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Vibrational resonance (VR) intentionally applies high-
frequency periodic vibrations to a nonlinear system,
in order to obtain enhanced efficiency for a number
of information processing tasks. Note that VR is
analogous to stochastic resonance where enhanced
processing is sought via purposeful addition of
a random noise instead of deterministic high-
frequency vibrations. Comparatively, due to its ease
of implementation, VR provides a valuable approach
for nonlinear signal processing, through detailed
modalities that are still under investigation. In this
paper, VR is investigated in arrays of nonlinear
processing devices, where a range of high-frequency
sinusoidal vibrations of the same amplitude at
different frequencies are injected and shown capable
of enhancing the efficiency for estimating unknown
signal parameters or for detecting weak signals
in noise. In addition, it is observed that high-
frequency vibrations with differing frequencies can
be considered, at the sampling times, as independent
random variables. This property allows us here
to develop a probabilistic analysis—much like in
stochastic resonance—and to obtain a theoretical basis
for the VR effect and its optimization for signal
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processing. These results provide additional insight for controlling the capabilities of VR for
nonlinear signal processing.

This article is part of the theme issue ‘Vibrational and stochastic resonance in driven
nonlinear systems (part 1)’.

1. Introduction
Vibrational resonance (VR), firstly reported by Landa & McClintock [1], describes the resonant
behaviour of the response of a bistable model to a low-frequency signal by optimizing the
amplitude of a high-frequency periodic vibration. This interesting phenomenon, analogous
to stochastic resonance [2–5], replaces artificially added noise with high-frequency vibrations,
and has received considerable interest in nonlinear dynamics [1,6–16], neuroscience [17–22],
engineering [23–27], information processing [28–30], etc. The mechanism of VR is elucidated in
different systems with constant mass[1], and also extended to encompass systems with position-
dependent mass (PDM) [11]. Compared to stochastic resonance, VR is easy to realize due to
the ease of the implementation of intentionally injected high-frequency vibrations into nonlinear
systems, especially in devices vibrations or jitter are already naturally present [31]. Motivated by
this fact, we argue that the VR effect deserves to be extensively investigated in nonlinear devices
within the framework of statistical signal processing.

In the field of statistical signal processing, in general the optimal signal processor is often
too complex or intractable and we have to therefore employ suboptimal processors to deal
with demanding signal processing tasks [32–34]. Moreover, for engineering applications such as
remote sensing and environmental monitoring, a number of low-cost sensors with a few bits,
e.g. quantizers, are often deployed over a sensing field to compose sensing networks. These
scenarios motivate the investigation of VR for the performance improvement of nonlinear sensors
by optimally tuning the amplitude of high-frequency vibrations. Here we will consider situations
where an information bearing signal is transmitted and compressed by a number of nonlinear
sensors, and then we inject a range of high-frequency periodic vibrations of the same amplitude
at different frequencies into the sensor arrays for estimating unknown parameters or for detecting
weak signals. We will show that, at the optimal vibration amplitude, the VR method can efficiently
improve the estimation accuracy of unknown parameters and the detection probability of weak
signals. In the view of the analogy between VR and stochastic resonance [1], we show that
high-frequency vibrations with different frequencies can be regarded, at the sampling times,
as mutually independent random variables with a common interval distribution. Based on this
property, a probabilistic analysis is performed of the VR effect and its performance is analysed.
Interestingly, numerical VR results agree well with the theoretical analyses based on stochastic
resonance, which substantiates the analogy between VR and stochastic resonance in improving
the information processing of nonlinear systems. These results reveal that intentional injection of
high-frequency periodic vibrations into information-processing devices can be a beneficial option
for nonlinear signal processing.

2. Vibrational resonance in location parameter estimation
We first consider a location parameter estimation problem according to the model

xn = θ + wn, n = 1, 2, . . . , N, (2.1)

where θ is an unknown location parameter and the observation noise wn are mutually
independent with a common probability density function (PDF) fw. For estimating the parameter
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θ from the noisy data xn, it is well known that maximum-likelihood principle is a useful approach
to obtaining the practical estimator [32,33]

θ̂ = arg min
θ

N∑
n=1

ρ(xn − θ ) (2.2)

with the loss function ρ(x) = − log fw. Differentiating equation (2.2) with respect to θ yields

N∑
n=1

ψ(xn − θ ) = 0, (2.3)

where θ̂ is the maximum-likelihood estimator for the function ψ = −(dfw/dw)/fw � ψMLE [32,33].
However, in practice, the PDF fw may be incompletely known or the observation data may be

corrupted by outliers, which greatly degrades efficiency of the maximum-likelihood estimator
[33]. Therefore, we often employ some robust estimators that are insensitive to outliers. For
instance, we here consider the bisquare estimator with the redescending function

ψ(x) = x
[
1 −

(
x
γ

)2]2
, (2.4)

for |x| ≤ γ and otherwise zero, and the adjustable parameter γ . There are also other robust
estimator related to the function ψ (not shown here) [33]. In order to reach a better trade-off
between robustness and efficiency, we demonstrated with the function of equation (2.4) the
improvement of the asymptotic efficiency and the reduction of the maximum bias by adding
noise to robust estimators [35]. As an alternative of noise-enhanced mechanism, VR is also
another interesting approach for estimating the location parameter in the observation model of
equation (2.1). Here, we inject high-frequency sinusoidal vibrations ηmn = Aη sin(2π fmn) of the
same amplitude Aη but with different frequencies fm to the original observations xn, resulting in
updated observations

ymn = xn + ηmn = θ + zmn, n = 1, 2, . . . , N, (2.5)

where zmn = wn + ηmn for m = 1, 2, . . . , M (M ≥ 1). Here, it is noted that the frequency fm is
regarded as a uniform variable with its lower bound much larger than the sampling frequency 1/T
with T = 1. Then, we have M estimators θ̂m defined as M roots of equation (2.3), i.e.

∑N
n=1 ψ(ymn −

θ̂m) = 0. Collecting these estimators θ̂m, we can design a VR-based location estimator as

θ̂ = 1
M

M∑
m=1

θ̂m. (2.6)

For the implementation of the designed estimator in equation (2.6), we can adopt the iterative
reweighting method to obtain the numerical estimation of a location parameter [33]. Denoting

Ψ (x) =
{
ψ(x)

x , x �= 0,

ψ ′(x), x = 0,
(2.7)

then equation (2.3) can be rewritten as
∑N

n=1 Ψ (xn − θ̂ )(xn − θ̂ ) = 0. In line with this, each
estimator θ̂m in equation (2.6) can be numerically computed as

θ̂m(k + 1) =
∑N

n=1 Ψmn(k) ymn∑N
n=1 Ψmn(k)

(2.8)

with the weight function Ψmn(k) =Ψ [ymn − θ̂m(k)] at the kth iteration for k = 0, 1, 2, . . .. Here, the
initial value θ̂m(0) is taken as the median of the updated observations ymn in equation (2.5). When
|θ̂m(k∗ + 1) − θ̂m(k∗)|< ζ for a small tolerance ζ , the numerical estimator θ̂m(k∗ + 1) is assumed to
be the targeted estimator θ̂m. A sufficiently large number of Monte Carlo trials of θ̂m is carried
out by the above iterative reweighting method, and the variance var(θ̂) of θ̂ in equation (2.6) can
be numerically evaluated for a given size M. Compared with the variance var(θ̂MLE) = [NJ(fw)]−1
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Figure 1. Asymptotic efficiency Eff(θ̂ ) in equation (2.9) of the VR-based estimator in equation (2.6) as a function of the
amplitude Aη of high-frequency sinusoidal vibrationsηmn for Cauchy noise. (a) Bisquare estimators θ̂m are with the parameter
γ = 1 and the collective estimator number M= 1, 2, 5, 15, 103 from the bottom up. (b) The estimator number M= 102, and
the parameter γ = 1, 1.5 and 2. Here, the observation size N = 103, the number of simulation trails is 104 and the tolerance
constant ζ = 10−6. For each trail, the frequencies of high-frequency sinusoidal vibrations ηmn are uniformly taken from the
interval [102, 2 × 103]. (Online version in colour.)

achieved by the maximum-likelihood estimator denoted by ψMLE [33], the asymptotic large-N
efficiency of the designed estimator θ̂ in equation (2.6) is defined as

Eff(θ̂ ) = var(θ̂MLE)

var(θ̂ )
, (2.9)

where J(fw) = Ew[(f ′
w/fw)2] is the Fisher information of PDF fw and the expectation operator Ew(·) =∫ ·fw(x)dx [35].

For example, we here consider a typical heavy-tailed distribution model of the Cauchy
background noise wn with PDF fw(x) = [π (1 + x2)]−1. For the VR-based location estimator θ̂ in
equation (2.6) composed of M bisquare estimators θ̂m with the parameter γ = 1, we plot the
numerical asymptotic efficiency Eff(θ̂ ) of equation (2.9) (◦) as a function of the amplitude Aη
of high-frequency sinusoidal vibrations in figure 1a. It is seen that, for a single estimator with
M = 1, the asymptotic efficiency Eff(θ̂) of equation (2.9) monotonically decreases with the increase
of Aη. However, due to the collective role of estimator number M> 1 illustrated in figure 1a,
the high-frequency sinusoidal vibrations ηmn can maximize the asymptotic efficiency Eff(θ̂ ) at an
optimal amplitude Aopt

η , which is the VR effect in the location parameter estimation. For instance,
for the collective number M = 103 and without the help of high-frequency sinusoidal vibrations
(Aη = 0), the asymptotic efficiencies Eff(θ̂ ) = 0.3450. At the optimal amplitude Aopt

η = 0.65, Eff(θ̂ )
can be achieved its maximum value 0.6582, as shown in figure 1a. Moreover, for a fixed estimator
number M = 102, the asymptotic efficiencies Eff(θ̂) in equation (2.9) of the VR-based estimator in
equation (2.6), as indicated in figure 1b, can be also optimized by the amplitude Aη for different
parameter values of γ . It is noted in figure 1b that, for a wide range of estimator parameter γ , the
VR effect survives and the asymptotic efficiency Eff(θ̂ ) in equation (2.9) of the designed estimator
benefits from the injection of high-frequency sinusoidal vibrations.

In addition, since there is a clear analogy between stochastic resonance and VR [1], then the
random variable (noise) with the PDF

fη(x) = 1

π
√

A2
η − x2

, −Aη < x<Aη (2.10)
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can be used to describe the distribution of a sinusoidal vibration with amplitude Aη. Here, we
argue that different frequencies fm of high-frequency sinusoidal vibrations ηmn correspond to the
different samples of this variable. This mapping of high-frequency sinusoidal vibrations into noise
samples allows us to develop a probabilistic theoretical analysis of VR within the framework of
stochastic resonance. In our previous work [35], applying the first-order Taylor expansion of ψ for
each estimator θ̂m around the true value of θ , we derive the asymptotic variance of the designed
estimator in equation (2.6) as

vara(θ̂ ) = 1
N

Ez[ψ2(z)] + (M − 1)Ew
{
E2
η[ψ(w + η)]

}
ME2

z[ψ ′(z)]
, (2.11)

where the convolved PDF fz(z) = ∫
fw(z − η)fη(η) dη for the composite variable zmn, the

expectations Ez(·) = ∫ ·fz(x) dx and Eη(·) = ∫ ·fη(x) dx. Substituting equation (2.10) and equation
(2.11) into equation (2.9), we can theoretically calculate the asymptotic efficiency Eff(θ̂) in
equation (2.9) of the designed estimator in equation (2.6) within the theoretical framework of
stochastic resonance [35]. It is clearly seen by the comparison of figure 1 that the theoretical
results (solid lines) calculated by equation (2.11) agree well with the numerical simulation results
(◦) obtained by the experiments with the injection of high-frequency sinusoidal vibrations into
estimators. This evidence not only demonstrates the similarity between the two phenomena of
VR and stochastic resonance stated in [1], but also provides a theoretical approach to investigate
the VR effect in parameter estimation problems.

3. Vibrational resonance in Bayesian estimation
In §2, the location θ is assumed to be a deterministic but unknown parameter. However, we cannot
incorporate our prior knowledge about the parameter θ into the designed estimator [32]. Instead,
we need to assume that θ is a random variable with a prior PDF fθ and design an estimator based
on Bayes’ theorem [32]. In this section, we will study the potential application of VR in Bayesian
estimators for improving the estimation accuracy of random parameter estimation.

Consider a random parameter estimation model with the observation

x = θ + w (3.1)

where the random parameter θ has the prior PDF fθ , and the background white noise w,
independent of θ , has the PDF fw. Then, the observation x accords with the convolved PDF
fx(x) = ∫

fw(x − θ )fθ (θ )dθ . For the quadratic cost function, the optimal estimator is the mean of
posterior PDF given by

θ̂mmse(x) =
∫
θ fw(x − θ )fθ (θ ) dθ

∫
fw(x − θ )fθ (θ ) dθ

, (3.2)

which is regarded as the minimum mean square error (MMSE) estimator [32]. However, the
MMSE estimator θ̂mmse is often difficult to be solved in a close form. Thus, in practice, some
feasible nonlinear Bayesian estimators with explicit forms are usually employed. In the context
of stochastic resonance, Uhlich [36] proposed a novel noise-enhanced estimator by averaging
estimates from the same observation added by artificial noise components, and discussed its
superiority over the original estimator. We further investigate the benefits of intentionally adding
noise to the estimator and present a combined Bayesian estimator with a set of optimum
weighting coefficients [37]. Inspired by the work [36,37] and the analogy between VR and
stochastic resonance, we add the high-frequency sinusoidal vibrations to M suboptimal Bayesian
estimators θ̂m and establish a VR-based Bayesian estimator as

θ̂ (x) = 1
M

M∑
m=1

θ̂m[x + Aη sin(2π fmn0)], (3.3)

where the time n0 is arbitrary and the frequency fm is a random variable with a uniform
distribution.
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Figure 2. (a) Numerical and theoretical results of MSEs of the designed Bayesian estimator θ̂ in equation (3.4) composed of
M numbers of MAP estimators θ̂map of equation (3.5) versus the vibration amplitude Aη . For comparison, the MMSE estimator
θ̂mmse is also plotted. Here, the background noise level σw = 1 and the interval bound a= 2 for the parameter θ . (b) For a
fixed number M= 103 and at the optimal vibration amplitudes Aoptη , the MSEs of the designed Bayesian estimator θ̂ versus
the background noise level σw . For comparison, MSEs of the MAP estimator θ̂map and the MMSE estimator θ̂mmse versus the
background noise levelσw are also plotted. (Online version in colour.)

In the numerical experiments, for a sufficiently large number K of random values of θk
distributed by the prior PDF fθ , K Monte Carlo trails of the designed estimator in equation (3.3)
are carried out and the numerical MSE can be computed as

MSE(θ̂) = 1
K

K∑
k=1

[θ̂ (xk) − θk]2 = 1
K

K∑
k=1

{
1
M

M∑
m=1

θ̂m
[
xk + Aη sin(2π fmn0)

] − θk

}2

. (3.4)

For instance, consider a uniformly distributed parameter θ buried in the Gaussian white noise w
[32,36]. The prior PDF of θ is fθ (x) = 1/a for 0 ≤ x ≤ a and otherwise zero, and w has its PDF fw(x) =
exp(−x2/2σ 2

w)/
√

2πσ 2
w with zero-mean and variance σ 2

w. Under this situation, the maximum a
posteriori (MAP) estimator is given by

θ̂map(x) =

⎧⎪⎪⎨
⎪⎪⎩

0, x< 0,

x, 0 ≤ x ≤ a,

a, x> a,

(3.5)

which has the MSE 0.4832 for the interval bound a = 2 and the background noise level σw = 1.
Then, we collect M MAP estimators θ̂map driven by M high-frequency sinusoidal vibrations and
plot the numerical MSE of the designed Bayesian estimator in equation (3.4) as a function of the
vibration amplitude Aη in figure 2a. It is seen that, upon increasing the vibration amplitude Aη
and the number M> 2, the numerical MSE (◦) of the designed Bayesian estimator in equation (3.4)
is reduced to a minimum value at an optimal amplitude Aopt

η . In addition, when M = 103, the VR
effect is more effective and can reduce the initial MSE value 0.4832 at Aη = 0 to the minimum of
0.2531 (square) at the optimal amplitude Aopt

η = 3.162. It is also noted that this minimum value of
0.2531 is closely near to the MSE of 0.2492 (dashed line) achieved by the MMSE estimator θ̂mmse

[32,36,37]. It is emphasized that, upon increasing the number M> 103 and at the optimal vibration
amplitude Aη, the MSE of the designed Bayesian estimator θ̂ in equation (3.4) can gradually
approach the MMSE 0.2492, but the computation in Monte Carlo simulation is too heavy.
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Next, by the probabilistic modelling based on the random variable with the PDF in
equation (2.10), we theoretically calculate the MSE of the designed Bayesian estimator in
equation (3.4) composed of M estimators θ̂map as

MSE(θ̂ ) = Ex,η[(θ̂ − θ )2]

= Eθ (θ2) − 2
M

M∑
m=1

Ex,η[θ θ̂map(x + ηm)]

+ 1
M2

{ M∑
m=1

Ex,η[θ̂2
map(x + ηm)] +

M∑
l=1

M∑
k=1

Ex,η[θ̂map(x + ηl)θ̂map(x + ηk)]

}
(l �= k)

= E(θ2) − 2Ex{θEη[θ̂map(x + η)]} + 1
M

Ex{Eη[θ̂2
map(x + η)]}

+ M − 1
M

Ex{E2
η[θ̂map(x + η)]}, (3.6)

where Ex,η denotes the expectation with respect to the joint PDF of variable x and η and Eθ (·)
denotes the expectation with respect to the PDF of variable θ . Under the assumption of the PDF fη
in equation (2.10), it is noted that Eη[θ̂map(x + ηl)] = Eη[θ̂map(x + ηk)] for l �= k and l, k = 1, 2, . . . , M.
Using equation (3.6) derived within the framework of stochastic resonance, the theoretical MSEs
of the designed Bayesian estimator in equation (3.4) are also shown in figure 2a as a function of
the distribution parameter Aη in equation (2.10). It is clearly shown that the theoretical results
(solid lines) obtained by equation (3.6) accord with the simulation results (◦) with high-frequency
sinusoidal vibrations. Furthermore, we illustrate the minimum MSE of the designed Bayesian
estimator in equation (3.4) theoretically and numerically for different background noise level
σw in figure 2b. It is noted that, without the help of vibrations (Aη = 0), the MSE (�) of MAP
estimator θ̂map is much higher than the MSE (dashed line) achieved by the MMSE estimator
θ̂mmse. However, due to the positive role of high-frequency sinusoidal vibrations with optimal
amplitudes, both numerical (◦) and theoretical (black solid line) MSEs of the designed Bayesian
estimator in equation (3.4) are rather comparable with the MSE (dashed line) achieved by the
MMSE estimator θ̂mmse.

4. Vibrational resonance in weak-signal detection
The VR effect can be also exploited to detect weak signals in the presence of strong background
noise. Consider a binary hypothesis detection problem

H0 : xn = θsn + wn

and H1 : xn = wn, n = 1, 2, . . . , N,

}
(4.1)

where sn represent the known signalling waveforms with unknown amplitude θ > 0 and wn are
mutually independent and identically distributed (i.i.d.) white noise components. For detecting
the weak signals with θ → 0, the locally optimum detector is based on the knowledge of the PDF
fw [30,32,34], and it may not be easily accessible or implementable for many practical problems
of interest. Then, the generalized correlation detector is often employed to select H0 or H1 on
the observations xn [34]. Inspired by the VR mechanism, we construct a generalized correlation
detector

THF =
N∑

n=1

[
1
M

M∑
m=1

g(xn + ηmn)
]

sn
H1
≷
H0

γ (4.2)

by injecting M high-frequency vibrations ηmn = Aη sin(2π fmn) plus xn into the transfer function
g, where γ is the decision threshold [30]. Under the assumption of zero expectation of the
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memoryless transfer function g, i.e. E[g(x)] = 0, and for a given false alarm probability PFA, the
detection probability PD can be calculated as [30,32,34]

PD = Q[Q−1(PFA) −
√

Rout], (4.3)

where Q−1(x) is the inverse function of Q(x) = ∫∞
x exp (−t2/2)/

√
2π dt. Here, the output signal-to-

noise ratio (SNR) of Rout is given by

Rout = [E(THF|H1) − E(THF|H0)]2

var(THF|H0)
(4.4)

with the variance var(THF|H0) ≈ var(THF|H1) and E[THF|Hi] and var(THF|Hi) represent the
expectation and the variance under the hypothesis Hi for i = 0, 1, respectively.

For instance, consider the weak signal sn = θ sin(2π fsn) with θ = 0.0711 and fs = 10−3 and the
background Laplacian noise w has its PDF fw(x) = exp(−√

2|x/σw|)/(√2σw) and variance σ 2
w = 0.8.

Then, the input SNR Rin = 10 log10(θ2/2σ 2
w) = −25 dB. The transfer function in equation (4.2) is

given by

g(x) =

⎧⎪⎨
⎪⎩

−1, x � −Θ ,
0, −Θ < x �Θ ,
1, x>Θ ,

(4.5)

with the threshold Θ ≥ 0, which is easily implementable in practice and tractable analytically.
Here, it is noted that the frequencies fm of the vibrations ηmn = Aη sin(2π fmn) are much higher than
the input signal frequency fs, i.e. fm  fs. To set the decision threshold and obtain the numerical
values of the detection probability PD from equations (4.3) and (4.4), the calculation analysis
in [30] is very complex. Instead, we perform probabilistic modelling employing the PDF defined
in equation (2.10) to determine the decision threshold γ and theoretically analyse the detection
probabilities PD in equation (4.3).

For a sufficiently large observed size N, the statistic THF in equation (4.2) will be asymptotically
Gaussian. Therefore, under the null hypothesis H0 and for the composite noise z = w + η, the
mean Ez[THF|H0] = Ez[g(z)]

∑N
n=1 sn = 0 and the variance

var[THF|H0] = Ez[T2
HF|H0] − E2

z[THF|H0]

=
N∑

n=1

s2
n

{ 1
M

Ez[g2(z)] + (M − 1)
M

Ew
{
E2
η[g(w + η)]

}}
. (4.6)

Under the hypothesis H1 and as the weak signal strength θ → 0, the mean has the asymptotic
form

Ez[THF|H1] = Ez

[ N∑
n=1

1
M

M∑
m=1

g(θsn + zmn)sn

]

≈ Ez

{ N∑
n=1

[g(z) + θsng′(z)]sn

}

= θ

N∑
n=1

s2
nEz[g′(z)], (4.7)

and variance var[TGC|H1] ≈ var[TGC|H0]. Then, substituting E[THF|Hi] and var(THF|Hi) into
equation (4.4), we can evaluate the detection probabilities PD (solid lines) in equation (4.3)
theoretically, as shown in figure 3a. It is seen that, for a fixed false alarm probability PFA = 10−2

and a given number M, the detection probabilities PD in equation (4.3) can be maximized at an
optimal amplitude Aopt

η . Furthermore, as the number M increases, we plot the maximum PD by
optimizing the vibration amplitude Aη numerically (◦) and theoretically (solid lines) in figure 3b.
It is indicated in figure 3b that, even for a moderate number M = 200, the initial PD = 0.45 can
be improved to the maximum PD = 0.9232 via the VR method, which approaches to the detection
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Figure 3. (a) Detection probability PD of equation (4.3) versus the interference amplitude Aη , and (b) Maximum PD obtained by
the optimal amplitude Aη versus the numberM. In numerical experiments, the values of the detection probability (circles) are
achievedby theMonte–Carlo simulationmethod [32]. Usingequation (4.6), thedecision thresholdγ = √

var(THF|H0)Q−1(PFA)
can be obtained for a given false alarm probability PFA. Then, generating N independent random variables xn = wn or xn =
sn + wn, we injectM high-frequency vibrationsηnm with the same amplitudeAη at different frequencies into each observation
xn.Wenumerically compute the statistic THF in equation (4.2) and compare itwith the thresholdγ for a number of realizations of
105, and then the detection probability P̂D is obtained as the ratio of the number of THF > γ over the total realizations. Here, the
thresholdΘ = 1.6, the observation lengthN = 3000, the false alarmprobabilityPFA = 0.01, and the input SNRRin = −25 dB
for the signal strength θ = 0.0711. (Online version in colour.)

probability PD = 0.97 achieved by the locally optimum detector [32,34]. Numerical simulations (◦)
and theoretical analyses (solid line) of VR-based detector in equation (4.2), as indicated in figure 3,
are valuable in detecting weak signals. For other types of noise w, similar results are also obtained
and not shown here for simplicity.

5. Conclusion
In this paper, we investigated the VR effect for the improvement of signal processors for
estimating unknown parameters and detecting weak signals. For a number of nonlinear sensors,
we inject a spread of high-frequency sinusoidal electrical signals into the sensors and collect
their responses for nonlinear signal processing. It is noted that the sinusoidal amplitudes are
identical, but their frequencies are different. Upon increasing the number of sensors and the
sinusoidal amplitude, the VR effect becomes more and more effective in improving the estimation
accuracy and the signal detectability. Since the VR effect can be perceived as a form of stochastic
resonance, then we consider the sinusoid amplitude as a random variable (noise) with an interval
distribution. This mapping of the sinusoidal vibration amplitude to a random variable brings
convenience to theoretically calculate the resonance behaviour of VR within the framework of
stochastic resonance. Both numerical and theoretical results demonstrate that the VR effect is a
potential method for some demanding nonlinear signal processing tasks in practice.

For enhancing the performance of estimators and detectors, the explicit or approximate forms
of optimal added noise have been derived or approximately solved [35–37]. It is proven that,
with the help of optimal noise, the stochastic resonance-based estimator or detector achieves a
rather comparable performance to the optimal processor [35–37]. Beyond the optimization of the
amplitude of vibrations, non-sinusoidal high-frequency vibrations, such as high-frequency square
and sawtooth vibrations, could be optimized to investigate the possibility of a still enhanced
performance of the VR-based processors. This is of interest and remains an open question for
future studies. In addition, for a variety of background noise types, we need to optimize the
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vibration amplitude to enhance the performance of processors. Thus, for exploiting the VR
effect in practical signal processing tasks, an adaptive algorithm of finding the optimal vibration
amplitude, frequency or vibration waveforms deserves to be further studied.
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