a periodic
function Vi+M = Vi (Toral et al . 2003b). Nevertheless, it can be shown that both
potentials coincide in the limit of an infinitesimally small space-discretized step λ.

It is possible to solve the master equation (2.11) using a constant current Ji,j = J ,
together with the boundary condition P st

i = P st
i+M in order to obtain the stationary

probability distribution P st
i . The result is

P st
i = Ne−2Vi

[
1 − 2J

N

i∑
j=1

e2Vj

1 − Fj

]
(2.19)

with a current

J = N(e−2VM − 1)
(

2
M∑

j=1

e2Vj

1 − Fj

)−1

(2.20)

and N is a normalization constant obtained from
M−1∑
k=0

P st
k = 1.

The inverse problem of obtaining the game probabilities in terms of the potential
can also be solved. It requires the solution of (2.18) with the boundary condition
F0 = FM . The result is given by

Fi = (−1)ie2Vi

[∑M
j=1(−1)j [e−2Vj − e−2Vj−1 ]

(−1)Me2(V0−VM ) − 1
+

i∑
j=1

(−1)j [e−2Vj − e−2Vj−1 ]
]
, (2.21)

which, via πi = (1 + Fi)/2, allows one to obtain the probabilities πi in terms of the
potential Vi. It is clear that the additional condition πi ∈ [0, 1] ∀i must be fulfilled
by any acceptable solution.
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(p, r, 1 − p − r)

(p1, r1, 1 − p1 − r1) (p2, r2, 1 − p2 − r2)

(capital divisible by M,  otherwise)
game A game B

W R L

W R L W R L

Figure 1. Probability trees of the new games A and B. Game A is formed by three branches,
denoting the three possibilities of winning (W), remaining in the same state (R) and losing (L).
Note that game B has a capital-dependent rule and therefore is not a martingale.

To sum up, we have two approaches, either (2.10) or (2.18), that allow one to
obtain the potential corresponding to a set of probabilities (π0, . . . , πM−1) defining
a Parrondo game. In both approaches it is very easy to introduce self-probabilities
ρi �= 0. Therefore, we find it interesting to investigate the effect of these terms in
Parrondo’s paradox. Therefore, we introduce a new branch in the original games
(Harmer & Abbott 2002) that accounts for the self-transition probability denoted by
ri. The new diagrams for the games A and B are presented in figure 1. In the next
section we will investigate the effect of this new inclusion upon the Parrondo effect.

3. Analysis of the new Parrondo games with self-transitions

(a) Game A

We start with the new game A, where the probability of winning is p, the probability
of remaining with the same capital will be denoted as r, and we lose with probability
q = 1 − r − p.

Following the same reasoning as Harmer et al . (2000), we will calculate the prob-
ability fj that our capital reaches zero in a finite number of plays, supposing that
initially we have a given capital of j units. From Markov chain analysis (Karlin 1973)
we have that

(i) fj = 1 for all j � 0, and so the game is either fair or a losing one, or

(ii) fj < 1 for all j > 0, in which case the game can be a winning one because
there is a certain probability that our capital can grow indefinitely.

We are looking for the set of numbers {fj} that correspond to the minimal non-
negative solution of the equation

fj = p · fj+1 + r · fj + q · fj−1, j � 1, (3.1)

with the boundary condition
f0 = 1. (3.2)

With a subtle rearrangement, (3.1) can be written in the form

fj =
p

1 − r
· fj+1 +

q

1 − r
· fj−1. (3.3)
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The solution of (3.3), for the initial condition (3.2), is

fj = A ·
[(

1 − p − r

p

)j

− 1
]

+ 1,

where A is a constant. For the minimal non-negative solution we obtain

fj = min
[
1,

(
1 − p − r

p

)j]
. (3.4)

We can therefore see that the new game A is a winning game for

1 − p − r

p
< 1, (3.5)

a losing game for
1 − p − r

p
> 1 (3.6)

and a fair game for
1 − p − r

p
= 1. (3.7)

(b) Game B

We now analyse the new game B. Like game A, we have introduced the probabilities
of a self-transition in each state, that is, if the capital is a multiple of three we have a
probability r1 of remaining in the same state, whereas if the capital is not a multiple
of three then the probability is r2. The rest of the probabilities will follow the same
notation as in the original game B, so we have the following scheme:

mod(capital, 3) = 0 → p1, r1, q1,

mod(capital, 3) �= 0 → p2, r2, q2.

}
(3.8)

As in game A, we will follow similar reasoning as Harmer et al . (2000), but this
time for game B. Let gj be the probability that the capital will reach the zeroth
state in a finite number of plays, supposing an initial capital of j units. Again, from
Markov chain theory we have

(i) gj = 1 for all j � 0, so game B is either fair or a losing one, or

(ii) gj < 1 for all j > 0, in which case game B can be a winning one because there
is a certain probability for the capital to grow indefinitely.

The following set of recurrence equations must be solved:

g3j = p1 · g3j+1 + r1 · g3j + (1 − p1 − r1) · g3j−1, j � 1,

g3j+1 = p2 · g3j+2 + r2 · g3j+1 + (1 − p2 − r2) · g3j , j � 0,

g3j+2 = p2 · g3j+3 + r2 · g3j+2 + (1 − p2 − r2) · g3j+1, j � 0.

⎫⎪⎬
⎪⎭ (3.9)
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As in game A, we are looking for the set of numbers {gj} that correspond to the
minimal non-negative solution. Eliminating terms g3j−1, g3j+1 and g3j+2 from (3.9)
we get

[p1p
2
2 +(1−p1 −r1)(1−p2 −r2)2] ·g3j = p1p

2
2 ·g3j+3 +(1−p1 −r1)(1−p2 −r2)2 ·g3j−3.

(3.10)
Considering the same boundary condition as in game A, g0 = 1, the last equation

has a general solution of the form

g3j = B ·
[(

(1 − p1 − r1)(1 − p2 − r2)2

p1p2
2

)j

− 1
]

+ 1,

where B is a constant. For the minimal non-negative solution we obtain

g3j = min
[
1,

(
(1 − p1 − r1)(1 − p2 − r2)2

p1p2
2

)j]
. (3.11)

It can be verified that the same solution as (3.11) will be obtained by solving (3.9)
for g3j+1 and g3j+2, leading to the same condition for the probabilities of the games.

As with game A, game B will be a winning one if

(1 − p1 − r1)(1 − p2 − r2)2

p1p2
2

< 1, (3.12)

a losing one if
(1 − p1 − r1)(1 − p2 − r2)2

p1p2
2

> 1, (3.13)

and fair if
(1 − p1 − r1)(1 − p2 − r2)2

p1p2
2

= 1. (3.14)

(c) Game AB

Now we will turn to the random alternation of games A and B with probability γ.
This will be named as game AB. For this game AB we have the following (primed)
probabilities:

(i) if the capital is a multiple of three,

p′
1 = γ · p + (1 − γ) · p1,

r′
1 = γ · r + (1 − γ) · r1;

}
(3.15)

(ii) if the capital is not multiple of three,

p′
2 = γ · p + (1 − γ) · p2,

r′
2 = γ · r + (1 − γ) · r2.

}
(3.16)

The same reasoning as in game B can be made, but using the new probabilities
p′
1, r′

1, p′
2, r′

2 instead of p1, r1, p2, r2. Eventually, we obtain that game AB will be a
winning one if

(1 − p′
1 − r′

1)(1 − p′
2 − r′

2)
2

p′
1p

′2
2

< 1, (3.17)
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a losing one if
(1 − p′

1 − r′
1)(1 − p′

2 − r′
2)

2

p′
1p

′2
2

> 1, (3.18)

and fair if
(1 − p′

1 − r′
1)(1 − p′

2 − r′
2)

2

p′
1p

′2
2

= 1. (3.19)

The paradox will be present if A and B are losing games, while game AB is a
winning one. In this framework this means that the conditions (3.6), (3.13) and (3.17)
must be satisfied simultaneously. In order to obtain sets of probabilities fulfilling
theses conditions, we first obtain sets of probabilities yielding fair A and B games
but such that AB is a winning game, and then introduce a small biasing parameter ε,
making A and B losing games, but still keeping a winning AB game. As an example,
we give some sets of probabilities that fulfil these conditions:

p = 9
20 − ε, r = 1

10 , p1 = 9
100 − ε, r1 = 1

10 , p2 = 3
5 − ε, r2 = 1

5 , (3.20 a)

p = 9
20 − ε, r = 1

10 , p1 = 509
5000 − ε, r1 = 1

10 , p2 = 7
10 − ε, r2 = 1

20 ,
(3.20 b)

p = 9
20 − ε, r = 1

10 , p1 = 3
25 − ε, r1 = 2

5 , p2 = 3
5 − ε, r2 = 1

10 ,
(3.20 c)

p = 1
4 − ε, r = 1

2 , p1 = 3
25 − ε, r1 = 2

5 , p2 = 3
5 − ε, r2 = 1

10 .
(3.20 d)

4. Properties of the games

(a) Rate of winning

If we consider the capital of a player at play number n, Xn modulo M , we can
perform a discrete-time Markov chain (DTMC) analysis of the games with a state-
space {0, 1, . . . , M − 1} (cf. Harmer et al . 2001). For the case of Parrondo’s games
we have M = 3, so the following set of difference equations for the probability
distribution can be obtained (Lee et al . 2002b):

P0,n+1 = p2 · P2,n + r1 · P0,n + q2 · P1,n,

P1,n+1 = p1 · P0,n + r2 · P1,n + q2 · P2,n,

P2,n+1 = p2 · P1,n + r2 · P2,n + q1 · P0,n,

⎫⎪⎬
⎪⎭ (4.1)

which can be put in a matrix form as Pn+1 = T · Pn, where

T =

⎛
⎝r1 q2 p2

p1 r2 q2
q1 p2 r2

⎞
⎠ (4.2)

and

Pn =

⎛
⎝P0,n

P1,n

P2,n

⎞
⎠ . (4.3)
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In the limiting case where n → ∞ the system will tend to a stationary state
characterized by

Π = T · Π, (4.4)

where limn→∞ Pn = Π.
Solving (4.4) is equivalent to solving an eigenvalue problem. As we are dealing

with Markov chains, we know that there will be an eigenvalue λ = 1 and the rest will
be less than 1 (Karlin 1973). For the λ = 1 value we obtain the following eigenvector
giving the stationary probability distribution in terms of the games’ probabilities.

Π ≡

⎛
⎝Π0

Π1
Π2

⎞
⎠ =

1
D

⎛
⎝ (1 − r2)2 − p2 · (1 − p2 − r2)

(1 − r1)(1 − r2) − p2 · (1 − p1 − r1)
(1 − r1)(1 − r2) − p1 · (1 − p2 − r2)

⎞
⎠ , (4.5)

where D is a normalization constant given by

D = (1 − r2)2 + 2(1 − r1)(1 − r2) − p2(2 − p2 − r2 − r1 − p1) − p1(1 − p2 − r2). (4.6)

The rate of winning at the nth step has the general expression (Harmer et al .
2001)

r(n) ≡ E[Xn+1] − E[Xn] =
∞∑

i=−∞
i · [Pi,n+1 − Pi,n]. (4.7)

Using these expressions and by similar techniques to those employed in Harmer et
al . (2001) it is possible to obtain the stationary rate of winning for the new games
introduced in the previous section. The results are, for game A,

rst
A = 2p + r − 1 (4.8)

and, for game B,

rst
B = 2p2 + r2 − 1 + [q2 − p2 + p1 − q1] · Π0

=
3
D

(p1p
2
2 − (1 − p1 − r1)(1 − p2 − r2)2), (4.9)

where D is given by (4.6).
It is an easy task to check that when r1 = r2 = 0 we recover the known expressions

for the original games obtained by Harmer et al . (2001). To obtain the stationary
rate for the randomized game AB we just need to replace in the above expression
the probabilities from (3.15) and (3.16).

Within this context the paradox appears when rst
A � 0, rst

B � 0 and rst
AB > 0. If,

for example, we use the values from (3.20 d) and a switching probability γ = 1/2, we
obtain the following stationary rates for game A, game B and the random combina-
tion AB:

rst
A = −2ε,

rst
B =

−ε(441 − 120ε + 1000ε2)
231 − 40ε + 500ε2

,

rst
AB =

93 − 9828ε + 1920ε2 − 32000ε3

2(2499 − 320ε + 8000ε2)
,

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(4.10)

which yield the desired paradoxical result for small ε > 0.
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We can also evaluate the stationary rate of winning when both the probability
of winning and the self-transition probability for the games vary with a parameter
ε as p = p − 1

2ε and r = r + ε, so that normalization is preserved. Using the set
of probabilities derived from (3.20 d), namely p = 1

4 − 1
2ε, r = 1

2 + ε, p1 = 3
25 − 1

2ε,
r1 = 2

5 + ε, p2 = 3
5 − 1

2ε, r2 = 1
10 + ε, the result is

rst
A = 0,

rst
B =

−ε(21 − 20ε)
2(77 − 200ε + 125ε2)

,

rst
AB =

31 − 164ε + 160ε2

2(833 − 2600ε + 2000ε2)
,

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(4.11)

again a paradoxical result.
A comparison between the expressions for the rates of winning of the original

Parrondo games (Harmer et al . 2001) and the new games can be made in two ways.
The first one consists in comparing two games with the same probabilities of winning,
say original game A with probabilities p = 1

2 and q = 1
2 and the new game A with

probabilities pnew = 1
2 , rnew = 1

4 and qnew = 1
4 . In this case we can think of the ‘old’

probability of losing q as taking the place of the self-transition probability rnew and
the new probability of losing qnew. In this way we obtain a higher rate of winning in
the new game A than in the original game: remember that the new game A has an
extra term r in the rate of winning compared with the original rate, and this extra
term is what gives rise to the higher value. The same reasoning applies for game B,
leading to the same conclusion.

The other possibility could be to compare the two games with the same probability
of losing. In this case, we follow the same reasoning as before, but now we can
imagine the ‘old’ probability of winning as replacing the winning and self-transition
probabilities of the new game. What we now obtain is a lower rate of winning for
the new game compared with the original one. An easy way of checking this is by
rewriting (4.8) and (4.9) as

rst
A = p − q,

rst
B =

3
D

(p1p
2
2 − q1q

2
2).

⎫⎬
⎭ (4.12)

So for the same value of q but a lower value of p we obtain a lower value for the rates
of game A and B.

We now explore the range of probabilities in which the Parrondo effect takes place.
We restrict ourselves to the case M = 3 and γ = 1/2 used in the previous formulae.

The fact that we have introduced three new probabilities complicates the repre-
sentation of the parameter space as we have six variables altogether, two variables
{p, r} from game A and four variables {p1, r1, p2, r2} coming from game B. In order
to simplify this high number of variables, some probabilities must be set so that
a representation in three dimensions will be possible. In our case we will fix the
variables {r, r1, r2} so that the surfaces can be represented in the parameter space
{p, p1, p2}.

In figure 2 we can see the resulting region where the paradox exists for the variables
r = 1

4 , r1 = 1
8 and r2 = 1

10 . Some animations have shown that the volume where the
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Figure 4. Comparison of the theoretical rates of winning (dashed lines) together with the rates
obtained through simulations (solid lines). All the simulations were obtained by averaging over
50 000 trials and over all possible initial conditions. (a) The parameters correspond to the ones
used in equations (4.10). (b) The parameters correspond to the ones used in equations (4.11).

paradox takes place gradually shrinks to zero as the variables r, r1 and r2 increase
from zero to their maximum value of unity.

Another interesting fact that we have encountered, which remains an open ques-
tion, is the impossibility of obtaining the equivalent parameter space to figure 2
with the fixed variables {p, p1, p2} and with the parameter space variables {r, r1, r2}
instead—it is possible to obtain the planes for games A and B, but not for the
randomized game AB.

(b) Simulations and discussion

We have analysed the new games A and B, and obtained the conditions in order
to reproduce the Parrondo effect. We now present some simulations to verify that
the paradox is present for a different range of probabilities (see figure 3). Some inter-
esting features can be observed from these graphs. First note that the performance
of random or deterministic alternation of the games drastically changes with the
parameters.

We use the notation [a, b] to indicate that game A was played a times and game B
b times. The performance of the deterministic alternations [3, 2] and [2, 2] remain
close to one another, as can be seen in figure 3. However the alternation [4, 4] has
a low rate of winning because as we play each game four times, that causes the
dynamics of games A and B to dominate over the dynamic of alternation, thereby
considerably reducing the gain.

The performance of the random alternation is more variable, obtaining in some
cases a greater gain than in the deterministic cases (see figure 3c).

In figure 4 a comparison between the theoretical rates of winning for games A,
B and AB given by (4.10) and (4.11) and the rates obtained through simulations is
presented. It is worth noting the good agreement between both results.

It is also interesting to see how evolves the average gain obtained from the random
alternation of game A and game B when varying the mixing parameter γ. In figure 5
we compare both the experimental and theoretical curves. As in the original games,
the maximum gain obtained for this set of parameters is obtained for a value around
γ ∼ 1

2 (Lee et al . 2002b). For other sets of the game probabilities, though, the optimal
γ differs from γ = 1

2 .
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Figure 5. Comparison between the theoretical and the simulation for the gain vs gamma, for
the following set of probabilities: p = 1

3 , r = 1
3 ; p1 = 3

25 , r1 = 2
5 and p2 = 3

5 , r2 = 1
10 . The

simulations were carried out by averaging over 50 000 trials and all possible initial conditions.

5. Conclusion

We have reviewed how the derivation of Parrondo’s games from the flashing Brownian
ratchet can be rigorously established via the Fokker–Planck equation. This procedure
reveals new Parrondo games, of which the original Parrondo games are a special case
with self-transitions set to zero. This confirms Parrondo’s original intuition based
on a flashing ratchet is correct with rigour. We interpreted the self-transitions in
terms of particles, in the flashing ratchet, that remain stationary in a given cycle.
We then presented a new DTMC analysis for the new games showing that Parrondo’s
paradox still occurs if the appropriate conditions are fulfilled. New expressions for the
rates of winning have been obtained, with the result that within certain conditions
a higher rate of winning than in the original games can be obtained. We have also
studied how the parameter space where the paradox exists changes with the self-
transition variables, and conclude that the parameter space corresponding to the
original Parrondo’s games is a limiting case of the maximum volume: as the self-
transition probabilities increase in value the volume shrinks to zero. However, it
is worth noting that despite the volume decreases with increasing the self-transition
probabilities, the rates of winning that can be obtained are higher than in the original
Parrondo’s games.

This work was supported by GTECH Australasia; the Ministerio de Ciencia y Tecnoloǵıa (Spain)
and FEDER, projects BFM2001-0341-C02-01 and BFM2000-1108; P.A. acknowledges support
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