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We study a general 2 £ 2 symmetric entangled quantum game. When one player has
access only to classical strategies, while the other can use the full range of quantum
strategies, there are `miracle’ moves available to the quantum player that can direct
the game towards the quantum player’s preferred result regardless of the classical
player’s strategy. The advantage pertaining to the quantum player is dependent on
the degree of entanglement. Below a critical level, dependent on the pay-o®s in the
game, the miracle move is of no advantage.
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1. Introduction

Quantum game theory is an interesting new development in the ¯elds of game theory
and quantum information. First initiated by Meyer (1999), a protocol for two-player
two-strategy (2 £ 2) games was developed by Eisert et al . (1999) and extended to
multi-player games by Benjamin & Hayden (2001a). Where both players have access
to the full set of quantum strategies, there is no Nash equilibrium (NE) amongst pure
strategies (Benjamin & Hayden 2001b), although there is an in¯nite set of equilibria
among mixed quantum strategies (Eisert & Wilkens 2000). A pure quantum strategy
speci¯es a particular quantum operator to apply contingent on the game situation,
whereas a mixed quantum strategy speci¯es a probabilistic mixture of operators.
In a dynamical game, one generally would not expect convergence to an NE. In an
entangled quantum game, if the (pure) strategy of one player is known, the other
player can produce any desired ¯nal state by a suitable (pure) counter strategy,
assuring them of the maximum pay-o®. Hence it is always possible for one of the
players to improve his/her pay-o® by a unilateral change in strategy. For a discussion,
see the recent review of quantum games by Flitney & Abbott (2002a).

When one player is restricted to classical moves and the other is permitted the
full quantum domain, the quantum player has a clear advantage. Eisert found that
in a two-player prisoners’ dilemma, the quantum player could guarantee an expected
pay-o® not less than that of mutual cooperation, while the classical player’s reward
was substantially smaller. The advantage gained by the quantum player was found to
be dependent on the level of entanglement. Below a critical level, the quantum player
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Figure 1. The ° ow of information or qubits (solid lines) in a general two-person quantum
game. Â is Alice’ s move, B̂ is Bob’ s, Ĵ is an entangling gate and Ĵ y is a disentangling gate.

could do no better than adopting the classical dominant strategy. It is interesting to
speculate on the relationship between the advantage obtainable by a quantum player
over their classical rival and the advantage a quantum algorithm has over a classical
one.

In this work we extend the result of Eisert et al . (1999) and a later generalization
by Du et al . (2001, 2003) for the prisoners’ dilemma to a general 2 £ 2 quantum
game. Section 2 will summarize the protocol for 2 £ 2 entangled quantum games.
In x 3 we determine the four di®erent miracle moves, depending on the game result
most desired by the quantum player, and consider the pay-o®s as a function of the
degree of entanglement. Section 4 presents threshold values of the entanglement for
various game situations and x 5 brie°y considers extensions to larger strategic spaces.

2. Quantum 2 £ 2 games

Figure 1 is a protocol for a quantum game between Alice and Bob. The players’
actions are encoded by qubits that are initialized in the j0i state. An entangling
operator Ĵ is selected that commutes with the direct product of any pair of classical
strategies used by the players. Alice and Bob carry out local manipulations on their
qubit by unitary operators Â and B̂, respectively, drawn from corresponding strategic
spaces SA and SB . A projective measurement in the basis fj0i; j1ig is carried out
on the ¯nal state and the pay-o®s are determined from the standard pay-o® matrix.
The ¯nal quantum state jÁfi is calculated by

jÁfi = Ĵ y (Â « B̂)Ĵ jÁii; (2.1)

where jÁii = j00i represents the initial state of the qubits. The quantum game
protocol contains the classical variant as a subset, since when Â and B̂ are classical
operations Ĵ y exactly cancels the e®ect of Ĵ . In the quantum game it is only the
expectation values of the players’ pay-o®s that are important. For Alice (Bob), we
can write

h$i = P00jhÁfj00ij2 + P01jhÁfj01ij2 + P10jhÁfj10ij2 + P11jhÁfj11ij2; (2.2)

where Pij is the pay-o® for Alice (Bob) associated with the game outcome ij;
i; j 2 f0; 1g.

The classical pure strategies correspond to the identity operator Î and the bit-°ip
operator

F̂ ² i^¼ x =
µ

0 i
i 0

¶
: (2.3)
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Without loss of generality, an entangling operator Ĵ ( ® ) for an N -player game with
two pure classical strategies (an N £2 game) may be written as (Benjamin & Hayden
2001a; Du et al . 2001)y

Ĵ( ® ) = exp(i 1
2
® ^¼ «N

x ) = Î«N cos 1
2
® + i^¼ «N

x sin 1
2
® ; (2.4)

where ® 2 [0; 1
2
º ]; ® = 1

2
º corresponding to maximum entanglement. That is,

Ĵ ( 1
2
º )j00 ¢ ¢ ¢ 0i =

1p
2

(j00 ¢ ¢ ¢ 0i + ij11 ¢ ¢ ¢ 1i): (2.5)

A pure quantum strategy Û ( ³ ; ¬ ; ­ ) is an SU(2) operator and may be written as

Û ( ³ ; ¬ ; ­ ) =

Ã
ei¬ cos( 1

2
³ ) iei­ sin( 1

2
³ )

ie¡i­ sin( 1
2
³ ) e¡i ¬ cos( 1

2
³ )

!
; (2.6)

where ³ 2 [0; º ] and ¬ ; ­ 2 [ ¡ º ; º ]. A classical mixed strategy can be simulated
in the quantum game protocol by an operator in the set ~U ( ³ ) = Û ( ³ ; 0; 0). Such a
strategy corresponds to playing Î with probability cos2( 1

2
³ ) and F̂ with probabil-

ity sin2( 1
2
³ ). Where both players use such strategies, the game is equivalent to the

classical game.

3. Miracle moves

When both players have access to the full set of quantum operators, for any
Â = Û( ³ ; ¬ ; ­ ), there exists B̂ = Û ( ³ ; ¬ ; ¡ 1

2
º ¡ ­ ) such that

(Â « Î)
1p
2

(j00i + ij11i) = (Î « B̂)
1p
2

(j00i + ij11i): (3.1)

That is, on the maximally entangled state, any local unitary operation that Alice
carries out on her qubit is equivalent to a local unitary operation that Bob carries out
on his (Benjamin & Hayden 2001b). Hence either player can undo his/her opponent’s
move (assuming it is known) by choosing Û( ³ ; ¡ ¬ ; 1

2
º ¡ ­ ) in response to Û( ³ ; ¬ ; ­ ).

Indeed, knowing the opponent’s move, either player can produce any desired ¯nal
state.

We are interested in the classical{quantum game, where one player, say Alice,
is restricted to Scl ² f ~U( ³ ) : ³ 2 [0; º ]g, while the other, Bob, has access to
S q ² fÛ( ³ ; ¬ ; ­ ) : ³ 2 [0; º ]; ¬ ; ­ 2 [ ¡ º ; º ]g. We shall refer to strategies in Scl as
`classical’ in the sense that the player simply executes his/her two classical moves
with ¯xed probabilities and does not manipulate the phase of their qubit. However,
~U( ³ ) only gives the same results as a classical mixed strategy when both players
employ these strategies. If Bob employs a quantum strategy, he can exploit the
entanglement to his advantage. In this situation, Bob has a distinct advantage since
only he can produce any desired ¯nal state by local operations on his qubit. With-
out knowing Alice’s move, Bob’s best plan is to play the `miracle’ quantum move

y Any other choice of Ĵ would be equivalent, via local unitary operations, and would result only in a
rotation of jÃfi in the complex plane, consequently leading to the same game equilibria.
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consisting of assuming that Alice has played ~U( 1
2
º ), the `average’ move from Scl,

undoing this move by

V̂ = Û ( 1
2
º ; 0; 1

2
º ) =

1p
2

µ
1 ¡ 1
1 1

¶
; (3.2)

and then preparing his desired ¯nal state. The operator

f̂ =
µ

0 1
¡ 1 0

¶
(3.3)

has the property

(Î « f̂)
1p
2

(j00i + ij11i) = (F̂ « Î)
1p
2

(j00i + ij11i); (3.4)

so Bob can e®ectively °ip Alice’s qubit as well as adjusting his own.
Suppose we have a general 2 £ 2 game with pay-o®s

Bob:0 Bob:1

Alice:0 (p; p0) (q; q0)
Alice:1 (r; r0) (s; s0)

(3.5)

where the unprimed values refer to Alice’s pay-o®s and the primed to Bob’s. Bob
has four possible miracle moves depending on the ¯nal state that he prefers,

M̂00 = V̂ ;

M̂01 = F̂ V̂ =
ip
2

µ
1 ¡ 1
1 1

¶
;

M̂10 = f̂ V̂ =
1p
2

µ
1 1

¡ 1 1

¶
;

M̂11 = F̂ f̂ V̂ =
ip
2

µ
¡ 1 1
1 1

¶
;

9
>>>>>>>>>>=

>>>>>>>>>>;

(3.6)

given a preference for j00i, j01i, j10i or j11i, respectively. In the absence of entangle-
ment, any M̂ij is equivalent to ~U ( 1

2
º ), that is, the mixed classical strategy of °ipping

or not-°ipping with equal probability.
When we use an entangling operator Ĵ( ® ) for an arbitrary ® 2 [0; 1

2
º ], the expec-

tation value of Alice’s pay-o® if she plays ~U( ³ ) against Bob’s miracle moves are,
respectively,

h$00i = 1
2
p(cos 1

2
³ + sin 1

2
³ sin ® )2 + 1

2
q cos2 1

2
³ cos2 ®

+ 1
2
r(sin 1

2
³ ¡ cos 1

2
³ sin ® )2 + 1

2
s sin2 1

2
³ cos2 ® ;

h$01i = 1
2
p cos2 1

2
³ cos2 ® + 1

2
q(cos 1

2
³ + sin 1

2
³ sin ® )2

+ 1
2
r sin2 1

2
³ cos2 ® + 1

2
s(sin 1

2
³ ¡ cos 1

2
³ sin ® )2;

h$10i = 1
2
p(cos 1

2
³ ¡ sin 1

2
³ sin ® )2 + 1

2
q cos2 1

2
³ cos2 ®

+ 1
2
r(sin 1

2
³ + cos 1

2
³ sin ® )2 + 1

2
s sin2 1

2
³ cos2 ® ;

h$11i = 1
2
p cos2 1

2
³ cos2 ® + 1

2
q(cos 1

2
³ ¡ sin 1

2
³ sin ® )2

+ 1
2
r sin2 1

2
³ cos2 ® + 1

2
s(sin 1

2
³ + cos 1

2
³ sin ® )2:

9
>>>>>>>>>>>>>>>=

>>>>>>>>>>>>>>>;

(3.7)
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Table 1. Pay-o® matrices for some 2 £ 2 games

(A summary of pay-o® matrices with NE and PO results for various classical games. PD is
the prisoners’ dilemma and BoS is the battle of the sexes. In the matrices, the rows corre-
spond to Alices’ s options of cooperation (C) and defection (D), respectively, while the columns
are the options for Bob. In the parentheses, the ¯rst pay-o® is Alice’ s, the second Bob’ s and
a > b > c > d. The condition speci¯es a constraint on the values of a, b, c and d necessary to
create the dilemma. The ¯nal column gives standard values for the pay-o® s.)

game pay-o® matrix NE pay-o® s PO pay-o® s condition (a; b; c; d)

chicken
(b; b) (c; a)

(a; c) (d; d)
(a; c) or (c; a) (b; b) 2b > a + c (4; 3; 1; 0)

PD
(b; b) (d; a)

(a; d) (c; c)
(c; c) (b; b) 2b > a + d (5; 3; 2; 1)

deadlock
(c; c) (d; a)

(a; d) (b; b)
(b; b) (b; b) 2b > a + d (3; 2; 1; 0)

stag hunt
(a; a) (d; b)

(b; d) (c; c)
(a; a) or (c; c) (a; a) (3; 2; 1; 0)

BoS
(a; b) (c; c)

(c; c) (b; a)
(a; b) or (b; a) (a; b) or (b; a) (2; 1; 0)

We add primes to p, q, r and s to get Bob’s pay-o®s. Although the miracle moves
are in some sense best for Bob, in that they guarantee a certain minimum pay-o®
against any classical strategy from Alice, there is not necessarily any NE among pure
strategies in the classical{quantum game.

4. Critical entanglements

In each of the four cases of equation (3.7), there can be critical values of the entan-
glement parameter ® below which the quantum player no longer has an advantage.
We will consider some examples. The most interesting games are those that pose
some sort of dilemma for the players. A non-technical discussion of various dilemmas
in 2 £ 2 game theory is given in Poundstone (1992), from which we have taken the
names of the following games. The results for the prisoners’ dilemma, using the stan-
dard pay-o®s for that game, were found by Eisert et al . (1999) and, for generalized
pay-o®s, by Du et al . (2003).

Below we introduce a number of games and discuss the dilemma faced by the
players and their possible strategies. The games, along with some important equi-
libria, are summarized in table 1. Detailed results for the various threshold values
of the entanglement parameter are given for the game of chicken. A summary of
the thresholds for the collection of games is given in table 2. In the following, the
pay-o®s shall be designated a, b, c and d, with a > b > c > d. The two pure classical
strategies for the players are referred to as cooperation (C) and defection (D), for
reasons that shall soon become apparent. The NE’s referred to are in classical pure
strategies unless otherwise indicated.
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Table 2. Critical entanglements for 2 £ 2 quantum games

(Values of sin2 ® above which (or below which where indicated by <̀ ’ ) the expected value of
Bob’ s pay-o® exceeds, respectively, Alice’ s pay-o® , Bob’ s classical NE pay-o® and Bob’ s pay-o®
for the PO outcome. Where there are two NE (or PO) results, the one where Bob’ s pay-o® is
smallest is used. The strategies are Alice’ s and Bob’ s, respectively. In the last line, ìf a + c > 2b ’
refers to a condition on the numerical values of the pay-o® s and not to a condition on ® .)

game strategies h$B i > h$A i h$B i > $B (NE) h$B i > $B (PO)

chicken Ĉ , M̂01 always < (a + b ¡ 2c)=(b ¡ d) < (a ¡ b)=(b ¡ d)

D̂, M̂01
1
2 (c ¡ d)=(a ¡ c) (2b ¡ c ¡ d)=(a ¡ c)

PD Ĉ , M̂01 always always (a ¡ b)=(c ¡ d)

D̂, M̂01 d=(2(a ¡ d)) (c ¡ d)=(a ¡ d) (2b ¡ c ¡ d)=(a ¡ d)

deadlock Ĉ , M̂01 always (2b ¡ a ¡ c)=(b ¡ c) (2b ¡ a ¡ c)=(b ¡ c)

D̂, M̂01
1
2 (b ¡ d)=(a ¡ d) (b ¡ d)=(a ¡ d)

stag hunt Ĉ , M̂00 < 1
2 (c ¡ d)=(a ¡ c) never

D̂, M̂00 never < (a + b ¡ 2c)=(b ¡ d) never

BoS Ô, M̂11
1
2 (b ¡ c)=(a ¡ b) (b ¡ c)=(a ¡ b)

T̂ , M̂11 always if a + c > 2b if a + c > 2b

(a) Chicken

The archetypal version of chicken is described as follows.

The two players are driving towards each other along the centre of an
empty road. Their possible actions are to swerve at the last minute (co-
operate) or not to swerve (defect). If only one player swerves, he/she
is the `chicken’ and gets a poor pay-o®, while the other player is the
`hero’ and scores best. If both swerve, they get an intermediate result,
but clearly the worst possible scenario is for neither player to swerve.

Such a situation often arises in the military/diplomatic posturing amongst nations.
Each does best if the other backs down against their strong stance, but the mutual
worst result is to go to war! The situation is described by the pay-o® matrix

Bob:C Bob:D

Alice:C (b; b) (c; a)
Alice:D (a; c) (d; d)

(4.1)

Provided 2b > a + c, the Pareto optimal (PO) result, the one for which it is not
possible to improve the pay-o® of one player without reducing the pay-o® of the other,
is mutual cooperation. In the discussion below, we shall choose (a; b; c; d) = (4; 3; 1; 0),
satisfying this condition, whenever we want a numerical example of the pay-o®s.
There are two NE in the classical game, CD and DC , from which neither player
can improve their result by a unilateral change in strategy. Hence the rational player
hypothesized by game theory is faced with a dilemma for which there is no solution:
the game is symmetric yet both players want to do the opposite of the other. For the
chosen set of numerical pay-o®s, there is a unique NE in mixed classical strategies:
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Figure 2. In the game of chicken, the expected pay-o® s for (a) Alice and (b) Bob when Bob
plays the quantum miracle move M̂01 , as a function of Alice’ s strategy ( ³ = 0 corresponds
to cooperation and ³ = º corresponds to defection) and the degree of entanglement ® . The
surfaces are drawn for pay-o® s (a; b; c; d) = (4; 3; 1; 0). If Alice knows that Bob is going to
play the quantum miracle move, she does best by choosing the crest of the curve, ³ = 1

2 º ,
irrespective of the level of entanglement. Against this strategy, Bob scores between two and
four, an improvement for all ® > 0 over the pay-o® he could expect playing a classical strategy.

each player cooperates or defects with probability 1
2 . In our protocol, this corresponds

to both players selecting ~U( 1
2
º ).

A quantum version of chicken has been discussed in the literature (Marinatto &
Weber 2000a; b; Benjamin 2000). In this version, a ¯nal state of a player’s qubit being
j0i corresponds to the player having cooperated, while j1i corresponds to having
defected.

The preferred outcome for Bob is CD or j01i, so he will play M̂01. If Alice co-
operates, the pay-o®s are

h$Ai = 1
2(b ¡ d) cos2 ® + 1

2 (c + d);

h$Bi = 1
2(b ¡ d) cos2 ® + 1

2 (a + d):

)

(4.2)

Increasing entanglement is bad for both players. However, Bob outscores Alice by
1
2(a ¡ c) for all entanglements and does better than the poorer of his two NE results
(c) provided that

sin ® <

r
a + b ¡ 2c

b ¡ d
; (4.3)

which, for the pay-o®s (4; 3; 1; 0), means that ® can take any value. He performs
better than the mutual cooperation result (b) provided that

sin ® <

r
a ¡ b

b ¡ d
; (4.4)

which yields a value of 1=
p

3 for the chosen pay-o®s.
Suppose instead that Alice defects. The pay-o®s are now

h$Ai = 1
2
(a ¡ c) cos2 ® + 1

2
(c + d);

h$Bi = 1
2
(a ¡ c) sin2 ® + 1

2
(c + d):

)

(4.5)
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Figure 3. The pay-o® s for Alice and Bob versus the level of entanglement ( ® ) in the game of
chicken when Alice defects. The standard pay-o® s (a; b; c; d) = (4; 3; 1; 0) are chosen. The solid
lines correspond to the results when Bob plays the quantum move M̂01 and the dashed line gives
Bob’ s pay-o® when he cooperates. Below an entanglement of arcsin(1=

p
3) (short dashes), Bob

does best, against a defecting Alice, by switching to the strategy àlways cooperate’ .

Increasing entanglement improves Bob’s result and worsens Alice’s. Bob scores better
than Alice provided ® > 1

4
º , regardless of the numerical value of the pay-o®s. Bob

does better than his worst NE result (c) when

sin ® >

r
c ¡ d

a ¡ c
; (4.6)

which yields a value of 1=
p

3 for the default pay-o®s, and better than his PO result (b)
when

sin ® >

r
2b ¡ c ¡ d

a ¡ c
; (4.7)

which has no solution for the default values. Thus, except for specially adjusted
values of the pay-o®s, Bob cannot assure himself of a pay-o® at least as good as
that achievable by mutual cooperation. However, Bob escapes from his dilemma for
a su±cient degree of entanglement as follows. Against M̂01, Alice’s optimal strategy
from the set Scl is given by

tan ³ =
2(c ¡ d)

b + c ¡ a ¡ d

sin ®

cos2 ®
: (4.8)

For (a; b; c; d) = (4; 3; 1; 0), this gives ³ = 1
2
º . Since M̂01 is Bob’s best counter to

~U ( 1
2
º ), these strategies form an NE in a classical{quantum game of chicken and are

the preferred strategies of the players. For this choice, above an entanglement of
® = 1

6
º , Bob performs better than his mutual-cooperation result.

The expected pay-o®s for Alice and Bob as a function of Alice’s strategy and the
degree of entanglement are shown in ¯gure 2. In ¯gure 3 we can see that if Bob
wishes to maximize the minimum pay-o® he receives, he should alter his strategy
from the quantum move M̂01 to cooperation, once the entanglement drops below
arcsin(1=

p
3).
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(b) Prisoners’ dilemma

The most famous dilemma is the prisoners’ dilemma. This may be speci¯ed in
general as

Bob:C Bob:D

Alice:C (b; b) (d; a)
Alice:D (a; d) (c; c)

(4.9)

In the classical game, the strategy `always defect’ dominates since it gives a better
pay-o® than cooperation against any strategy by the opponent. Hence, the NE for
the prisoners’ dilemma is mutual defection, resulting in a pay-o® of c to both players.
However, both players would have done better with mutual cooperation, resulting
in a pay-o® of b, giving rise to a dilemma that occurs in many social and politi-
cal situations. The sizes of the pay-o®s are generally adjusted so that 2b > a + d
making mutual cooperation the PO outcome. The most common set of pay-o®s is
(a; b; c; d) = (5; 3; 1; 0).

In the classical{quantum game, Bob can help engineer his preferred result of j01i
(CD) by adopting the strategy M̂01. The most important critical value of the entan-
glement parameter ® is the threshold below which Bob performs worse with his
miracle move than he would if he chose the classical dominant strategy of `always
defect’. This occurs for

sin ® =

r
c ¡ d

a ¡ d
; (4.10)

which yields the value
p

1=5 for the usual pay-o®s. As noted in Du et al . (2001),
below this level of entanglement the quantum version of prisoners’ dilemma behaves
classically with an NE of mutual defection.

(c) Deadlock

Deadlock is characterized by reversing the pay-o®s for mutual cooperation and
defection in the prisoners’ dilemma,

Bob:C Bob:D

Alice:C (c; c) (d; a)
Alice:D (a; d) (b; b)

(4.11)

Defection is again the dominant strategy, and there is even less incentive for the
players to cooperate in this game than in the prisoners’ dilemma since the PO result
is mutual defection. However, both players would prefer if their opponent cooperated
so they could stab them in the back by defecting and achieve the maximum pay-
o® of a. There is no advantage to cooperating, so there is no real dilemma in the
classical game. In the classical{quantum game, Bob can again use his quantum skills
to engineer at least partial cooperation from Alice, against any possible strategy
from her, by playing M̂01.

(d ) Stag hunt

In stag hunt, both players prefer the outcome of mutual cooperation, since it
gives a pay-o® superior to all other outcomes. However, each are afraid of defection
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by the other, which, although it reduces the defecting player’s pay-o®, has a more
detrimental e®ect on the cooperator’s pay-o®, as indicated in the pay-o® matrix
below,

Bob:C Bob:D

Alice:C (a; a) (d; b)
Alice:D (b; d) (c; c)

(4.12)

Both mutual cooperation and mutual defection are NE, but the former is the PO
result. There is no dilemma when two rational players meet. Both recognize the
preferred result and have no reason, given their recognition of the rationality of the
other player, to defect. Mutual defection will result only if both players allow fear
to dominate over rationality. This situation is not changed in the classical{quantum
game. However, having the ability to play quantum moves may be of advantage when
the classical player is irrational in the sense that they do not try to maximize their
own pay-o®. In that case, the quantum player should choose to play the strategy
M̂00 to steer the result towards the mutual cooperation outcome.

(e) Battle of the sexes

In this game, Alice and Bob each want the company of the other in some activity,
but their preferred activity di®ers: opera (O) for Alice and television (T ) for Bob. If
the players end up doing di®erent activities, both are punished by a poor pay-o®. In
matrix form this game can be represented as

Bob:O Bob:T

Alice:O (a; b) (c; c)
Alice:T (c; c) (b; a)

(4.13)

The options on the main diagonal are both PO and are NE, but there is no clear
way of deciding between them. Bob’s quantum strategy will be to choose M̂11 to
steer the game towards his preferred result of TT . Marinatto & Weber (2000a; b;
Benjamin 2000) discuss a quantum version of battle of the sexes using a slightly
di®erent protocol for a quantum game from the one used in the current work.

With M̂11, Bob outscores Alice provided ® > 1
4
º , but is only assured of scoring

at least as well as the poorer of his two NE results (b) for full entanglement, and is
never certain of bettering it. The quantum move, however, is better than using a fair
coin to decide between Ô and T̂ for ® > 0, and equivalent to it for ® = 0. Hence, even
though Bob cannot be assured of scoring greater than b, he can improve his worst
case pay-o® for any ® > 0. Figure 4 shows Alice and Bob’s pay-o®s as a function of
the degree of entanglement and Alice’s strategy.

5. Extensions

The situation is more complex for multi-player games. No longer can a quantum
player playing against classical players engineer any desired ¯nal state, even if the
opponents’ moves are known. However, a player can never be worse o® by having
access to the quantum domain, since this includes the classical possibilities as a
subset.
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Figure 4. In the battle of the sexes, the expected pay-o® s for (a) Alice and (b) Bob when Bob
plays the quantum miracle move M̂11 , as a function of Alice’ s strategy ( ³ = 0 corresponds to
opera and ³ = º corresponds to television) and the degree of entanglement ® . The surfaces are
drawn for pay-o® s (a; b; c) = (2; 1; 0). If Alice knows that Bob is going to play the quantum
miracle move, she does best by choosing the crest of the curve, so her optimal strategy changes
from O for no entanglement, to ³ = 1

2 º for full entanglement. Against this strategy, Bob starts
to score better than one for an entanglement exceeding approximately 1

5 º .

In two-player games with more than two pure classical strategies, the prospects
for the quantum player are better. Some entangled quantum 2 £ 3 games have been
considered in the literature (Iqbal & Toor 2001; Flitney & Abbott 2002b). Here,
the full set of quantum strategies is SU(3) and there are nine possible miracle moves
(before considering symmetries). Scl, the strategies that do not manipulate the phase
of the player’s qutrit (a qutrit is the three-state equivalent of a qubit) can be written
as the product of three rotations, each parametrized by a rotation angle. Since the
form is not unique, it is much more di±cult to say what constitutes the average
move from this set, so the expressions for the miracle moves are open to debate.
Also, an entangling operator for a general 2 £ 3 quantum game has not been given
in the literature. Nevertheless, the quantum player will still be able to manipulate
the result of the game to increase the probability of his/her favoured result.

6. Conclusion

With a su±cient degree of entanglement, the quantum player in a classical{quantum
two-player game can use the extra possibilities available to help steer the game
towards their most desired result, giving a pay-o® above that achievable by classical
strategies alone. We have given the four miracle moves in quantum 2£2 game theory
and show when they can be of use in several game theory dilemmas. There are criti-
cal values of the entanglement parameter ® below (or occasionally above) which it is
no longer an advantage to have access to quantum moves. That is, where the quan-
tum player can no longer outscore his/her classical Nash equilibrium result. These
represent a phase change in the classical{quantum game where a switch between
the quantum miracle move and the dominant classical strategy is warranted. With
typical values for the pay-o®s and a classical player opting for his/her best strategy,
the critical value for sin ® is

p
1=3 for chicken,

p
1=5 for the prisoners’ dilemma andp

2=3 for deadlock, while for the stag hunt there is no particular advantage to the
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quantum player. In the battle of the sexes, there is no clear threshold, but for any
non-zero entanglement Bob can improve his worst-case result.

The quantum player’s advantage is not as strong in classical{quantum multi-player
games but, in multi-strategy two-player games, depending on the level of entangle-
ment, the quantum player would again have access to moves that improve his/her
result. The calculation of these moves is problematic because of the larger number
of degrees of freedom and it has not been attempted here.

This work was supported by GTECH Corporation, Australia, with the assistance of the SA
Lotteries Commission (Australia).
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