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a b s t r a c t

We study the stochastic resonance phenomenon in saturating dynamical models of neural
signal transduction, at the synaptic stage, wherein the noise in multipathways enhances
the processing of neuronal information integrated by excitatory and inhibitory synaptic
currents. For an excitatory synaptic pathway, the additive intervention of an inhibitory
pathway reduces the stochastic resonance effect. However, as the number of synaptic
pathways increases, the signal transduction is greatly improved for parallel multipathways
that feature both excitation and inhibition. The obtained results lead us to the realization
that the collective property of inhibitory synapses assists neural signal transmission, and
a parallel array of neurons can enhance their responses to multiple synaptic currents by
adjusting the contributions of excitatory and inhibitory currents.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

The stochastic resonance phenomenon originally describes the match between the noise induced characteristic time
scale of a system response and that of an input periodic subthreshold signal [1–4]. Gradually, different forms of stochastic
resonance were shown to be feasible, with various types of signals, nonlinear systems, and measures of performance
receiving improvement from noise [2–11]. For instance, suprathreshold stochastic resonance (SSR) occurring in an
uncoupled parallel array breaks the restriction of a subthreshold input [7]. Subsequently, the input–output gain is enhanced
by noise in array of static [11–16] or dynamical [17,18] nonlinear elements and has been demonstrated to exceed unity,
which cannot be obtained by linear systems. Up to the present, the terminology stochastic resonance is used very frequently in
the much wider sense of being the occurrence of any kind of noise-enhanced or noisy constructive phenomena in nonlinear
systems [6]. Thus, stochastic resonance should be regarded as a complex phenomenon, and its key feature is the constructive
role of noise. In this broad sense, many noise-enhanced phenomena such as the noise-induced linearization [19,20] and
dithering [21,22] can be also contained within the conceptual framework of stochastic resonance [1–4,6].

Usually, the appearance of stochastic resonance is closely tied to nonlinear systems working in a noisy environment
[1–3,6]. Therefore, due to nonlinearity within neurodynamics and the prevalently noisy environment of neural systems, the
observations of stochastic resonance in such single neuronmodels as the FitzHugh–Nagumomodel [3,23–27], integrate-fire
model [28–32], threshold model [33,34,26,35], Hodgkin–Huxley model [36], neural network models [26,37–48] and real
neurons [49–56] are progressively and continuously reported. So far, the main scenario of stochastic resonance occurring in
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neural systems is the response of a neuron to a threshold or potential-barrier nonlinearity [2,3,23–25,28]. However, another
form of stochastic resonance is recently reported exploiting a saturating nonlinearity [12,15,57], wherein no threshold or
potential barrier is bestowed. In a recent paper [57], we demonstrated that essentially saturating dynamics, which is present
in synaptic transduction, can give rise to stochastic resonance or an improvement via noise at this stage of neural signal
transmission. Compared to threshold or potential-barrier dynamics, the improvement by noise via saturating dynamics
takes place in more demanding conditions, wherein the inherent fluctuations of spontaneous firing rate or number of
released neurotransmitter vesicles realize a non-negative noise representing these non-negative quantities at the synaptic
stage [57]. This non-negative character of noise is attached to the neural interpretations of several stages of neural signal
transmission [12,15,57,58].

In our previous study of stochastic resonance [57], we only considered a single synaptic pathway modeling the excitable
synapse governed by saturating dynamics. However, realistic models of neurodynamics must ultimately encompass
multiple interacting modules, and the neural information processing is the integration of excitatory and inhibitory synaptic
contributions [59–68]. In the present paper, we first consider two synaptic pathways, i.e. one being excitatory and the other
being inhibitory. The sum of both excitatory and inhibitory synaptic currents is then taken as the relevant output of these
two synaptic pathways. Subsequently, the uncoupled parallel array of multiple synaptic pathways composed of a number
of excitatory synapses and inhibitory synapses is considered. We numerically analyze the constructive role of noise from
the inhibitory synaptic pathway for neuronal signal transduction, and also investigate the effect of the efficacy parameters
of multisynaptic pathway on stochastic resonance or improvement of signal transmission by noise. The obtained results
will lead to research attention on more elaborate dynamics for information improvement by noise in the nervous systems
operated with saturating nonlinearity.

2. Model and measure

At the synaptic stage, neural signal transduction relies on neurotransmitter release and gating of ion channels. In the case
of strong sustained presynaptic activity, both neurotransmitter pools and populations of ion channels can all be recruited in
the process, therefore limiting any further increase of the electric current induced across the membrane of the postsynaptic
neuron. This process can be described by the saturating dynamics [57–61]

dIj(t)
dt

= −
Ij(t)
τ

+ [Isat,j − Ij(t)]wjej(t), (1)

where Ij(t) denotes the synaptic current of an excitatory or inhibitory synapse j, τ represents the relaxation time of
saturating dynamics, and the saturation current Isat,j is positive for an excitatory synapse j and negative for an inhibitory
synapse j [60–63]. Here, the positive parameter wj measures the efficacy of synapse j in converting the non-negative
presynaptic activity ej(t) into a postsynaptic current Ij(t) [58].

As we have interpreted the saturating dynamics of Eq. (1) in our previous study [57], the input signal ej(t) in Eq. (1)
is non-negative, and represents the presynaptic activity at the input of the transmission pathway. Here, we assume that
these synapses are attached to the same presynaptic cell, and the input signal ej(t) = s(t) + ξj(t) into the synapse j is
taken as the superposition of a deterministic aperiodic waveform s(t) and noise ξj(t). The ξj(t) are modeled as independent
non-negative white noise sources with the same probability density function fξ (u) for which various standard forms can be
considered [57]. Here, we mainly consider the gamma probability density of order a ≥ 1, as

fξ (u) =


1

baΓ (a)
ua−1 exp


−

u
b


, u ≥ 0,

0, u < 0,
(2)

whereΓ (a) =


∞

0 xa−1 exp(−x)dx, themeanvalue of ξj(t)being ab, its variance ab2, and its rms amplitude ξrms = b
√
a2 + a.

It is noted that the non-negative uniform noise and gamma noise were considered for improving the synaptic signal
transduction, and the similar stochastic resonant behaviors for both kinds of noise have been observed in a single excitatory
synapse [57].

For multiple synapses, the total synaptic current collecting several synaptic currents Ij(t) as

I(t) =

−
j

Ij(t), (3)

is taken as the relevant output of this multisynaptic pathway. The total synaptic current I(t) forms the somatic current,
which directly drives the dynamics of the membrane potential of the postsynaptic neuron. When this potential reaches the
firing threshold, a spike is emitted by the neuron and its potential is reset to its resting value. This stage constitutes thewell-
known threshold dynamics of the neuron, which has been shown to lend itself to various forms of stochastic resonance [2–4,
6,18,23–25,28,29,31,33,34,26,27]. Yet here we are not considering this threshold nonlinear dynamics of the neuron. Instead,
we investigate the nonlinear saturating dynamics of Eq. (1), which takes place in synaptic transduction. Then, in order
to investigate the possibilities of noise-aided signal transmission in such multisynaptic pathways, a useful input–output
measure of similarity, frequently used in stochastic resonance studies, is the correlation coefficient [23,26,27,52,61,62] of
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Fig. 1. An example of the input signal s(t) from Eq. (5) with Ts = 103τ , A1 = 5Isat,j, A2 = 3Isat,j and A3 = 2Isat,j . Here, the relaxation time of saturating
dynamic τ = 0.1s and the saturation current Isat,j = 1 in Eq. (1).

the input s(t) with the output I(t)

ρsI =
[s(t) − s(t)][I(t) − I(t)]

[s(t) − s(t)]2[I(t) − I(t)]2
1/2 , (4)

where the overbar denotes a temporal average.

3. Simulation results

Based on the neural interpretation of Eq. (1), the input ej(t) into the synapse j is non-negative, and taken as the
superposition ej(t) = s(t) + ξj(t) of a deterministic aperiodic waveform s(t) and noise ξj(t). Both components s(t) and
ξj(t) are separately formed with the same neural substrate as ej(t), and share the same nature of non-negative quantities
that describe presynaptic activity, be it a spontaneous random activity for ξj(t) or a coherent activity for s(t) [57]. The non-
negative noise ξj(t) is given in Eq. (2), and the deterministic aperiodic waveform s(t) is here defined over t ∈ [0, Ts] as

s(t) = A1 sin(π t/Ts) + A2 sin(3π t/Ts) + A3 sin(7π t/Ts), (5)
with s(t) being zero outside [0, Ts]. An example of the waveform s(t) of Eq. (5) is depicted in Fig. 1. The purpose of Eq. (5) is
to have a non-negative signal s(t), which carries some distinctive features in the upper part of the waveform that can suffer
from saturation in transmission by Eq. (1).

When the noise ξj(t) is absent, the solution to Eq. (1) with initial condition Ij(t0) reads

Ij(t) =


Ij(t0) + Isat,j

∫ t

t0
wj s(t ′′) exp


t ′′ − t0

τ
+

∫ t ′′

t0
wj s(t ′)dt ′


dt ′′



× exp
[
−

t − t0
τ

−

∫ t

t0
wj s(t ′)dt ′

]
, (6)

for t ≥ t0. Thus, in the presence of input signal s(t) only, the correlation coefficient ρsI between the somatic current
I(t) =

∑
j Ij(t) and the input signal s(t) can then be computed directly according to Eqs. (4) and (6). When the noise

ξj(t) is present at the input, the somatic current I(t) will be simulated numerically [57,69], and an ensemble-averaging
of the correlation coefficient ρsI will be performed over independent realizations of the noise to yield ⟨ρsI⟩, following the
common practice in stochastic resonance studies [23,27]. In numerical simulations of Eq. (1), the Euler–Maruyama method
is used [69], with a sampling time step 1t much less than the time constant τ and the signal duration Ts, and which is fixed
at 1t = 0.1τ throughout.

3.1. Two synaptic pathways of an excitatory and an inhibitory

For a single excitatory synapse, the constructive influence of the rms noise amplitude of ξ1(t) on the synaptic current
I(t) = I1(t) has been demonstrated with the appearance of the stochastic resonance effect [57], which is also numerically
shown in Fig. 2(a) denoted by asterisks (∗). Here, the excitatory synapse j = 1 is always subjected to the noisy input
e1(t) = s(t) + ξ1(t), and the efficacy parameter of the synapse w1 = 100. The input signal s(t) is with Ts = 103τ ,
A1 = 5Isat,1, A2 = 3Isat,1 and A3 = 2Isat,1. It is clearly visible in Fig. 2(a) that, as the rms noise amplitude ξrms increases, the
input–output ensemble-averaging of correlation coefficient ⟨ρsI⟩ presents a stochastic resonant behavior. In other words,
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Fig. 2. Ensemble-averaged correlation coefficient ⟨ρsI ⟩ between the input stimulus s(t) and the somatic current I(t), as a function of the noise rms
amplitude ξrms , for different values of the inhibitory saturation current Isat,2/Isat,1 indicated by the legend. The excitatory presynaptic activity is e1(t) =

s(t) + ξ1(t) and the efficacy parameter of the synapse w1 = 100. The inhibitory presynaptic activity is (a) e2(t) = ξ2(t), and (b) e2(t) = s(t) + ξ2(t). Here,
the input signal s(t) from Eq. (5) is with Ts = 103τ , A1 = 5Isat,1, A2 = 3Isat,1 and A3 = 2Isat,1 . The efficacy parameter of the synapse w2 = 50. Here, ξ1(t)
and ξ2(t) are independent gamma noise sources of order a = 2 with the same noise rms amplitude ξrms . Each point was averaged over 1000 trials. For
simplicity, we represent the origin tick 10−3 of the logarithmic x-axis as zero, and ξrms actually increases from zero.

an optimal amount of noise corresponds to the maximum value of ⟨ρsI⟩, while too little or too much noise reduces the
correlation coefficient ⟨ρsI⟩. For the efficacy parameter of the synapse w1 = 100, the system of Eq. (1) leads to the
operation in the saturation region. It is seen in Fig. 2(a) that, at the level of noise ξrms = 0, the initial correlation coefficient
⟨ρsI⟩ = 0.6301 calculated by Eq. (6) is rather lower than unity. This indicates that, due to the saturation dynamics of
Eq. (1), the distortion undergone by the input s(t) results in a corresponding distorted waveform of I(t) as compared with
s(t). However, as the noise level ξrms is raised above zero, Fig. 2(a) shows that the addition of noise is able to overcome this
distortion imposed on I(t), and a suitable amount of added noise can pull the output I(t) away from the strong saturation
regime, eliciting the possibility of an improvement of ⟨ρsI⟩ by noise in one excitatory synapse [57].

Next, we connect an inhibitory synapse j = 2 to the excitatory synapse j = 1, and the somatic current I(t) is the sum of
the synapse currents of I1(t) and I2(t) of two synapses j = 1, 2. Since a certain degree of heterogeneity both in their internal
parameters and in their connectivity pattern ismore popular in real populations [61], we take different values of the efficacy
parameter. Here, the inhibitory synapse j = 2 is with the efficacy of synapse w2 = 50. We observe that:

(i) When the random activity of an inhibitory synapse is e2(t) = ξ2(t), Fig. 2(a) shows the correlation coefficient ⟨ρsI⟩

between the input s(t) contained in the excitatory activity e1(t) and the output I(t) as a function of the rms noise amplitude
ξrms, for different values of the saturation current Isat,2/Isat,1 = −1/7, − 3/7, − 1 and −2. Here, ξ1(t) and ξ2(t) are
independent, but with the same rms amplitude ξrms. Since the presynaptic input e2(t) of the inhibitory synapse j = 2 does
not contain the signal s(t), ⟨ρsI⟩ still starts from the same value of 0.6301 at ξrms = 0 by the excitatory dynamics of Eq. (6)
driven by e1(t) = s(t). It is seen that the addition of the random activity of noise e2(t) = ξ2(t) degrades the emergence
of stochastic resonance in the single excitatory synapse j = 1. When the saturation current Isat,2/Isat,1 decreases to −2, the
stochastic resonance effect disappears: a monotonic decay of ⟨ρsI⟩ toward zero is observed when the rms noise amplitude
ξrms increases.

(ii) When the presynaptic activity of the inhibitory synapse j = 2 is e2(t) = s(t) + ξ2(t), the correlation coefficient ⟨ρsI⟩

between the input signal s(t) and the somatic current I(t) is illustrated in Fig. 2(b) as a function of the rms noise amplitude
ξrms. It is observed in Fig. 2(b) that, as the rms noise amplitude ξrms takes the level of zero, the initial ⟨ρsI⟩ takes different
initial values. The reason is that the inhibitory presynaptic activity e2(t) also receives the input signal s(t), and initial ⟨ρsI⟩

should be calculated by summing the excitatory and inhibitory dynamics of Eq. (6) driven by e1(t) = e2(t) = s(t). For the
positive saturation current Isat,1, the output I1(t) is predicatively positive, and partly similar to the input s(t). Contrarily,
the output I2(t) is negative and partly similar to −s(t), as the saturation current Isat,2 is always negative for the inhibitory
synapse. Naturally, at the rms noise amplitude ξrms = 0, the somatic current I(t) = I1(t) + I2(t) is usually less similar to
the input s(t), and the initial ⟨ρsI⟩ between I(t) and s(t), as shown in Fig. 2(b), is less than the value of 0.6301 illustrated
in Fig. 2(a) that depicts the similarity of I1(t) to s(t). It is also interesting to note that, as the inhibitory saturation current
Isat,2/Isat,1 decreases from−1/7 to−2, ⟨ρsI⟩ exhibits two opposite kinds of stochastic resonance phenomena versus the rms
noise amplitude ξrms. Here, the smaller the negative value of ⟨ρsI⟩ is, the closer the relationship between I(t) and−s(t). These
resonant curves of ⟨ρsI⟩ plotted in Fig. 2(b) demonstrate the constructive roles of ξ1(t) and ξ2(t) for the efficacy of signal
transmission through the dynamical saturating synapses in a complex way. Furthermore, as the rms noise amplitude ξrms
increases to a very large levels, e.g. ξrms/Isat,1 = 102, as shown in Fig. 2(b), the correlation coefficients ⟨ρsI⟩ that correspond
to a different saturation current Isat,2 congregate around the region being close to zero. This means that too much noise
disturbs the somatic current I(t), reducing the effect on the input signal s(t) or −s(t).
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Fig. 3. Ensemble-averaged correlation coefficient ⟨ρsI ⟩ between input s(t) and output I(t) =
∑N

j=1 Ij(t), as a function of the noise rms amplitude ξrms , for
different numbers of excitatory synapses N = 1, 2, 10, 500 and 1000 indicated by the legend. Each excitatory synapse j is with the presynaptic activity
ej(t) = s(t) + ξj(t) and the efficacy parameter of the synapse wj = 100. No inhibitory synapse is connected. For simplicity, we represent the origin tick
10−3 of the logarithmic x-axis as zero, and ξrms actually increases from zero. Other parameters are the same as in Fig. 2.

3.2. Parallel arrays of excitatory synapses and inhibitory synapses

Next, we investigate the improvement of signal transduction through a population of synapses via the constructive role
of internal noise in each synapse. In particular, the study of signal transmission in parallel arrays of nonlinear systems has
received considerable attention, and in such arrays, an important specific form of stochastic resonance, i.e. suprathreshold
stochastic resonance, has been reported [7]. Moreover, the essential role of neuronal noise is subsequently investigated for
information transmission in the context of suprathreshold stochastic resonance [37,38]. Here, we also consider a population
of synapses on the same postsynaptic neuron that realizes a real-world example of the basic structure of suprathreshold
stochastic resonance, aiming to observe a more remarkable improvement in a parallel bundle of synapses [26,27,39,60–63].

We first consider a parallel array ofmultiple synapses consisting of excitatory synapses for j = 1, 2, . . . ,N with the same
saturation current Isat,j, and each is driven by ej(t) = s(t) + ξj(t). No inhibitory synapses are connected. Then, the collective
current of synaptic pathways is I(t) =

∑N
j=1 Ij(t). Fig. 3 shows the correlation coefficient ⟨ρsI⟩ as a function of the rms noise

amplitude ξrms, for different numbers of excitatory synapses N = 1, 2, 10, 500 and 1000. As the rms noise amplitude ξrms
increases from zero, the feature of stochastic resonance is obviously demonstrated by the bell-type curve of ⟨ρsI⟩ versus ξrms.
It is seen in Fig. 3 that, as the number of excitatory synapses N increases, the ensemble collective property of noise ξj(t) in
each excitatory synapses j = 1, 2, . . . ,N can further enhance the correlation coefficient ⟨ρsI⟩. For instance, the maximum
of ⟨ρsI⟩ can be improved to 0.8001 at ξrms/Isat,j = 1.12 for a parallel array of N = 1000 excitatory synaptic pathways. In
view of the input signal s(t) being with A1 = 5Isat,j, A2 = 3Isat,j and A3 = 2Isat,j, this enhancement effect of ⟨ρsI⟩ by both
the noise ξj(t) and the parallel array size N can be regarded as a specific form of suprathreshold stochastic resonance [7] in
a broad sense. The obtained results of Fig. 3 also indicate the strategy of assembling excitatory synaptic pathways into an
uncoupled parallel array to improve signal transduction at the synaptic stage is possible and advantageous.

We further explore the signal transduction in a parallel array of multiple synapses composed of both excitatory synapses
j = 1, 2, . . . ,N , with the same saturation current Isat,j, and inhibitory synapses k = 1, 2, . . . ,M , with the same saturation
current Isat,k. Then, the somatic current becomes I(t) =

∑N
j=1 Ij(t) +

∑M
k=1 Ik(t). Correspondingly, ξj(t) and ξk(t) are also

mutually independent, but with a same rms noise amplitude ξrms. Here, the excitatory synapses are always subjected to the
noisy input stimuli ej(t) = s(t) + ξj(t), while two kinds of the inhibitory synaptic input ek(t) are considered:

(i) First, each inhibitory synapse k is driven by the random activity of ek(t) = ξk(t) for k = 1, 2, . . . ,M . The
corresponding correlation coefficient ⟨ρsI⟩ versus the noise amplitude ξrms is shown in Fig. 4. In Fig. 4(a), the saturation
current Isat,k/Isat,j = −5/7 is fixed, while the numbers of synapses N = M increase from unity to 1000. It is seen in
Fig. 4(a) that the array stochastic resonance effect is clearly visible: The larger the number of the parallel arrays of synaptic
pathways is, the more prominent the correlation coefficient ⟨ρsI⟩ is enhanced by the noise sources ξj(t) and ξk(t). It is seen
that when the numbers of the multiple synaptic pathways increase as N = M ≥ 500, the curves of ⟨ρsI⟩ converge. For the
multiple synaptic pathways with large synaptic numbers N = M = 1000 (down triangles), the maximum of ⟨ρsI⟩ can be
enhanced to 0.886 at ξrms/Isat,j = 2.5. Compared with Fig. 3, obtained by only the multiple excitatory synaptic pathways,
this improvement of ⟨ρsI⟩ of 0.886 is quite evident. Furthermore, we plot the correlation coefficient ⟨ρsI⟩ versus the rms
noise amplitude ξrms in Fig. 4(b) for different inhibitory saturation currents Isat,k/Isat,j and the same numbers of synapses
N = M = 1000. It is shown in Fig. 4(b) that, for the inhibitory saturation current Isat,k/Isat,j = −1 (squares), the maximum
of ⟨ρsI⟩ can be further improved to 0.9241 at ξrms/Isat,1 = 9.7, whereby the collective effect of synaptic noise sources ξj(t)
and ξk(t) on the correlation coefficient ⟨ρsI⟩ is optimized. It is observed in Fig. 4(b) that other values of Isat,2/Isat,1 cannot
acquire this optimal value of the correlation coefficient ⟨ρsI⟩. Finally, the inhibitory saturating current Isat,k/Isat,j = −1 and
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Fig. 4. Ensemble-averaged correlation coefficient ⟨ρsI ⟩ between input s(t) and the somatic current I(t) =
∑N

j=1 Ij(t)+
∑M

k=1 Ik(t), as a function of the noise
rms amplitude ξrms . Here, the inhibitory pathway is combined in parallel with the excitatory pathway, resulting in parallel arrays of multiple synapses.
Note that each inhibitory synapse k is purely driven by the random activity of ek(t) = ξk(t) for k = 1, 2, . . . ,M , while each excitatory synapse j is
with the presynaptic activity ej(t) = s(t) + ξj(t). The efficacy parameters of the synapse are wj = 100 and wk = 50, respectively. (a) The numbers
of synapses are N = M = 1, 2, 10, 100, 500 and 1000, while the saturation current Isat,k/Isat,j = −5/7 is fixed; (b) The inhibitory saturation currents
Isat,k/Isat,j = −1/7, −3/7, −5/7, −1, −1.1 and −2, but the numbers of synapses N = M = 1000 are fixed; (c) The inhibitory saturation current
Isat,k/Isat,j = −1 and the number of excitatory synapses N = 1000 are fixed, while the number of inhibitory synapsesM varies. For simplicity, we represent
the origin tick 10−3 of the logarithmic x-axis as zero, and ξrms actually increases from zero. Other parameters are the same as in Fig. 2.

the number of excitatory synapses N = 1000 are fixed, while the parallel inhibitory synapses vary their connected number
M . The obtained results of ⟨ρsI⟩ versus ξrms are then shown in Fig. 4(c), which indicates the number of M = 1000 (squares)
corresponds to the best behavior of ⟨ρsI⟩ as ξrms increases.

In this case of the parallel inhibitory synapses k = 1, 2, . . . ,M driven by pure random activities ek(t) = ξk(t), the
synaptic currents Ik(t) are all negative. When these negative currents Ik(t) are added to the outputs Ij(t) of excitatory
synapses j = 1, 2, . . . ,N , the summed result of somatic current I(t) manifests more similar to the input s(t). This collective
property of ξk(t) in inhibitory synapses seems to counteract the influence of ξj(t) in excitatory synapses on the output I(t),
leading to a great improvement of ⟨ρsI⟩ shown in Fig. 4.

(ii) Next, we assume the inhibitory presynaptic activity as ek(t) = s(t) + ξk(t) for k = 1, 2, . . . ,M . Two representative
examples of the corresponding correlation coefficient ⟨ρsI⟩ are illustrated in Fig. 5(a) and (b). In Fig. 5(a), the inhibitory
saturation currents Isat,k/Isat,j = −1/7, and the behaviors of ⟨ρsI⟩ versus the noise amplitude ξrms are plotted for different
synaptic numbers N = M = 1, 2, 10, 100 and 1000. Since |Isat,k| is relatively smaller than Isat,j, the initial correlation
coefficient ⟨ρsI⟩ is still positive according to Eq. (6). As the rms noise amplitude ξrms increases, ⟨ρsI⟩ is first raised to the
maximum value, and then degrades gradually, which are the typical convex curves of stochastic resonance. Conversely,
for the inhibitory saturating currents Isat,k/Isat,j = −1, the initial correlation coefficient ⟨ρsI⟩ is negative. Note that ⟨ρsI⟩ is
improved towards −1 in absolute value as the rms noise amplitude ξrms increases. As we explained, the negative value of
⟨ρsI⟩ in Fig. 2(b) denotes that the somatic current of I(t) is similar to the input −s(t). The constructive role of noise and
the collective effect of synaptic numbers N and M on ⟨ρsI⟩ can be also regarded as a kind of stochastic resonance effect.
However, in order to obtain the positive values of ⟨ρsI⟩, the case of entering only random activity ek(t) = ξk(t) into the
inhibitory synapses, as shown in Fig. 3, is preferable to this case of the inhibitory synapses with the presynaptic activity
taking ek(t) = s(t) + ξk(t) of Fig. 5.
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Fig. 5. Ensemble-averaged correlation coefficient ⟨ρsI ⟩ between input s(t) and output I(t), as a function of the noise rms amplitude ξrms . Here, each
inhibitory synapse k is driven by ek(t) = s(t)+ ξk(t) for k = 1, 2, . . . ,M , and each excitatory synapse j is with the presynaptic activity ej(t) = s(t)+ ξj(t).
The efficacy parameter of the synapse wj = 100 and wk = 50, respectively. The numbers of synapses N = M = 1, 2, 10, 100, 500 and 1000, while the
saturation current (a) Isat,k/Isat,j = −1/7 and (b) Isat,k/Isat,j = −1. For simplicity, we represent the origin tick 10−3 of the logarithmic x-axis as zero, and
ξrms actually increases from zero. Other parameters are the same as in Fig. 2.

4. Conclusion

In this paper, we studied the signal transmission in parallel arrays of synapses composed of both the excitatory synaptic
pathway and the inhibitory synaptic pathway at the synaptic stage. The corresponding synaptic currents from the excitatory
synaptic pathways and the inhibitory synaptic pathways are summed as the somatic current of multiple synaptic pathways.
For a single excitatory synapse, the combination of an inhibitory synapse does not enhance the stochastic resonance
effect. When large numbers of excitatory synapses are assembled as a parallel array, as compared with a single excitatory
synapse, the improvement of the correlation coefficient by noise can be slightly increased. Interestingly, the enhancement
of correlation coefficient by noise can be greatly improved by introducing inhibitory pathways into the parallel arrays
of multiple synaptic pathways, and the independent noise sources in multiple synaptic pathways play an integrated
constructive role on signal transduction by increasing the synaptic numbers as well as the rms noise amplitude. We argue
that the negative output of inhibitory synapses purely driven by random noise can mostly counteract the influence of
synaptic noise in excitatory pathways on the somatic current, resulting in the prominent improvement of the input–output
correlation coefficient illustrated in Fig. 4. Since processing of neural information usually involves integration of excitatory
and inhibitory synaptic inputs [64,60,61], the observation of stochastic resonance in the noisy multiple synaptic pathways
considered in this paper points to a useful mechanism accessible to neural signals at the synaptic stage. The possibility of
stochastic resonance for neural signal transduction motivates the need for further experiments on live neurons.
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