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Abstract

We consider an isolated dynamical saturating system for processing a noisy sinusoidal signal, and evaluate its performance with
the measure of the signal-to-noise ratio. The considered system is linear for small inputs, but exhibits saturation in its response for
large inputs. This nonlinearity displays the nonlinear phenomenon of stochastic resonance for a large biased sinusoid in appropriate
system parameter regions. Without the stochastic resonance phenomenon, this dynamical saturating system can achieve a signal-
to-noise ratio gain exceeding unity for a noisy unbiased sinusoid. These numerical results manifest the nonlinearities and the
signal-processing ability of this system acting as a stochastic resonator or a signal processor.
© 2008 Elsevier B.V. All rights reserved.
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1. Introduction

The stochastic resonance (SR) phenomenon has become one interesting research field of noise in nonlinear systems,
where the action of noise improves some processing performed on a weak signal [1-5]. Initially, conventional SR has
usually been defined with a quantifier such as the output signal-to-noise ratio (SNR) being a non-monotonic function
of the background noise intensity, in an isolated nonlinear system driven by a subthreshold periodic input [1-5]. Then,
the great majority of previous studies have focused on single element SR systems [6]. Progressively, some distinct
meaningful mechanisms of SR were observed in parallel [5-12] or coupled [13—17] arrays of nonlinear systems,
which significantly extend the concept of SR to broader conditions.

Briefly, these nonlinear systems exhibiting SR effects can be classified as static [5—11] and dynamic [12—-17] types.
Among static nonlinearities frequently used, the static threshold has been interestingly complemented by the static
saturation nonlinearity [5,11]. This extended the phenomenon of SR to threshold-free nonlinearities taking the form
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of saturating sensors [5,11]. In this novel case, SR operates with large signals, which receive assistance from the
noise in order to escape from the saturating region of the response by being shifted back into the linear region of the
system [5,11].

In the present paper, we study a dynamical saturating nonlinear system. Such systems, as a class of potential
stochastic resonator or signal processor, are the dynamic analog of the static saturating nonlinearity of Refs. [5,11]. The
system response shows linearity, when the input signal is small, but saturation for large input signal. We demonstrate
the conditions where addition of noise to a large biased input sinusoid can induce the SR phenomenon. Therefore,
beyond static nonlinearities with saturation [5,11], the present paper is the first to demonstrate the possibility of
extending SR to dynamic nonlinearities with saturation.

Furthermore, we find that the SR phenomenon appears for certain pairs of system parameters. More interestingly,
the SNR gain of this dynamical saturating system can be much larger than unity for an unbiased noisy sinusoidal
signal in appropriate parameter conditions. Note that the SR effects disappear in this condition. These numerical
results indicate that this class of saturating system is not only an alternative system exhibiting SR, but also an efficient
signal processor. This dynamical saturating system deserves further studies, e.g. the SNR gain in a parallel or coupled
array of such saturating systems.

This paper is organized as follows. In Section 2, the dynamic saturating system is put forward and the adequate
measure of SNR is utilized to quantify the performance of this nonlinear system. In Section 3, the numerical results
of the system under study are analyzed. By switching the bias of an input sinusoid on or off, this system can act as a
stochastic resonator or a nonlinear signal processor. Finally, some conclusions are drawn in Section 4.

2. Dynamic saturating system and SNR

We start by considering a dynamic saturating nonlinearity defined by
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with real parameters 7, and X}, having units of time and amplitude, respectively [12]. Here, s(t) = Ao+ A sin(2wt/ Ty)
is a deterministic sinusoid with period T, bias Ag and amplitude A. Here, £(¢) is zero-mean Gaussian white noise,
independent of s(¢), with autocorrelation (£(¢)£(0)) = 2D4(¢) and noise intensity D. Eq. (1) exhibits saturating
dynamics: When |x(¢)| < Xp, then Eq. (1) reduces to linear dynamics where 7,dx (¢)/dt ~ —x(t) + s(t) + £(2),
by which x(¢) tends to follow the noisy input s(¢) 4+ £(¢) within the lag imposed by the time constant t,; when x(¢)
approaches £ X, then the term x ()2 /X Z is close to one, the factor [1 — x(7)2 /X Z] is close to zero and tends to reduce
and turn off the action of the noisy input. This is the saturation effect as described in Refs. [5,11]. Strictly, when
x(t) reaches +Xj, the action of the noisy input is turned off, and x (¢) starts to relax to zero. By this mechanism, the
dynamics of Eq. (1) when initialized at x (0) €]-Xj, X[ can never exceed X}, and the time evolution of x (¢) remains
confined to [— X}, X ]. Thus, the dynamics of Eq. (1) is linear at small x () and saturates when x (¢) approaches +Xj,.
This is the dynamic analog of the static saturating nonlinearity of Ref. [5]. In this letter, we numerically integrate Eq.
(1) using Euler—-Maruyama discretization with a sampling time step At < 7, and T [19,22,23]. In this realization of
Gaussian white noise &£(¢), we have 2D = o2 At. Here, o is the rms amplitude of the discrete-time implementation of
£(t) [19].

Since s(¢) is periodic, the system response x(¢) is a cyclostationary random signal. Thus, we evaluate the
performance of the system by the output SNR, defined as the power contained in the output spectral line at fundamental
frequency 1/7; divided by the power contained in the noise background in a frequency bin AB around 1/Tj,
i.e.

[(ELx(0)] exp(—i2t/Ty)) >

Row = e ) H(/ T AB @

Here, E[x(¢)] is the expectation of x(¢) and the operator (--:) = TLY fo °...dt indicates a temporal average [19].

At fixed times ¢ and 7, the nonstationary variance of x(z) is var[x(¢)] = E [x2(1)] — E%[x(2)], the stationary
autocovariance function of x(¢) is Cxx(t) = (var[x(z)]) h(t), and the correlation coefficient 4(t) has a Fourier
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Fig. 1. Plots of SNR as a function of input noise intensity D. Output SNR Ryt curves are marked as in the legend: (a) X}, varies, but 7y = 1007,
and A = Ag; (b) 74 changes, whereas we fix Ag = A = 10X,,. Here, s(r) = Ay + Asin(27t/Ty) and the frequency bin AB = 1/T. The input
SNR Rj, is also plotted in dashed lines. The sampling time Ar = 10737;.

transform F[h(7)] = H (v) [19]. In the same way, the mixture of s(¢) + £(¢) has an input SNR as
A?/4 A?/4
Rin = = — 3)
2DAB  02AtAB
and the SNR gain is Roy/ Rin. The numerical method for calculating the SNR is introduced in Appendix.

3. Numerical results of stochastic resonator versus signal processor

3.1. Numerical results of stochastic resonator

Fig. 1 shows the behavior of output SNR R, as a function of input noise intensity D. The SR effect appears for a
biased sinusoid s(¢), as shown in Fig. 1. This form of SR is consistent with the result of the static saturating system
considered in Refs. [5,11]. However, the SR effect disappears for a certain region of the parameter space (t,, Xp),
as plotted in Fig. 1. The behavior of output SNR versus the noise intensity is diverse. These cases are of particular
interest to be discussed.

(1) Ap, A < Xj. As stated before, the input signal s(¢) is quite small, i.e. , Eq. (1) reduces to linear dynamics. At
Ag = A =0.1X} and Ty = 1007, as shown in Fig. 1(a), Ry (squares) is almost the same as Rj, and the linearity of
Eq. (1) is manifest.

(ii) Increase A9 = A = X, and fix Ty = 1007,, we find that R,y (asterisks) monotonically decreases below Rjj,
when the noise power density D increases (see Fig. 1(a)). The saturating feature of Eq. (1) comes into play.

(iii) Increase further Ag = A > X, and keep Ty = 1007,. Eq. (1) is strongly nonlinear and s(¢) is distorted in
its transmission. The SR phenomenon appears evidently as D increases, as shown in Fig. 1(a). The smaller X}, is, the
more visible the resonance peak of SNR is (see R,y marked as circles and plus legends).

Now we keep Ag = A = 10X}, and make the system of Eq. (1) evolve in saturating dynamics. Roy also behaves
richly when 7, varies, as plotted in Fig. 1(b).

(iv) Ty < 4. The output SNR Ry (down triangles) is illustrated for 7y = 0.27,, as shown in Fig. 1(b). The input
signal s(#) is much faster than the system intrinsic response time t,. The expectation E[x(¢)] is mainly restricted in the
saturating regime being close to X, for a given noise intensity, as illustrated in Fig. 2. Ry, monotonically decreases
as the noise intensity D increases.

(v) Ty = 14. Rout (squares) is plotted for Ty = 7,, as shown in Fig. 1(b). The input signal s(¢) has the same speed
as the system intrinsic response. We see that Ry also monotonically decreases and is lower than that of the above
condition of Ty = 0.2t,. E[x(¢)] has a larger amplitude and is depicted in Fig. 2.
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Fig. 2. Expectation E[x(t)] of x(¢) with noise intensity D/(raXi) = 8. Three kinds of relation between Ty and t, are plotted, while
Ag = A = 10X, is fixed as in Fig. 1(b).

(vi) Ty > 1,. The input s(¢) runs slow with respect to the intrinsic response time 7, of Eq. (1). The SR effect is
observed as Ry (circles and pluses) reaches a resonant apex and then descends slowly (see Fig. 1(b)). The expectation
E[x(¢)] at a fixed D is also shown in Fig. 2 for comparison.

The main conclusion of discussions (i)—(vi) is that the SR phenomenon appears for strongly nonlinear regimes
Ao, A > Xj and much slower periods T > 7,. Next, we explore the corresponding probability density p(x, ¢) and
present some detailed descriptions of the mechanism of the SR phenomenon.

3.2. Quasi-steady state probability density p(x, t)

In the presence of noise £(¢), the statistically equivalent description for the corresponding probability density
p(x,t) is governed by the Fokker—Planck equation [22,23]

Ip(x.1) 9 D ¥ ,
Ty —[—ac(xwgﬁg (x)}p(x,m @

where c(x,t) = —x+s()(1 —xz/X%) and g(x) = (1 —xz/X,%). Here, p(x, t) obeys the natural boundary conditions
such that it vanishes at |x;| = 1 for any ¢ [22]. We assume that the variation of s(¢) is slow enough (i.e. T > t,;) that
there is enough time to make the system reach local equilibrium [1,2]. The quasi-steady state solution of Eq. (4) is
given by

(x,t) = Lex [E/ﬂdx]
PED="0m ™D ) 20

-U
= Nexp |: (x):| s ®))
D/t,
where N is the normalization constant [22] and the generalized potential U (x) is
D c(x)
Ux) = —In[¢g*(x)] — / ——-dx
Ta g~ (x)
D X2 s(1)Xp
= —In[(1 —x*/X})*1 + b - In(1 +x/Xp) — In(1 — x/Xp)]. 6
- [( / Xp)] 20 —x2xD) 5L ( / Xp) — In( / Xp)] (6)

When s(¢) = 0, U (x) has three extremaat x = 0and x = +,/1 — raXZ/(4D)X;, as D > raXI%/4. In the presence of
both s(¢) and £(¢), the symmetry of U (x) is modulated by input signal s(¢) and noise density D.

Fig. 3 shows some representative curves of the generalized potential U (x). Since the input signal s(f) = Ag
+ Asin(2rt/Ty) has a varying amplitude ranging from zero to 2A (Ayp = A), the right well of generalized potential
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Fig. 3. The generalized potential U(x) at D/ (ran) = 8. There representative values of s(t) = Ag + Asin(2xt/Ty) are plotted for
A= Ag =10Xp and Ty = 1007,.

U (x) is rising. The modality of p(x, ¢) is determined by the number of minima of U (x). Therefore, p(x, t) will be
bimodal as the cubic U’(x) = 0 has three real roots given as the discriminant relation
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This feature of the generalized potential U (x) is pertinent to that of the bistable potential discussed in Refs. [12—
15,17]. Note that the generalized potential U (x) of Eq. (6) is dependent on not only signal amplitude and system
parameters, but also the noise intensity, which is a random potential in this sense [22]. The appearance of SR effects
is also closely associated with the bimodal p (x, ¢). Note that the generalized potential U (x) and the quasi-steady state
probability density function p(x, ¢) have similar behaviors in the Stratonovich sense (not shown here) [1,31-33].

The conventional SR theory of Ref. [2] has been applied in the multiplicative noise condition [1,31-33]. This
paper mainly focuses on the numerical result of this dynamical saturating system. The generalized potential and the
quasi-steady state probability density express certain aspects of SR effects. Next, the statistical characteristics will be
numerically presented and help us to understand the SR mechanism in detail.

3.3. Expectation E[x(t)] and stationary autocovariance function Cxx(T)

We select three values of D/(z, X,%) = 1.25, 8 and 20 at the SR-type curve (circles) of input sinusoidal signal
with frequency 7y = 1007,, amplitude A = 10X, and bias Ag = A, as plotted in Fig. 1. The corresponding mean
functions E[x(¢)] and the stationary autocovariance functions Cxx () are plotted in Fig. 4(a) and (b), respectively. It
is seen that the periodic function E[x(¢)] has a period of Ty and a decreasing amplitude as D increases, whereas the
stationary autocovariance function Cxx(t) varies richly. Generally, the output noise is a Lorentz-like colored noise
with the correlation time t,.. Here, t, can be calculated by A(|t| > t,) less than a small value ¢. The nonstationary
variance (var[x(7)]) = Cxx(0) defined in Eq. (2) increases as noise intensity D increases, while the correlation time t,
decreases. The nonlinear variations of E[x(¢)] and Cxx(7) result in the phenomenon of SR, as discussed in Ref. [12].

3.4. Numerical results of nonlinear signal processor

The literature points out that SR does not provide a mechanism by which the output SNR of a weak input sinusoidal
signal can be enhanced beyond the input SNR in a Gaussian noise background [24-26], as this would require the
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Fig. 4. Temporal behaviors of (a) E[x(¢)] and (b) Cxx(7) for input sinusoidal signal s(t) = Ag + A sin(27t/Ty) with frequency Ty = 1007, and
amplitude A = Ay = 10X}, at three different values of D/(z, X%) = 1.25, 8 and 20. Other parameters are the same as in Fig. 1.
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Fig. 5. Plots of (a) the SNR Ryt and (b) the SNR gain Royt/ R, versus the noise intensity D. Here, A = 10X}, and Ag = 0 and Ty = 1007,. The
signal period Ty is inserted in the legends. The input SNR Rj;, is also plotted in dashed lines.

SNR gain to exceed unity. This statement is based on linear response theory. However, beyond the regime where
linear response theory applies, it has been demonstrated that the SNR gain can indeed exceed unity in non-dynamical
systems, [5,10,11,18] and dynamical systems, [20,21,27-30]. The corresponding input SNR Rj, (dashed lines) is also
depicted in Fig. 1. In comparison with the output SNR R, Fig. 1 tells that the output SNR of a noisy signal caused
by its transduction through a nonlinear system seems to be low. In this paper, the discussed signal amplitude is not too
weak to the noise intensity and A = 10X} is frequently employed in illustrative examples of Figs. 1-4. Naturally, we
should find in which condition the output SNR can exceed the input SNR, and how high the SNR gain can reach for
a given noise intensity.

Fig. 5 shows the output SNR R, and the SNR gain Ry /Rin as a function of the noise intensity D. The input
signal s(t) = Asin(2wt/T;) with Ag = 0, A = 10X}, and Ty = 100t,. When the system parameters (z,, Xp) vary,
the SNR gain can exceed unity and is up to 1.55 at low noise intensity, as plotted in Fig. 5(b). It is emphasized that no
SR effects occur for the input unbiased s(¢) = A sin(2r¢/Ts) (other results not shown). We are more interesting in the
behavior of SNR gain at a given moderate noise intensity. Here, we select a moderate noise intensity D/(t, X %) =80
and the input SNR Rj, = 15.625. Tune the pair of parameters (t,, X;) and plot the contour of SNR gain in Fig. 6. In
the regimes of 0.3 < t,/7; < 0.8 and 0.05 < X;/A < 2.5, the SNR gain is larger than 1.3641. This indicates the
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Fig. 6. Contour plot of SNR gain versus system parameters (7;, Xp). The noise intensity is chosen at the point of D/(z,4 X%) = 80 in Fig. 5 and
the corresponding input SNR R;, = 15.625. Other parameters are the same as in Fig. 5.

robustness of the dynamical saturating system of Eq. (1), i.e. many tunable pairs of parameters (z,, X} ) eliciting higher
SNR gain. In this parameter region, one highest SNR gain reaches 1.4 at 7,/ Ty = 0.6 and X;,/A = 0.1. Combining
with the more higher SNR gain of 1.55 in Fig. 5, these results are better than that obtained in an isolated bistable
system with an input noisy sinusoidal signal [27,12]. The maximal SNR gain around 1.2 is obtained in Ref. [27].
Therefore, this point represents the powerful signal-processing ability of the dynamical saturating system of Eq. (1).
In brief, when we turn off the bias A, the dynamical saturating system can switch from a stochastic resonator to a
signal processor capable of amplifying the SNR.

4. Conclusion

In this paper, we propose a dynamical saturating system and numerically study its nonlinearity in terms of the output
SNR and SNR gain. Some numerical characteristics of the dynamical saturating system are detailedly observed. The
output SNR shows a resonant-like behavior for a noisy sinusoidal signal with large bias as the noise intensity increases;
this is the phenomenon of SR. However, this SR effect disappears for certain parameters. In the condition of a noisy
unbiased input, we study the signal-processing ability of this saturating system without SR phenomena. The SNR gain
can exceed unity for certain system parameters. When we fixed the input SNR and tuned system parameters, the SNR
gain shows that quite a large parameter region is beyond unity. It indicates the robustness of this dynamical saturating
system for obtaining high SNR gain in the parameter space. This interesting saturating system of Eq. (1), with the
structure of parallel or coupled array, deserves to be further studied in other signal processing problems.
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Appendix. Numerical method for computing the power spectrum

The corresponding measured power spectrum of the cyclostationary response x(¢) is computed in the following
way that is based on the theoretical derivations contained in Refs. [5,19]. The definition of Eq. (2) involves ensemble
averages E[-] and temporal averages denoted by (- - -), which can be computed from a single temporal realization of
the signal.

The total evolution time of Eq. (1) is (K + 1)T§, while the first period of data is discarded to skip the start-up
transient [27]. In each period T, the time scale is discretized with a sampling time At < Ty such that Ty = L At. The
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white noise is with a correlation duration much smaller than 75 and At. We choose a frequency bin AB = 1/T;, and
we shall stick to AtAB = 1073, L = 1000 and K > 10° in this paper [12,19]. In succession, we follow:

(a) The estimation of the mean E[x(j At)] is obtained over one period [0, T[, and the precise time j At of E[x(jAt)]
(j = 0,1,..., L — 1) shall be tracked correctly in each periodic evolution of Eq. (4), i.e. [kT, (k + 1)T,[ for
k=1,2,...,K.

(b) For a fixed time of T = i At, the products y(j At)x(j At+i At) are calculated for j = 1,2, ..., KT;/At. Here,i =
0,1, ..., Tmax/At. The estimation of the expectation E[x(j At)x(j At + i At)] and E[x(j At)]E[x(j At 4+ i At)] are
then performed over a time domain 7 € [0, tmax[. Immediately, the stationary autocovariance function Cyx (i At) can
be computed [12,19]. Note the time Ty is selected in such a way that at Ty, the stationary autocovariance function
Cxx (i At) has returned to zero. In practice, we can select a quite small positive real number &. If Cxx (i At)/ Cxx(0) < &,
the above computation shall be ceased and the index iepq is found, leading to Tymax = feng Af.

(¢) Upon increasing the total evolution time of Eq. (1) as (K’ + 1)Ty; (K’ > K), and evaluate the mean E'[x(j Ar)]
and the stationary autocovariance function Cj, (i At) again. If the differences between E’[x(j At)] and E[x(j Af)],
Cry[i At] and Cxx (i At), converged within an allowable tolerance, we go to the next step (d). If they do not converge,
the total evolution time of Eq. (1) should be increased to (K" + 1) Ty larger than (K’ + 1)T}, until the convergence is
realized.

(d) With the converged mean E[x(j At)] and stationary autocovariance function Cxx (i At), the corresponding SNR of
Eq. (2) in the noise background around 1/ 7 can be numerically developed.
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