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Abstract

Parrondo’s paradox arises when two losing games are combined to produce a winning one. A
history-dependent quantum Parrondo game is studied where the rotation operators that represent
the toss of a classical biased coin are replaced by general SU (2) operators to transform the game
into the quantum domain. In the initial state, a superposition of qubits can be used to couple the
games and produce interference leading to quite di.erent payo.s to those in the classical case.
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1. Introduction

Game theory is the study of the competing strategies of agents involved in some
interaction. First introduced by von Neumann [1], it is now widely used in 9elds
as diverse as economics and biology. Recently, interest has been focused on recast-
ing classical game theory to the quantum realm in order to study the problems of
quantum information, communication and computation. The problem of creating use-
ful algorithms for quantum computers is a di<cult one and the study of quantum
games may provide some useful insight. Meyer [2] performed the original work in
this 9eld in 1999 and since then a number of authors have tackled coin tossing games
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[2,3], the Prisoners Dilemma [4–8], the Battle of the Sexes [9,10], the Monty Hall
problem [11,12], Rock-Scissors-Paper [13] and others [14–18]. E.ects not seen in
classical game theory can arise as a result of quantum interference and quantum
entanglement.

2. Parrondo’s paradox

A Parrondo’s game is an apparent paradox in game theory where two games that
are losing when played individually can be combined to produce a winning game. The
e.ect is named after its discoverer, Juan Parrondo [19,20], and can be mimicked in a
physical system of a Brownian ratchet and pawl [21,22] which is apparently driven in
one direction by the Brownian motion of surrounding particles. The classical Parrondo
game is cast in the form of a gambling game utilising a set of biased coins [22–
24]. In this, game A is the toss of a single-biased coin while game B utilises two or
more biased coins whose use depends on the game situation. The paradox requires
a form of feedback, for example through the dependence on capital [23], through
history-dependent rules [24], or through spatial neighbour dependence [25]. In this
paper game B is a history-dependent game utilising four coins B1 to B4 as indicated
in Fig. 1.

Fig. 1. Winning and losing probabilities for game A and the history-dependent game B from Parrondo
et al. [24].
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3. A quantum Parrondo game

Meyer and Blumer [26] use a quantum lattice gas to consider a Parrondo’s game
in the quantum sphere. However, consistent with the original idea of Meyer [2], and
following Ng [3], we shall quantise the coin tossing game directly by replacing the
rotation of a bit, representing a toss of a classical coin, by an SU (2) operation on
a qubit. A physical interpretation of our system could be a collection of polarised
photons where |0〉 represents horizontal polarisation and |1〉 represents vertical polar-
isation (though we could just as easily consider instead the spin of a spin one-half
particle).
In classical gambling games there is a random element, and in a Parrondo’s game,

the results of the random process are used to alter the evolution of the game. The
quantum mechanical model is deterministic until a measurement is made at the end of
the process. The element of chance that is necessary in the classical game is replaced
by a superposition that represents all the possible results in parallel. We can get new
behaviour by the addition of phase factors in our operators and by interference between
states. A further random element can be introduced, in future studies, by perturbing
the system with noise [18] or by considering decoherence during the evolution of the
sequence of games.
An arbitrary SU (2) operation on a qubit can be written as

Â(�; �; �) = P̂(�)R̂(�)P̂(�)

=

(
e−i(�+�)=2 cos � −e−i(�−�)=2 sin �

ei(�−�)=2 sin � ei(�+�)=2 cos �

)
; (1)

where �∈ [ − �; �] and �; �∈ [0; 2�]. This is our game A: the quantum analogue of
a single toss of a biased coin. One way of achieving this physically on a polarised
photon would be to sandwich a rotation of the plane of polarisation by � (R) between
two birefringent media (P) that introduce phase di.erences of � and �, respectively,
between the horizontal and vertical planes of polarisation. Game B consists of four
SU (2) operations, each of the form of Eq. (1), whose use is controlled by the results
of the previous two games (see Fig. 1):

B̂(
1; �1; �1; 
2; �2; �2; 
3; �3; �3; 
4; �4; �4)

=



A(
1; �1; �1) 0 0 0

0 A(
2; �2; �2) 0 0

0 0 A(
3; �3; �3) 0

0 0 0 A(
4; �4; �4)


 : (2)

This acts on the state

| (t − 2)〉 ⊗ | (t − 1)〉 ⊗ |i〉 ; (3)
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where | (t − 1)〉 and | (t − 2)〉 represent the results of the two previous games and
|i〉 is the initial state of the target qubit. That is

B̂|q1q2q3〉= |q1q2b〉 ; (4)

where q1; q2; q3 ∈{0; 1} and b is the output of the game B.
The results of n successive games of B can be computed by

| f〉= (Î
⊗n−1 ⊗ B̂)(Î

⊗n−2 ⊗ B̂⊗ Î)(Î
⊗n−3 ⊗ B̂⊗ Î

⊗2
)

· · · (Î ⊗ B̂⊗ Î
⊗n−2

)(B̂⊗ Î
⊗n−1

)| i〉 ; (5)

with | i〉 being an initial state of n + 2 qubits. The 9rst two qubits of | i〉 are left
unchanged and are only necessary as an input to the 9rst game of B. In this and
Eq. (6), Î is the identity operator for a single qubit. The Aow of information in this
protocol is shown in Fig. 2(a). The result of other game sequences can be computed
in a similar manner. The simplest case to study is that of two games of A followed by
one game of B, since the results of one set of games do not feed into the next. The
sequence AAB played n times results in the state

| f〉= (Î
⊗3n−3 ⊗ (B̂(Â⊗ Â⊗ Î)))

×(Î
⊗3n−6 ⊗ (B̂(Â⊗ Â⊗ Î))⊗ Î

⊗3
)

· · · ((B̂(Â⊗ Â⊗ Î))⊗ Î
⊗3n−3

)| i〉

= Ĝ
⊗n| i〉 ; (6)

where Ĝ= B̂(Â⊗ Â⊗ Î) and | i〉 is an initial state of 3n qubits. The information Aow
for this sequence is shown in Fig. 2(c).
In quantum game theory the standard protocol is to take the initial state |00 : : : 0〉,

apply an entangling gate, then the operators associated with the players strategies and
9nally a dis-entangling gate [4]. A measurement on the resulting state is taken and then
the payo. is determined. If the entangling gate depends upon some parameter, then
the classical game can be reproduced when this parameter is set to zero, representing
no entanglement. In the present case this is problematic since the entangling gate Ĵ
used by Eisert [4] and others [6,7,15,16,18] does not commute with the classical limit
(all phases → 0) of B̂, which was Eisert’s motivation for the choice of Ĵ . Thus, this
protocol would not reproduce the classical game when the phases are set to zero. So
instead we follow [9] and suppose the initial state is already in the maximally entangled
state:

| m
i 〉=

1√
2
(|00 : : : 0〉+ |11 : : : 1〉) : (7)

The classical game can be reproduced by choosing the alternative initial state | i〉 =
|00 : : : 0〉. Thus, the classical game is still a subset of the quantum one. If | i〉 is a
superposition, interference e.ects that either enhance or reduce the success of the player



A.P. Flitney et al. / Physica A 314 (2002) 35–42 39

Fig. 2. The information Aow in qubits (solid lines) in a sequence of (a) B, (b) an alternating sequence of
A and B, and (c) two games of A followed by one of B. Note in (c) that the output of one set of AAB
does not feed into the next. In each case a measurement on | f〉 is taken on completion of the sequence of
games to determine the payo..

can be obtained. The addition of non-zero phases in the operators Â and B̂ can modify
this interference.
To determine the payo. let the payo. for a |1〉 state be one, and for a |0〉 state be

negative one. The expectation value of the payo. from a sequence of games resulting
in the state | f〉 can be computed by

〈$〉=
n∑

j=0


(2j − n)

∑
j′

|〈 j′
j | f〉|2


 ; (8)

where the second summation is taken over all basis states 〈 j′
j | with j 1’s and n−j 0’s.
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4. Results

Consider the game sequence AAB. With an initial state of |000〉 this yields a payo. of

〈$0AAB〉= sin4 �(2− cos 2
4)− cos4 �(2 + cos 2
1)

− 1
4 sin

2 2�(cos 2
2 + cos 2
3) (9)

which is the same as the classical result. In order to get interference there needs to be
two di.erent ways of arriving at the same state. We need only choose some superpo-
sition not the maximally entangled state, however, this is the most interesting initial
state to study. Choosing | m

i 〉= 1=
√
2(|000〉+ |111〉) the result is

〈$mAAB〉= 1
2 cos 2�(cos 2
4 − cos 2
1)

+ 1
4 sin

2 2�(cos(2�+ �1) sin 2
1

− cos(2�+ �2) sin 2
2 − cos(2�+ �3) sin 2
3

+ cos(2�+ �4) sin 2
4) : (10)

It is the dependence on the phase angles � and �i that can produce a result that cannot
be obtained in the classical game. In the quantum case, a range of payo.s can be ob-
tained for a given set of � and 
i’s, that is, for a given set of probabilities for games
A and B.
The probabilities given in Fig. 1 yield a situation where both games, A and B are

individually losing but the combination of A and B can produce a net positive payo.
provided �¡ 1=168 [24]. With the quantum version of the games, the expectation value
of the payo. (to O[�]) for a single sequence of AAB can vary between 0:812 + 0:24�
and −0:812 + 0:03�. The maximum result is obtained by setting �2 = �3 = �− 2� and
�1=�4=−2�, while the minimum is obtained by �1=�4=�−2� and �2=�3=−2�. The
values of the �i’s are not relevant. Classically, AAB is a winning sequence provided
�¡ 1=112 (see Table 1).
The average payo. for the classical game sequence AAB1 (that is, AAB where each

branch of B is the best branch B1) is 4=5− 6� which is less than the greatest value of
〈$mAAB〉. Thus, the entanglement and the resulting interference can make game B in the
sequence AAB better than its best branch taken alone. Indeed the expectation value for
the payo. of a quantum AAB1 on the maximally entangled initial state vanishes due to
destructive interference. (This can be seen from Eq. (10) by setting all the 
i’s equal
to 
1 and all the �i’s to �1.)
The quantum enhancement disappears when we play a sequence of AAB’s on the

maximally entangled initial state. In this case, the phase-dependent terms undergo de-
structive interference and we are left with a gain per qubit of order � (see Table 1).
A sequence of B’s leaves the 9rst two qubits unaltered while a sequence of AB’s

leaves the 9rst qubit una.ected. In these cases, the 9nal states that arise from | i〉 =
|000〉 and | i〉 = |111〉 are distinct so a superposition of these two states produces
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Table 1
Expectation values for the payo. per qubit to O[�] for various sequences of games

Sequence Classical payo. Quantum payo.

AA : : :A −2� 0
B 1=60− 2�=3 1=15
BB 1=75− 19�=15 13=400 + �=20
BBB 0:008− 1:1� 0:017 + 0:03�
AB 1=60− 19�=15 1=30 + �=15
ABAB 0:032− 2:5� 0:019 + 0:08�
AAB 1=60− 28�=15 −0:271 + 0:01�; 0:271 + 0:08�
AAB : : :AAB 1=60− 28�=15 2�=15

The classical payo.s are the average over the possible initial conditions (that is, the
results of the two previous games for sequences of B and the results of the previous
game for sequences of AB), while the quantum payo.s are calculated for the maximally
entangled initial state, 1=

√
2(|00 : : : 0〉+ |11 : : : 1〉). For the sequence AAB, the two values

given for the quantum payo. are the minimum and maximum, respectively (see text).

no interference. An initial state that is a di.erent superposition may give interference
e.ects.

5. Conclusion

We have developed a protocol for a quantum version of a history-dependent
Parrondo’s game. If the initial state is a superposition, payo.s di.erent from the clas-
sical game can be obtained as a result of interference. In some cases payo.s can be
considerably altered by adjusting the phase factors associated with the operators without
altering the amplitudes (and hence the associated classical probabilities). If the initial
state is simply |00 : : : 0〉, the payo.s are independent of the phases and are no di.erent
from the classical ones (with an initial history of loss, loss). In other cases, we may
obtain much larger or smaller payo.s provided the initial state involves a superposition
that gives the possibility of interference for that particular game sequence.

Acknowledgements

Neil Johnson of Oxford University is gratefully acknowledged for useful manuscript
suggestions and corrections. This work was supported by GTECH Corporation Australia
with the assistance of the SA Lotteries Commission (Australia).

References

[1] J. von Neumann, Appl. Math. Ser. 12 (1951) 36.
[2] D.A. Meyer, Phys. Rev. Lett. 82 (1999) 1052; in: Quantum computation: a grand mathematical challenge

for the twenty-9rst century and beyond, S.J. Lomonaco, Jr. (Ed.), American Mathematical Society,
Rhode Island, in press.



42 A.P. Flitney et al. / Physica A 314 (2002) 35–42

[3] J. Ng, D. Abbott, in: A. Nowac (Ed.), Annals of the International Society on Dynamic Games,
Birkhauser, Boston, submitted for publication.

[4] J. Eisert, M. Wilkens, M. Lewenstein, Phys. Rev. Lett. 83 (1999) 3077;
J. Eisert, M. Wilkens, M. Lewenstein, Phys. Rev. Lett. 87 (2001) 069 802;
J. Eisert, M. Wilkens, J. Mod. Opt. 47 (2000) 2543.

[5] S.C. Benjamin, P.M. Hayden, Phys. Rev. Lett. 87 (2001) 069 801.
[6] Hui Li, Xiaodong Xu, Mingjun Shi, Jihiu Wu, Rongdian Han, Phys. Rev. Lett. 88 (2002) 137 902.
[7] Jiangfeng Du, Hui Li, Xiaodong Xu, Mingjun Shi, Xiangi Zhou, quant-ph=0110122.
[8] A. Iqbal, A.H. Tour, Phys. Lett. A 280 (2001) 249.
[9] L. Marinatto, T. Weber, Phys. Lett. A 272 (2000) 291;

L. Marinatto, T. Weber, Phys. Lett. A 277 (2000) 183.
[10] Jiangfeng Du, Xiaodong Xu, Hui Li, Xianyi Zhou, Rongdian Han, quant-ph=0010050; quant-ph=0103004.
[11] Chuan-Feng Li, Yong-Sheng Zhang, Yun-Feng Huang, Guang-Can Guo, Phys. Lett. A 280 (2001) 257.
[12] A.P. Flitney, D. Abbott, quant-ph=0109035, Phys. Rev. A 65 (2002) 062 318.
[13] A. Iqbal, A.H. Tour, Phys. Rev. A 65 (2002) 022 306; quant-ph=0106056.
[14] Jiangfeng Du, Hui Li, Xiaodong Xu, Mingjun Shi, Xianyi Zhou, Rongdian Han, quant-ph=0010092.
[15] S.C. Benjamin, P.M. Hayden, Phys. Rev. A 64 (2001) 030 301.
[16] R. Kay, N.F. Johnson, S.C. Benjamin, quant-ph=0102008.
[17] A. Iqbal, A.H. Toor, Phys. Lett. A 286 (2001) 245; Phys. Lett. A 294 (2002) 261; quant-ph/0106135;

Phys. Rev. A 65 (2002) 052 328.
[18] N.F. Johnson, Phys. Rev. A 63 (2001) 020302(R).
[19] G.P. Harmer, D. Abbott, P.G. Taylor, J.M.R. Parrondo, in: Proceedings of the Second International

Conference on Unsolved Problems of Noise and Fluctuations (UPoN ’99), Adelaide, Australia, Vol. 511,
1999, p. 189.

[20] P.V.E. McClintock, Nature 401 (1999) 23.
[21] R.P. Feynman, P.B. Leighton M. Sands, Feynman Lectures on Physics, Vol. 1, Addison-Wesley,

Reading, MA, 1963.
[22] G.P. Harmer, D. Abbott, P.G. Taylor, J.M.R. Parrondo, Chaos 11 (2001) 705.
[23] G.P. Harmer, D. Abbott, Stat. Sci. 14 (1999) 206;

G.P. Harmer, D. Abbott, Nature (London) 402 (1999) 864.
[24] J.M.R. Parrondo, G.P. Harmer, D. Abbott, Phys. Rev. Lett. 85 (2000) 5226.
[25] R. Toral, Fluct. Noise Lett. 1 (2001) L7.
[26] D.A. Meyer, H. Blumer, J. Stat. Phys. 107 (2002) 225.


	Quantum Parrondo's games
	Introduction
	Parrondo's paradox
	A quantum Parrondo game
	Results
	Conclusion
	Acknowledgements
	References


