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Abstract

The archetypal bistable system can act as a nonlinear receiver for detecting binary signals modulated by amplitude,
frequency, or phase. The introduction of noise enhances signal detection for a certain range of noise intensity, which is
ascribed to non-conventional stochastic resonance (SR) phenomena, such as residual aperiodic SR and short-time SR. For
the first time, we unify binary modulated signal detection from the point of view of an approximate probability density
model. We develop both theoretical and numerical analyses of the receiver performance for each type of modulated signal.
The optimization of receiver parameters and comparisons of the optimal bistable receiver versus the linear matched filter
are also investigated. An interesting result is that the probability density model enables us to explore the SR range of noise
intensity and the optimally-tuned bistable receiver theoretically, which may play a prominent role for nonlinear systems
performing in noisy conditions.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

A bistable system is the most frequently used model for characterizing stochastic resonance (SR)
phenomena in diverse scientific fields [1-7]. In such systems, it is well known that, via the SR effect, the
addition of noise can lead to an enhancement of the system response to weak signals. Moreover, experimental
verification of SR effects has been demonstrated for a bistable characteristic, such as in a Schmitt trigger [8],
bistable ring laser [9], paramagnetically driven bistable buckling ribbon [10], bistable electron paramagnetic
resonance systems [11], bistable superconducting quantum interference devices [12], vertical cavity surface
emitting lasers [13,14], bistable nanomechanical silicon oscillators [15,16]. In its early days, the SR
phenomenon was strongly tied to the existence of a periodic weak subthreshold input—this is a keying feature
of the conventional SR. Later, this effect was extended to aperiodic (i.e., broadband) input signals, leading to
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the term: aperiodic stochastic resonance (ASR) [17-21]. The relevance of ASR to the bistable system has
attracted considerable attention in recent years [13,22-29]. A pioneering study on ASR considered this system
for the transmission of a binary input sequence of fixed length [20]. Godivier and Chapeau-Blondeau [22]
demonstrated that this system can be operated as a memoryless symmetric binary channel. Moreover, the
information gain of optical bistable experimental systems has significantly shown SR [13,25], and this is
beneficial to applications, such as optical communication and image processing [24]. Duan et al. studied the
residual ASR effect in a bistable system driven by a suprathreshold random binary signal [28]. Recently, a new
effect, named short-time SR, was explored in this nonlinear system for detecting frequency-shift keyed signals
[29], which is consistent with a ring of coupled bistable systems operating as a short-term memory device in the
SR regimes [23]. Interestingly, the demonstration of SR in a doubly clamped mechanical nanometre beam
enables the exploration of SR in a quantum—mechanical context, which is at the very forefront of quantum
logic and quantum computation [15,16]. These significant results clearly demonstrate the potential
applicability of the bistable system in the signal processing field.

In the present paper, we investigate bistable receiver response to binary modulated signals, versus the
amount of noise. Three kinds of binary modulated signals, representing the input information by their
amplitudes, frequencies, or phases, are applied to this nonlinear receiver for exploiting its non-monotonic
evolution with noise intensity. Besides the standard ASR effect, other non-conventional SR phenomena are
observed and serve as detection mechanisms for various random binary modulated signals. An approximate
but useful non-stationary probability density model is proposed to describe the mentioned non-conventional
SR phenomena. Furthermore, we show that the optimal noise intensity in the SR regime can be theoretically
evaluated in advance, which is useful for bistable systems adaptively harnessing low-level background noise.
The optimally-tuned bistable receiver, for a fixed noisy binary signal, is also investigated and compared to the
linear matched filter. This nonlinear receiver, that we shall consider in the following sections, can be viewed as
an extension and generalization of these bistable systems, which may be of interest for electronic or optical
bistable devices operating in a noisy environment. Therefore, the positive results will stimulate the latent
applicability of the bistable system in a range of signal processing problems [15,28,29].

2. Binary modulated signal detection in a bistable receiver

In the transmission of digital information, an input information-bearing sequence {/} is usually mapped
onto a set of corresponding signal waveforms S,,(¢). In a symbol interval of T, these waveforms may differ in
either amplitude or phase or frequency:

AITI >

Sm(t) = { A cos2nft + ¢,,), (1)
A cos(2nf 1),

for (mn— 1)T<t<nT,n=1,2,...,and m=1,2,..., M. Here, 4,,, ¢,, and f,, denote the set of M possible
amplitudes, phases and carrier frequencies, corresponding to M = 2¥ possible k-bit symbols, respectively. In
the following, we only focus on binary modulated signals with M = 2. Here, T is then called the bit interval.
The input signals are (i) baseband binary pulse amplitude modulated (BPAM), (ii) binary phase-shift keyed
(BPSK), and (iii) binary frequency-shift keyed (BFSK) signals. Note that the amplitude 4 and the carrier
frequency f are fixed for BPSK signals, and have the same as the amphtude A for BFSK signals. Assume that
the input symbols occur with equiprobabilities P(S|) = P(S;) = 5 and have equal energy ¢ = fo s2 - () dt
(m =1,2). The background noise #(f) is zero-mean additive Gaussian white noise, with autocorrelation
<17(t)11(0)> = 2DJ(%) and the noise intensity D. Thus, the input signal-to-noise (SNR) ratio per bit, defined as
¢/4D, is appropriate for measuring these noisy binary modulated input signals.
Next, the binary signals S,,(¢) plus the noise 5(z) arrive at a bistable dynamic receiver given as

3( )
( ) -—— + Sm(t) + 77([)7 (2)
b
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with real receiver parameters t, and X, [22,28]. This assumes a symmetrical double-well potential
Vo(x) = —x?/2 4+ x*/(4X3), having two minima Vo(£X3) = —X7/4. In the absence of the noise 7(), the
minimal value of the amplitude A that destroys bistability in Eq. (2) occurs when x — x*/X ﬁ + A = 0 ceases to
have three real roots, and yields 4 = 2X;,/\/ﬁ ~ 0.38X), [5,22]. For A<0.38X}, the input S,,(¢) alone is too
small to induce transitions in the output x(¢), thus is referred to as subthreshold signal otherwise as
suprathreshold signal [5,22,29].

In this paper, the signal detection statistics of the bistable receiver are measured by the total probability of
detection error P,

Per = P(S1)P(S21S1) + P(S2)P(S1]S2), 3)

where P(S,|S,) (n,m = 1,2, n#m) is the probability of error for the detected output to be S,(¢), when the
input signal is S,,(?).

3. Probability density model and the total probability of detection error P,

The total probability of detection error P, can be deduced from an approximation of the non-stationary
probability density of Eq. (2). The temporal relaxation of the non-stationary probability density, termed the
receiver response speed Ay, allows us to explicitly have a deeper understanding of the binary modulated signal
detection in a nonlinear bistable receiver.

In each bit duration 7, the system of Eq. (2) is subjected to the constant amplitude A; or —A4; (4, = —A4;)
for BPAM signals, as shown in Fig. 1(a). On the contrary, the BFSK or BPSK signal has a ranges of
amplitudes. Here, we take it as the first harmonic component of a rectangular signal waveforms with the same
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Fig. 1. Time evolution of baseband BPAM signal in the bistable receiver with X, = 1V and 7, = 0.1s: (a) the baseband BPAM signal is
with amplitude randomly taken from the set of {+0.32 V, —0.32 V} in each symbol interval of 7" = 4s, representing the digits 0 and 1; the
receiver output signal x(7) at (b) the low level of noise (D = 0.001 V2 /Hz, i.e., the input SNR per bit 20.1 dB), (c) the optimal noise intensity
(D =0.008 VZ/HZ, i.e., 11.1dB) and (d) the high noise level (D = 0.1024 VZ/HZ, i.e., 0dB). The decoded digits are given in the inset in
terms of the decision threshold £ = 0'V. The erroneous digits are boxed and the sampling time is Az = 1073 s.
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period f and the amplitude n4/4, as shown in Figs. 4(b) and 8(b). Note that a rectangular signal with
amplitude n4/4 can be expressed as a series of harmonically related sinusoids A _ .4 sin(2nnft)/n. This
simplification, although approximate, makes the model more amenable to theoretical analysis. However, it is
emphasized that sinusoidal signals are retained in our simulations, wherein we numerically integrate Eq. (2)
with the Euler—Maruyama discretization method and a small sampling time Az <7, [22,28,30].

Now, in a short time interval, viz. each bit interval of T for BPAM signals or a half period for BFSK and
BPSK signals, the system of Eq. (2) is subjected to a constant amplitude S,,(f) = £4,. Here, A4, represents the
corresponding amplitude of BPAM signals (+4;), BFSK or BPSK signals (£n4/4). In the presence of noise
n(t), the statistically equivalent description for the corresponding probability density p(x, ¢) is governed by the
Fokker—Planck equation

op(x,1) [d D
a = |A_ V/ A )t s 4
T, o @+ o p(x, 1) “4)
where V'(x) = —(x — x*/X % + Ay). Here, p(x, ) obeys natural boundary conditions such that it vanishes at
large x for any ¢ [31]. The steady-state solution of Eq. (4), for a constant input at +A4;, is given by

plx| £ Ay) = lim p(x, 1) = Cexp {— , (5)

q V' (x)

>
where C is a normalization constant [31]. As the amplitude varies from +A4; to FF 4, we encounter the non-
stationary solution p(x, 7) of the Fokker—Planck equation, i.e., Eq. (4). Here, we adopt the variational method
[31] and obtain the eigenfunctions u;(x) corresponding to the eigenvalue A; fori =0, 1,...,n [28]. The integer n
is not increased in the iterative process until the preceding eigenvalues 4; approximate the next ones within a
tolerated error. Hence, p(x, ¢) can be expanded, according to eigenfunctions and eigenvalues, as

T,V (x)
D

px,t) = ,z:; Ciu;(x) exp {— 7

] exp[—4t], (6)
where C; are normalization constants deduced from the orthogonal condition of eigenfunctions [31]. This
analysis has been extensively deduced [28,29]. As for this variational method, the numerical results of the
eigenvalues are very effective for determining the lowest eigenvalues [31]. Specifically, the inverse of the
minimal positive eigenvalue, 1, is a measure of the slowest time taken by the bistable receiver to tend to the
steady-state solution of Eq. (5). In other words, 4 is the speed of the bistable receiver tracing the variety of
input signals, whence our term: receiver response speed. We here consider the non-stationary solution p(x, f)
for an input transition from S,,(f) = F4, to S, () = £A4,, approximated with the two first terms from its
asymptotic representation of Eq. (6), as

p(x, 1) = p(x| £ A) + [p(x] F As) — p(x| £ A5)]exp(—4i1), (7

where p(x| &= 4y) are the steady-state solutions of Eq. (5) [28]. In Eq. (7), when ¢ = 0, the term exp(—4,¢) = 1
and p(x, ) starts with the initial condition of p(x| F A4;). As t — 400, the term exp(—4;¢) = 0, and p(x, ) tends
to the stationary condition of p(x| 4 A4;). Therefore, this simple but generic probability density model of
Eq. (7) is reasonable and applicable, as will be demonstrated in Section 4, for analyzing the detection of
digitally modulated signals.

4. Theoretical and numerical studies on P,

With the approximate non-stationary probability density model of Eq. (7), we will deduce theoretical
expressions of total probability of detection error P, for detecting the BPAM, BFSK and BPSK signals in this
section. Also, numerical results will be presented for comparison. We find the detectability of the bistable
receiver will behave as a non-monotonic function of the noise intensity—this is the signature of SR. Moreover,
the appearance of SR effects, not restricted to the conventional SR, is extended for slightly suprathreshold
amplitudes or in a short timescale of the bit interval, serving as a detection mechanism for binary modulated
signal detection.
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4.1. P¢ for detecting baseband BPAM signals

It is well known that input source digits represented by baseband BPAM waveforms S,,(f) = £A4;
(A, = —A,), as shown in Fig. 1, are emitted at a rate of one waveform every T and last over a duration 7. In
order to recover the successive input digits from the observation of the receiver output x(¢), we sample x(¢) at
equispaced times t; =T for j=1,2,... . The sampled values x; = x(#;) are compared to the decision
threshold ¢ for decoding digits. In this communication process, we assume that the bit interval 7, at which
input digits are emitted, and the transition times at which one given pulse of duration 7" ends while the next
pulse starts at the emitter, are both known at the receiver. This is a case of synchronized communication, as
considered in Ref. [22]. The times ¢; of the output readings are placed, as in Ref. [22], just at the end of one
emitted pulse, just before the next pulse starts. This is to maximize the time allowed for x(#) to approach the
stable state, associated with the digit being currently transmitted.

In each symbol interval of T, the BPAM signal waveform takes an amplitude —A4; or +4;. Since the
receiver output x(#) is sampled at intervals ;7 for each decision, the term ¢ in the probability density model of
Eq. (7) should be replaced by 7. Thus, the non-stationary probability density p(x, T), at the times ¢; = jT for
the transition from S,,(¢) = F4; to S,,(t) = £A4,, or conversely, can be easily written as

p(x, T) ~ p(x| £ A1) + [p(x] F A1) — p(x] £ A1)]exp(—=4 T), (8)

where p(x| & A4,) are the steady-state solutions given in Eq. (5). Note that p(x, T) are symmetrical for signal
amplitudes +4,, enabling us to address the performance of the nonlinear receiver.
Based on the maximum-likelihood criterion, the decision threshold ¢ can be calculated from

p(6, T+ A1) = p(L, T| — Ay), ©)

for decoding the information representing by input waveforms S,,(¢). Since the symmetric character of p(x, T)
for S,,(t) = £A4;, the decision threshold £ = 0V. Thus, the probability of error P(S,(?)|S,.(?)) (n,m = 1,2,
n#m) can be expressed as

0
P(—A1|+A1>=/ p(x, T| + Ay dx (10)
and
400
P(+A1|—A1)=/0 p(x, T| — A7) dx. (11)

Then, we can calculate the total probability of error P, of Eq. (3) for detecting the baseband BPAM signals.
Note that Egs. (10) and (11) hold for signal waveforms S,,(¢) with equiprobability. Also, when Eqgs. (10) and
(11) are introduced in Eq. (3), it is apparent that the term exp(—A;7) should satisfy the condition of
exp(—4; T)S%, i.e., 41 should not be sufficiently small compared to 7. It is in this case that P, falls below %,
and that effective binary transmission can take place [32]. The following quantitative results are all calculated
in this regime where exp(—4; T) <3 [28].

Fig. 2 shows the numerical simulations and the theoretical results for the bistable receiver detecting
baseband BPAM signals. The theoretical curves are plotted in Fig. 2(b) in terms of Egs. (8)—(11). In
comparison to the numerical data of Fig. 2(a), this probability density model can describe the receiver’s
performance in the SR region well. Furthermore, Fig. 2(c) compares theoretical and numerical results for three
given signal amplitudes. It is emphasized that the discrepancy between the theoretical and realized values of
simulations can be attributed to several factors. One being, in Eq. (8), the receiver response speed only
considers the lowest, i.e., 1;. Moreover, we assume that the receiver firstly reaches the stable state associated to
FA; at (j — 1)T, then evolves into the state corresponding to £A4; at j7T, as shown in Eq. (8). However, it does
not hold if the state of 4, at (j — 1)T is not stable. This non-stationary case is difficult to consider
comprehensively. Nevertheless, this theory captures the essential features of standard ASR behavior, in this
kind of nonlinear receiver, for detecting subthreshold BPAM signals, viz. 41 <0.38X}.

In line with residual SR [33], we also identified a new ASR phenomenon, i.c., residual ASR, to survive in a
single bistable dynamic system subject to a fast suprathreshold random BPAM signal [28]. Generally, standard
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Fig. 2. Numerical (a) and theoretical (b) results for P versus the input SNR per bit and the signal amplitude 4, for detecting baseband
BPAM signals. The bistable receiver parameters are X, = 1V and 1, = 0.1s. Here, the bit interval 7 = 4s and the sampling time is

At = 1073 s. (c) The idiographic comparisons of numerical data with theoretical results of P, for 4; = 0.24V (circles), 4; = 0.32V (stars)
and 4; = 0.38V (squares).
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ASR (subthreshold) [17] is more like an amplitude effect, wherein a small aperiodic input has an amplitude too
small to trigger transition at the output, and it gets assistance from noise for that. In contrast to standard
ASR, residual ASR (suprathreshold) is a temporal effect, wherein a slow dynamic system has difficulty to
follow the variations imposed by a fast (suprathreshold) input, and it receives spurred by the noise for that. By
this mechanism, as demonstrated in Ref. [28], information detection from a fast suprathreshold input can be
enhanced by addition of noise. However, the input signal has to remain a little suprathreshold, but not too
much, otherwise the positive effect of noise tends to vanish, whence our term “residual.” We have studied the
detection of suprathreshold baseband BPAM signals via the residual ASR effect, in more detail in Ref. [28].
Particularly, the theoretical probability density model of Eq. (8) is also valid for the slightly suprathreshold
input, as 4, >0.38X}, as shown in Fig. 3, wherein the response of the dynamic bistable receiver is relatively
slower for fast suprathreshold BPAM signals. Hence, input noise plays a constructive role in improving the
receiver’s performance via the residual ASR effects.

4.2. P for detecting BFSK signals

In our previous work of Ref. [29], we established the possibility of decoding subthreshold or slightly
suprathreshold M-ary FSK signals in bistable receivers, via a series of short-time SR phenomena. Usually,
conventional SR is characterized with a statistical measurement, e.g. the output SNR, resulting from long-
term observational data [3,5]. In contrast, we are more interested in the noise-enhanced effects that occur in
each short-term duration of each bit interval as the noise intensity increases—what we called the short-time SR
phenomenon [29]. Here, short-time SR is emphasized as being in a short-term timescale of the bit interval,
whereas we are in a standard situation of ASR for a long-term data statistics. Since the ASR phenomenon
cannot cover all features of the detection of M-ary FSK signals, short-time SR is claimed in regard to the
adaptive ability of a bistable receiver to timescale and frequency variations [29]. Due to the transient nature of
the input waveform in each bit interval, we decode the digital information with a rule based on zero crossing
times, rather than a statistical measurement. In this paper, the bytes represented by the corresponding input
BFSK signals with frequency f,, are decoded as

(fm—l +fm)T<Nm<(fm +fm+l)T> (12)

100 T T T T

10"

Per (%)

0 5 10 15 20
Input SNR per nit (dB)

Fig. 3. The comparison of numerical data with theoretical results of P, for A} = 0.4 V at T = 1s (squares), T = 1.4s (circles), T = 1.75s
(stars). The input signals are suprathreshold as 4 >0.38 X, while the bit intervals T are fast by comparing with the system switching time
of 1.765s, as introduced in Ref. [28]. Other parameters are same as in Fig. 2.
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with the frequency separation Af =f,, ., —f,, form=1,2,..., M and Af = 1/(2T) represents the minimum
frequency separation between adjacent signals for orthogonality of the M-ary FSK signals. Then, the output
information sequence can be decoded. Particularly, we only consider the performance of bistable receivers for
detecting BFSK signals (M = 2) in this paper. By comparing input and decoded sequences, the measure of
total probability of detection error P, of Eq. (3) is obtained to quantify the performance of this nonlinear
receiver.

For simplicity, we transform the input sinusoidal waveforms S,,(¢) = 4 cos(2=nf,,t) in each bit interval T'
into a square wave, as shown in Fig. 4(b), with the same frequency f,, and the equivalent amplitude
Ay = mA/4. This is deduced from the fact that a rectangular signal can be expressed as a series of harmonically
related sinusoids, as stated previously. In each bit interval of 7, we sample the bistable receiver output x(¢)
with the sampling frequency of f,>2 max(f,,) (m = 1,2) for counting the zero crossing times N,,. Fig. 5 shows
an example of the receiver output x(7) for the BFSK signal S,,(z) = 0.5 cos(12xnf) in one bit interval T = 1s.
The discrete samples x; are also inserted at each sampling time j/f = j/20s forj = 1,2,... . The zero crossing
times, N,,, depend on the signs of discrete samples x;. As the equivalent square waveforms exchange the
amplitudes £nA4/4 each half period of 1/(2f,,), the correct probabilities of signs at samples x; can be
theoretically calculated as

7 p(x, r,)dx if p; = +4,,

Py — 13
¢ ffoo p(x, t’i) dx if p; = —A4,, (13)

where ¢/ are the time differences between the sampling times j/f, and the anterior zero crossing times ¢,
n=1, 2,. ..). For example, ; , as shown in Fig. 5 (a), is the sampling time 11/f; minus the anterior zero
crossing time #¢. The non- statlonary probability density p(x, t ) takes the relevant expression from Eq. (7) in
terms of p; = +4, or p; = —Aj; this is Eq. (13). Here, p; are the sampling values in equivalent square waves, as
plotted in Fig. 5(a).

In the presence of noise, the zero crossing times N, counted by the sign sequence of samples x; will be in the
vicinity of 2f,,,T even in the SR region of noise, as shown in Fig. 4(c). If N, enters into the region, determined

by the decision rule of Eq. (12), the digit carried by the BFSK signals will be correctly decoded at receiver.
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Fig. 4. (a) The BFSK signal S,,(f) = 0.5 cos(2nf',t) with carrier frequencies 4 or 6 Hz randomly in each bit interval of 7' =1s,
representing binary digits 0 or 1, respectively. (b) The equivalent transformed square waveforms with same frequencies and the amplitude
Ay =mA/4 = /8 V in each bit interval. (c) The receiver output signal x(¢) for the BFSK signal S,,(7). Here, X; = 1.5V, 7, = 10~3s and
D =197 x 107*V?/Hz, i.e., the input SNR per bit 22.1 dB. The sampling time A = 10™*s and the decoded binary digits are also inserted.
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Fig. 5. (a) The equivalent square waveforms with same frequencies 6 Hz for the BFSK signal S,,(¢) = 0.5 cos(12xt) in one bit interval of
T = 1s. The discrete samples p; are illustrated at each sampling time j/f, =j/20s for j =0,1,2,...,f,T. (b) The receiver output x(¢)
for the BFSK signal S,,(f). The discrete samples x; are also inserted at each sampling time j/f = j/20s . Other parameters are same as in
Fig. 4.

Moreover, N, can be theoretically calculated by the joint probability H{;P:’ in each bit interval of T with the
statistical independence assumption. However, such zero crossing times N,, obtained by the sign combinations
of x; are too large to be totally counted. Alternatively, we can decode the digits as zero crossing times N, just
equals to 2f,, T. The aim is to compare the above theoretical analysis with the corresponding numerical
results, as illustrated in Fig. 6(b) and (c).

In this process, it is found that the phase shift of x(¢) induced by the nonlinearity of receivers in each half
period, or the dynamical inter-well transition, frequently results in erroneous signs of the samples x; just as x(z)
crosses the zero level. For example, the samples x», x7, xj» and x|7 presented in Fig. 5(b) have erroneous signs
relative to the input amplitudes of p,, p7, p;, and p;;. Fortunately, if the noise intensity is in the SR region, and
there are two samples in each half period, these erroneous signs of the samples x; do not change the zero
crossing times N, = 2f,, T as f,>2 max(f,,). Nevertheless, we must retain the single sample in one half period
or a potential well. Thus, the correct probability of detecting S,,(¢) is the joint correct probability of P’
excluding these samples x; that just follow x(#) crossing the zero level and make no contributions to zero
crossing times. Then, the error probability of detecting information, digits 1 or 0, is one minus the
corresponding correct probability. Finally, the total probability of error P for detecting S, () is then
obtained for the theoretical formula of Eq. (3). Fortunately, this complicated analysis is not cumbersome,
since the BFSK signal only has two difference modulated frequency f,, for m = 1,2.

Although our discussion of the probability of error P, is somewhat abbreviated, and the discrepancy
between theoretical and numerical calculations exists, as shown in Figs. 6 and 7, this theoretical analysis does
provide us with some important insights into the BFSK signal detection in nonlinear receivers. For example, it
can elicit the optimal noise intensity region for the further research in adaptive signal processing, in this
nonlinear system, as addressed in the section below. It is also interesting to note that even if the modulated
signal amplitude 4> 0.38.X} is slightly suprathreshold for the receiver, the total probability of detection error
P, also evolves a non-monotonic behavior as the noise intensity D increases, as seen in Fig. 7. This can be
attributed to the residual SR effects in a short timescale of 7' (more detailed discussion is in Refs. [29,33]). In
addition, we have investigated the behavior of the bistable receiver when the phase shift is not known or
random. It was observed that the detectability of the bistable receiver is almost same for different phase shifts
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Fig. 6. Numerical results of P, as a function of the signal amplitude 4 and the noise density D for (a) the decoding scheme
F o1 )TNy <(f,, +f )T, viz. Eq. (12), and (b) the simple decision rule of N, = 2f,, T. (c) The theoretical results of P as a

function of 4 and D for the reduced decision rule N,, = 2f,,T. Here, T = 1s and At = 10~*s. The receiver parameters are X, = 1.5V and
7, =1077s.
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Fig. 7. A specific view of P, as a function of D for 4 = 0.58 V. The dashed lines are numerical data for the reduced decision rule
N,, =2f,, T (stars) and the decoding scheme (f,_; +f,)T <N, <(f,, +f,,.1)T (circles). The solid line is theoretical results. Other
parameters are same as in Fig. 6.

for deciphering M-ary FSK signals [29]. Unknown or random phase shift seems not to affect this detection
strategy, whereas the zero crossing times are decided as (f,,_; +/,,)T <N, <(f,, + f,,41)T. This indicates that
the bistable receiver is robust to the phase shift and applicable when the carrier phase is unknown at the
receiver and estimation of its values remains an open question [29].

4.3. P for detecting BPSK signals

In this subsection, the BPSK signals are considered as S, = 4 cos(2nft + 2(m — 1)n/ M), with | <m< M,
0<t<T, the carrier frequency f and M = 2. Then, the information, digits 0 and 1, are represented by the
signal phases ¢, = 0 and ¢, = =, or conversely. At the output of nonlinear receivers, we are also interested in
the short data record of each bit interval of 7. Consequently, the short-time SR mechanism also plays a key
role in detecting the BPSK signals at the receiver outputs, as in aforementioned BFSK signal detection.
However, the decision rule is simpler than that of decoding the BFSK signal. Fig. 8 shows an example of the
BPSK modulated signals and the receiver output x(z). It is seen that the receiver follows the input signal
synchronously to some extent, by the assistance of noise. Since the BPSK signal has two antipodal waveforms
of S1(#) and S»(¢), the decision rule can be simply adopted as deciding signs of sample values x; = x(jT) at jT
for j=1,2,..., that is, the positive sign of x; for ¢; = 0 (digits 0) and the negative one of x; for ¢, ==
(digits 1).

The approximate theory of total error probability for detecting the BPSK signals can also resort to the
equivalent square waveforms with the same frequency fand the amplitude A, = nA4/4 in each bit interval. The
error probabilities of P(S,(?)|S,,(t)) (n,m = 1,2, n#m) can be approximately calculated using Egs. (10) and
(11). Noting that the term of 7T in the right side of Eqs. (10) and (11) should be replaced with 1/(4f), as well as
the equivalent signal amplitude A instead of 4. A detailed comparison of numerical and theoretical data of
P, is illustrated in Fig. 9. The results demonstrate that the bistable receiver detects the BPSK signals with a
resonance-like behavior as the noise intensity varies. However, an examination of Fig. 9(c) suggests that
although the theoretical analysis presents P, as the right quantity, it shifts the resonance curve to a
higher region of the input SNR per bit, i.e., the lower noise intensity, on the whole. Hence, the approxi-
mate probability density model cannot perfectly describe the detection performance of a bistable receiver for
BPSK signals. The distinction also comes down to our simple assumptions in the above theoretical
development.
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Fig. 8. (a) An example of the BPSK signal S,,(r) = 1.4 cos(10nt + ¢,,) with ¢, = 0 and ¢, = n. The corresponding binary digits are also
inserted; (b) the equivalent square waveforms with the same frequency and the amplitude A, = nA4/4; (c) the receiver output x(z) at
D =3x10"*V?/Hz. Here, X;, =38V, 17, =107s, T =1s and At = 10~*s

In this subsection, our treatment of the demodulation of BPSK signals assumes that the receiver has a
perfect estimate of the phase shift induced by the channel including the receiver itself. Consequently, a delayed
sampling time will be adjusted more or less in numerical simulations for decoding the information sampling
values, by ignoring the phase shift induced by this nonlinear channel [32].

5. The optimal SR values of noise intensity

In practical applications, it is meaningful for nonlinear systems to find the best performance at an optimal
noise level in noisy circumstances. Using the theoretical results from the above sections, we might predict the
optimal noise intensities Dopiimal for the detection of the BPAM, BFSK and BPSK signals, this is, minimizing
P, for a fixed input signal and a given receiver. Although the total probability of error P, is a unimodal
function of D, as shown in Figs. 2, 6 and 9, Dgpiimai is hard to analytically derive from the partial derivative of
P, to the noise intensity D. The reason is that the term exp(—A4,¢) of Eq. (7) is a variational function of D. In
this paper, we determine the Dopimar by an iterative computation as the contiguous values satisfy a sufficient
tolerated error. Fig. 10 shows that the theories developed in the above sections agree with the numerical
optimal noise intensities of the BPAM and the BFSK signals well, while they fail to estimate that of the BPSK
signals. Furthermore, it is noted that the optimal input SNR, per bit (in decibel), is more like a linear function
of the input signal amplitude. This suggests a simple adaptation principle for the nonlinear receivers to
properly improve their operating level, via adding noise.

Until now, we have focus on the behavior of P, as a functions of the noise intensity D. In terms of the
principle of tuning noise intensity, a nonlinear system can improve its detectability by adding more noise if
the initial given noise level is lower than the optimal value. However, this tuning method will encounter the
difficult case of the worse noise intensity lying beyond the optimal regime for a single system. Given a fixed
noise intensity, we have discussed the approach of tuning system parameters for realizing SR effects in
Refs. [27,35]. Fortunately, this generic probability density model of Eq. (7) is also applicable for the
corresponding theoretical framework. The systems with parameter X, <+/274/2 are more efficient in the view
of information detection, but at the risk of not employing the positive role of noise. The conclusion pre-
sented in Refs. [27,35] argues that SR, with adaptively controlled noise intensity, may be of interest for a
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Fig. 9. Numerical (a) and theoretical (b) results of P, as a function of the signal amplitude 4 and the noise density D for the BPSK signal
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non-adjustable nonlinear systems, working in relatively low-noise environments. The present study still
indicates a meaningful way of enhancing the performance of nonlinear systems without controllable
parameters. It is also worthy of noting that even if the worse noise intensity is beyond the optimal regime for a
single system, an uncoupled parallel array of threshold systems can improve its performance via SR effects
[36]. This largely extends the applicability of SR to a widely signal processing scope.

6. Tune receiver parameters and comparison of the optimally-tuned bistable receiver versus the linear matched
filter

In above sections, we adopted three bistable systems to complete different tasks of random binary
modulated signal detection, of which receiver parameters are not designedly selected. If we assume that the
nonlinear bistable system is adjustable, it is interesting to tune the receiver parameters (X, 7,) to constitute an
optimal receiver with the lowest P, at a fixed input SNR per bit.

a
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1072
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Fig. 11. Numerical (a) and theoretical (b) results of P, as a function of receiver parameters (X, t,) for the BPAM signal detection. Here,
A=032V, T =4s and Ar = 0.017,, and D = 0.008 V*/Hz.
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An example of Py, is illustrated in Fig. 11 for the BPAM signal detection. The numerical result of Py, as shown
in Fig. 11(a), agrees well with the theoretical data in Fig. 11(b). The parameters (X}, t,), corresponding to the
bottom points of P, represent optimal choices of nonlinear receiver of Eq. (2). For a given noisy input, the
methodology of tuning system parameters is as follows: Choose the parameter X, the smallest as possible, and
then deduce the optimal corresponding parameter 7, such that P, is minimal, at the risk of operating outside the
region where SR appears [27,35]. Moreover, the optimal pair of parameters (X5, 7,) is not exclusive. These
conclusions have been explained in detail in Refs. [27,35]. It is noted that the theoretical probability density model
of Eq. (8) is feasible to predicate the optimal parameters (X, t,), as shown in Fig. 11(b).

It is interesting to compare bistable receiver to matched filter for detecting binary modulated signals [27,37].
The matched filter is a linear optimal filter achieving the overall minimal P [32]. Here, we focus on the
BPAM signal detection. Given conditions in Fig. 11, the theoretical total probability of error of the
matched filter is P, = 2.1 x 1077, while an optimal bistable receiver, for example, the receiver with
parameters (X, = 107!, 7, = 10'®) presents P.. = 3 x 10~*. Similar results are also given in Refs. [27,37].
It is seen that the matched filter is, expectedly, always better than the bistable receiver. However, as much as
the noise intensity D increases, the performance of the optimal bistable receiver becomes close to that of the
matched filter. Interestingly, the optimal bistable receiver can outperform the matched filter in the presence of
desynchronization between the decision time and the end of each pulse on BPAM signals [27]. Thus, the
bistable receiver belongs to a kind of robust nonlinear filter in varying conditions, such as the
desynchronization [27] and the detection of signals with unknown parameters [37]. In this paper, we assume
that the interval T at which input digits are emitted, and the transition times at which one given pulse of
duration T ends while the next pulse starts at the emitter, are both known at the receiver. This is a case of
synchronized communication, as considered in Ref. [32]. We also note that the effect of inter-symbol-
interference on the observed behavior of the bistable receiver is investigated in Ref. [38]. A more reasonable
probability density model is theoretically deduced [38]. In the present paper, the bistable receiver shows its
multifold abilities in detecting three kinds of binary modulated signals. These significant results verify the
potential applicability of the bistable system in signal detection field.

7. Conclusion

In summary, we have explored the detectability of the bistable receiver, in terms of the total error
probability measure, for detecting the BPAM, BFSK and BPSK signals. An approximate, but generic,
probability density model is theoretically investigated for each kind of digitally modulated signal. The total
error probability of the bistable receiver can be derived from this uniform probability density model, by
comparing it with the numerical simulation results in detail. It was demonstrated that the phenomenon of SR
acts as an enhancing mechanism for detecting digitally modulated signals, and different forms exist, such as
the residual ASR and the short-time SR effects. These are non-conventional SR phenomena in contrast to the
conventional SR phenomenon of detecting the subthreshold periodic inputs over a long observed time.
Furthermore, we develop a methodology to predict the optimal noise intensity for the bistable receiver at its
optimal performance, i.e., the minimum total error probability. The corresponding theoretical analyses show
that the probability density model performs well for estimating the optimal noise intensity for the BPAM and
BFSK signals, but fails for the BPSK signals. Furthermore, this study indicates that the optimal input SNR
per bit is more like that of a linear function of the input amplitude, numerically and theoretically. This
suggests a simple adaptive methodology for operating bistable systems in noisy circumstances, by adding an
appropriate amount of noise to the input. Finally, the optimization of receiver parameters and comparisons of
the optimal bistable receiver versus the linear matched filter are investigated. The present study, incorporating
the previous research on the robust and the computational saving of the bistable systems [27-29,35,37], verifies
the good performance of nonlinear systems in broad conditions.
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