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1. Introduction

Game theory has been widely applied in both social and biological fields, in order to describe interactions between
agents. Recently, the evolution of the behavior of agents in a population, in the framework of evolutionary games on graphs,
has attracted much interdisciplinary attention. Nowak and May [1,2] first introduced the spatial Prisoner’s Dilemma (PD)
game, in which agents (players) occupy all vertices of a two-dimensional lattice and the edges represent neighbor relations
between the corresponding agents. This pioneering work triggered an intensive investigation of spatial games, and the PD
game is a model that is frequently adopted by researchers [3,4]. It is known that the structure of the network is also a key
factor in the evolution of the behavior of agents. Later, a shift from evolutionary games on lattices to evolutionary games
on complex networks was observed [5], in particular on small-world networks [6-8] and on scale-free networks [9-11].
Meanwhile, other games, such as Snowdrift (SD) [12], Stag-Hunt (SH) [13], and public goods games, have produced
interesting results [14-17]. In particular, the public goods game, as a typical example of a multi-player game, produces
more complex behavior and different outcomes [18,19] than a two-player game, due to group interactions.

Surprisingly, the concept of evolutionary games has been extended to the microworld to describe interactions of
biological molecules [20-23], a domain in which quantum mechanics defines the laws. Meanwhile, game theory has also
been generalized to the quantum regime, and a new area called quantum game theory has emerged from the field of
quantum computation. In recent years, much interest has been focused on quantum game theory. For instance, Meyer's
results [24] showed that, if an agent in a penny flip game is allowed to implement quantum strategies, she/he can always
defeat her/his opponent playing a classical strategy and can thus increase her/his expected payoff. Eisert et al. [25] quantized
the PD and demonstrated that it is possible to escape the dilemma when both players resort to quantum strategies.
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Marinatto and Weber [26] found a unique equilibrium for the Battle of the Sexes game, when entangled strategies were
allowed. Later, evolutionarily stable strategies in quantum games and an evolutionary quantum game were also studied by
Igbal and Toor [27] and Kay et al. [28], respectively. Moreover, quantum games have also been implemented using quantum
computers [29-31]. For further background on quantum games, see Refs. [32,33].

In quantum game theory, agents are allowed to use quantum strategies from a quantum strategy set that is a much
larger set than a classical one, i.e., a classical strategy set is only a subset of a quantum strategy set. This larger space
offers the possibility for a diversity of agent behavior and allows new patterns to emerge. In this paper, we assume that
all agents in a population are quantum agents who can use quantum strategies to play games with their neighbors and
make decisions. However, initially, only a few randomly selected agents, about 1% of the population, are assigned quantum
strategies, while the others are players with strategies taken from the classical strategy set. The fraction of defectors is
about half of the population. This work discusses how quantum strategies spread in the population and how strategies
evolve over repeated games played on networks. As is known, there exist subtle differences in the evolution of strategies
with regards to the interaction network. Therefore, three networks (square lattice, Newman-Watts small-world network,
and scale-free network) are constructed and three games (Prisoners’ Dilemma, Snowdrift, and Stag-Hunt) are employed. The
games encapsulate agents’ responses to different external stimuli, while those networks provide different environments for
agents. It is worth noting that a quantum strategy is not a probabilistic sum of pure classical strategies (except under special
conditions), and it also cannot be reduced to the pure classical strategies [27].

The rest of this paper is organized as follows. Section 2 briefly introduces some concepts of quantum computation and
quantum games. Next, the model and the simulation setup are described in Sections 3 and 4, respectively. In Section 5,
results are given first. Later, the situation of strategies spreading on networks is discussed, and the evolution of strategies is
analyzed when different games are adopted. The conclusion is given in Section 6.

2. Quantum games

Before introducing quantum games, we describe some basic concepts of quantum computation. In quantum computation,
a qubitis the elementary unit, which is typically a microscopic system, such as a nuclear spin or a polarized photon, while the
Boolean states 0 and 1 are represented by a prescribed pair of normalized and mutually orthogonal quantum states labeled
as {|0), |1)} to form a ‘computational basis’ [34]. Furthermore, any pure state of the qubit can be written as a superposition
state «|0) + B|1) for some « and B satisfying |«|?> + |8|> = 1 [34]. Also, if any manipulations on qubits are needed, they
have to be performed by unitary operations, which can be carried out by a quantum logic gate or a quantum circuit [34].
The most often used quantum gate is the Hadamard gate. If a qubit in state |0) or |1) is manipulated by it, the qubit will be
in the following state:
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For further details, see Refs. [34,35].

In the following, we take the PD as an example for introducing quantum games. As is known, the PD can be used to
model many strategic phenomena in the real world, and it has been widely applied in a number of scientific fields. In this
symmetric game, each of two players has two available strategies, Cooperation (C) and Defection (D). Next, each of the two
players chooses a strategy against the other’s at the same time, but neither side knows the opponent’s strategy. Finally, each
agent acquires a payoff, where the payoff matrix to the first agent can be written as

Cc D cC D
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According to the conclusion in classical game theory, the strategy profile (D, D) is the unique Nash equilibrium
(NE) [36,37], but unfortunately the strategy profile (C, C) is merely the best choice that is Pareto optimal [38]. Hence, the
dilemma is produced.

However, Eisert et al. quantized the PD game and introduced an elegant scheme, the physical model of a quantum game,
which is shown in Fig. 1[25]. According to their results, the dilemma in the classical counterpart can be escaped in a restricted
strategic space [25], when quantum strategies are used. In their model, at first two basis vectors {|{C = 0), |[D = 1)} in Hilbert
space are assigned to the p0551ble outcomes of the classical strategies, C = 0 and D = 1, respectively [25]. Then, suppose
that the initial state is |g) = ] |00) before the game is played, where ] is an entangling operator that is known to both

players. For a 2 x 2 game, the entangling operator ] has the following form [39,40]:

J(w) = exp (i%of’z) =[®? cos 24 io®? sin 2 > (3)
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Fig. 1. The block diagram for the Eisert scheme.

where w € [0, 7/2] is a measure of entanglement of a game. When w = /2, there is a maximally entangled game, in
which the entangling operator can be written as
A 1
J@) = —= (% +io). (4)

V2

Next, each agent chooses a unitary operator Yasa strategy from the two-parameter strategy space S [25]:

e'? cos 4 sin 4

Yor.9) = A el €S, (5)
—sin—= e '?cos—
2 2
where y € [0, ], ¢ € [0, 7 /2]. Then, she/he operates it on the qubit that belongs to her/him, which makes the game in a
state (Y; ® Y5)J|00). In the end, before a projective measurement on the basis {|0), |1)} is carried out, the final state is

1r) =1 (Y1 ® Y5)] 100). (6)
As such, the first agent’s expected payoff is written as

My, $) = RIO0|Y) > + SIO1yy) > + TI(10[y5) 1 + PI(11| ) . (7)
3. The model

Assume that there is an undirected network G(V, E) with N nodes, in which V is the set of nodes and E is the set of links.
Also, each node i € V is occupied by an agent, and its neighbor j is any other agent such that there is a link between them,
so the set of neighbors of an agent i can be defined as I'; = {jle; € E,j € V \ i}.

In this paper, three different networks will be constructed. They are a square lattice (SL) with periodic boundary
conditions, a Newman-Watts (NW) small-world network [41,42] and a scale-free (SF) network [43,44]. When periodic
boundary conditions are involved, they can guarantee that each node in the square lattice has four neighbors. In addition, for
avoiding isolated nodes, the NW small-world network is selected in our work instead of the Watts-Strogatz (WS) network.
The NW network can be established in two steps [45]. At first, a square lattice, with periodic boundary conditions, is
constructed, and then links are added with probability p,,, between any two randomly chosen nodes. Finally, the SF network
is established according to the Barabasi-Albert model [43], whose algorithm consists of two steps, growth and preferential
attachment. It can start with a small network of mg <« N all-connected nodes, and then a new node with m < mjq links
will be added to the network. Its m links will be connected to m different nodes, chosen with probability ps(i), which can
be calculated as follows:

k,’

>k

jev

pst(d) = (8)

Here, k is the degree of a node. This procedure will be repeated many times until the number of nodes of the network is N.
Initially, each agent on the network is assigned a strategy randomly from the set of strategies {6 , ﬁ, A , Q}. Next, an agent
i will play a 2 x 2 entangled quantum game in turn with each one of its | I;3| neighbors according to the physical model of
a quantum game (Fig. 1), where the symbol | - | is the cardinality of a set. Throughout the paper, all quantum games are
maximally entangled games, if not otherwise explicitly stated. And then its expected payoff ITj;, j € I'; can be calculated by
Eq. (7). The agent’s total payoff F; is obtained by accumulating all it receives: F; = Zje r ij.
After that, it will choose a neighbor from its neighborhood randomly, and imitate its strategy with probability p; [46]:

F—F

pi = 1 o -max(k;, k)’
0, otherwise,

F > F,jeI;
i > ri, ] €1 (9)

where « is a constant that can be calculated as follows according to different games [47]:

T-S, PD,
a=1{T—-P, SD, (10)
R-S, SH.
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After all the agents acquire their payoffs, their strategies are updated synchronously. This process will be repeated for a
maximum number of 10 generations, and the fractions of agents with different strategies are obtained by averaging the
last 1000 generations, which produces a result of evolution of strategies. The final result is obtained by averaging over at
least 100 of these results. If the strategies of all agents do not change for 500 consecutive generations, it is deemed that an
equilibrium has been reached, and the iterations are stopped.

4. Simulation setup

Assume that a population of 50 x 50 agents is located at nodes of the above-mentioned networks. For the NW network,
the probability that links are added between any two randomly chosen nodes is p,y = 0.5, while, for the SF network, the
number of nodes of the initial core network is my = 2 or 3, and the number of links of each new node are set at m = 2.
Throughout all simulations, the network topology remains static. In this paper, we consider two sets of strategies.

Casel. There are three strategies in the set §1 = {6 f) A }. Initially, three strategies, ¢ (Cooperation), D D (Defection), A
(Hadamard), are a551gned to agents randomly, and the fractions of strategies are 49%, 50%, and 1%, respectively. Here,
the unitary operators C and D have the following forms:

~ (1 0 ~ (0 1
c=<0 1), D=<] 0). (11)

Case2. There are four strategies in the set §2 = {6, f), I:I, Q}. Initially, four strategies, 6, f), I:I, and Q are assigned to the

population randomly, and the fractions of strategies are 49%, 49%, 1%, and 1%, respectively. The strategy Q takes the
form

A i 0

In these two cases, the quantum strategy A brings a miracle move [25] when an agent uses it against the other’s classical
strategy. Also, the quantum strategy profile (Q, Q) is a new NE observed by Eisert et al. [25], when players choose their
strategies from the strategy space§ = f/(y, ).

Then, the PD, SD, and SH games are played by all agents on SL, NW, and SF networks, respectively. To be compatible with
previous studies, and without loss of generality, the payoff matrix of the PD game is chosen as R = 1 (Reward), T = b
(1 < b < 2)(Temptation), P = 0 (Punishment), and S = 0 (Sucker’s payoff), satisfying the inequalities T > R > P > S; the
payoff matrix of the SD game is chosenasT =b > 1,R=b—c/2,S =b—c,and P = 0, satisfying T > R > S > P, and the
cost-to-benefit ratio of mutual cooperation is defined as r = ¢/(2b — ¢) [14], where c = 1and 0 < r < 1; and the payoff
matrix of the SH game is chosenasR=1,T =r (0 <r < 1),S = —r,and P = 0, satisfyingR > T > P > S.

The payoffs under any strategy profiles can be calculated according to the model of a quantum game in Section 2. As is
known, the strategy profiles (I:I A )and (Q, Q) are Nash equilibria for the PD, SD, and SH games in Cases 1 and 2, respectively.
However, it is worth noting that for the SH game there are two Nash equilibria, i.e., besides (I:I, I:I) or (Q, Q), the other is
(€, 0).

5. Results and discussion

Throughout all simulations, the agents with quantum strategies A and Q are regarded as invaders, so their fractions are
restricted to 1% of the whole population initially. Thus, our simulations focus on investigating how the quantum strategies
invade the population and how the strategies evolve on the networks. In order to elucidate the effects of quantum strategies,
three games are considered to observe the behavior of quantum strategies. Furthermore, the structure of a network is also a
key factor for the evolution of strategies, so three different networks (SL, NW, and SF) are constructed to test their influences.

For Case 1, the upper and middle subfigures of Fig. 2 show that the fractions of agents with three strategies on SL and
NW networks are similar. Given our three games, the quantum strategy H becomes the Evolutionarily Stable Strategy (ESS)
almost from the outset when the PD game is played; i.e., even if the temptation T is only a little larger than the reward
R, the strategy H can dominate the network successfully. However, for the SD and SH games, it is more difficult for the
strategy H to be the ESS. When the SD game is employed, the strategy His played by all agents on the network only if the
cost-to- beneflt ratior > 0.32 and r > 0.40 on SL and NW networks respectlvely Below these values, almost no agents use
the strategy A, while at that time the frequencies of the strategies C and D are similar to the case of an SD game without a
quantum strategy. For the SH game, a coordination game, the strategy H invades the network successfully when r > 0.82
and r > 0.67, respectively, on SL and NW networks. From the above analysis, it can be said that the SH game and the
structure of the NW network are more advantageous for classical strategies than the quantum ones.

The results of evolution of strategies in Case 2 are shown in Fig. 3. From Fig. 3, it can be seen that for the PD the strategy Q
can invade the whole network from the outset on both the SL and NW networks, and the strategy Q becomes the dominant
strategy over A in Case 1 when the SD and SH games are adopted, which is improved by about 10%, 8% (SD on SL and NW)
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Fig. 2. Fractions of agents with three strategies in Case 1 on different games and networks. (a) Prisoners’ Dilemma. (b) Snowdrift. (c) Stag-Hunt. In the
upper, middle, and lower subfigures of (a)-(c), games are played on SL, NW, and SF networks, respectively.
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Fig. 3. Fractions of agents with four strategies in Case 2 on different games and networks. (a) Prisoners’ Dilemma. (b) Snowdrift. (c) Stag-Hunt. In the
upper, middle, and lower subfigures of (a)-(c), games are played on SL, NW, and SF networks, respectively.
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Fig. 4. Fractions of agents with different strategies in Case 1 on an SF network, when the agents with the first three largest degrees play the quantum
strategy H. (a) Prisoners’ Dilemma. (b) Snowdrift. (c) Stag-Hunt. In the upper, middle, and lower subfigures of (a)-(c), the agent with the first, second, or
third degree is assigned the quantum strategy H, respectively.

and 30%, 15% (SH on SL and NW), respectively. In contrast to Case 1, it can be inferred that the strategy Q is more aggressive
than the strategy .

On the other hand, the evolution of strategies on the SF network is more complex due to the features of the SF network,
i.e., the power-law distribution of degrees of nodes in the network. In both Cases 1 and 2, all strategies fluctuate no matter
which game is played. However, it can be observed that the classical strategies decrease in proportion with the increase of
the variable T or r, while the quantum strategies act conversely. According to the features of the SF network, if few quantum
strategies are played by some agents with small degrees, it will be harder for them to invade the network. This raises the
question that if a quantum strategy is employed by a certain agent with one of the first three largest degrees, namely a
hub node, how will the quantum strategies evolve? In the next simulations, the agent with the first largest degree will be
compulsorily assigned a strategy Hin Case 1 or Q in Case 2 after each agent chooses a strategy. The results are shown in the
uppermost subfigures in Figs. 4 and 5, while the other subfigures in Figs. 4 and 5 are the results when the agent with the
second or the third largest degree plays a strategy HorQ.This procedure is applied on the PD, SD, and SH games, respectively.

From Figs. 4 and 5, it can be seen that, when the agent with the first largest degree plays a quantum strategy, the
fluctuations in the results reduce significantly, which means that, if the node with the largest degree is occupied by an
agent with a quantum strategy, then the strategy spreads out more quickly on the SF network and the population is invaded
more easily by the strategy. If the quantum strategy is assigned to an agent with the second or the third largest degree, the
fluctuations also decrease, but the amplitude is not lower than that of the first one. As for the three games, the SH game
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Fig. 5. Fractions of agents with different strategies in Case 2 on an SF network, when the agents with the first three largest degrees play the quantum
strategy Q. (a) Prisoners’ Dilemma. (b) Snowdrift. (c) Stag-Hunt. In the upper, middle, and lower subfigures of (a)-(c), the agent with the first, second, or
third degree is assigned the quantum strategy Q, respectively.
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Fig. 6. Fractions of agents with different strategies in Case 2 on three games and three networks, when the fraction of the quantum strategy 0 is increased
to 25%. (a) Prisoners’ Dilemma. (b) Snowdrift. (c) Stag-Hunt. In the upper, middle, and lower subfigures of (a)-(c), games are played on SL, NW, and SF
networks, respectively.

makes the degrees of fluctuations of results lower than those on the PD and SD games regardless of degrees. Furthermore,
comparing the two strategies H and Q we can find that the value of the temptation T or the cost-to-benefit r when the
strategy Q becomes dominated is smaller than that of the strategy A according to Figs. 4 and 5.

For Case 2, the main reason why quantum strategies do not invade the population from the outset is that initially the
fractions of agents with quantum strategies are too low. If the fraction is increased, the quantum strategy Q will be able
to dominate the network. In simulations, the fractions of the strategy D and H remain constant at 49% and 1%, while the
fractions of the other two strategies are adjusted. Further, the fraction of the quantum strategy Q is set at 10%, 20%, and
25%, respectively, and correspondingly the fraction of the strategy C is 40%, 30%, and 25%. For the SF network, the agent
occupying the node with the largest degree is assigned a quantum strategy. Fig. 6 exhibits the evolutlon of strategies when
the fraction of the quantum strategy Q is 25%, where we can see that the quantum strategy Q can invade the population
successfully on all networks, and it becomes the ESS from the outset.

However, for Case 1, the situation is more complex than that in Case 2. Besides the reason mentioned above, another
major reason also prevents the quantum strategy 3 being spread on networks is that the strategy proflle (H H) is not
Pareto optimal, although it is a Nash equilibrium. Hence, even if the fraction of the quantum strategy H is increased to 25%,
it cannot dominate on all networks from the outset, especially on the SF network, as is shown in Fig. 7, in which similarly
the fraction of the quantum strategy H is set at 25% and correspondingly the fraction of the strategy C is also 25%, while the
fraction of the strategy D remains constant at 50%.

6. Conclusions

In summary, we have investigated the evolution of strategies on networks when quantum strategies H and Q are
employed as invaders. For the evolution of strategies, the structure of a network is a decisive factor, and a game represents
an agent’s response to some external stimuli. So, in our study, we constructed three networks and introduced three games
to investigate the evolution of strategies on these networks in a defector-dominated population when different games are
employed. As far as two quantum strategies are concerned, the strategy é is more aggressive than the other one regardless
of Case 1 or Case 2, because it is not only a Nash equilibrium but also Pareto optimal. Considering the three networks,
we find that the population on an SL network can be invaded most easily by quantum strategies without any small-world
effects (properties), namely short average path length and large clustering coefficient. In contrast, in the SF network the
power-law distribution of degrees makes the spread of quantum strategies more difficult and exacerbates the fluctuations
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Fig. 7. Fractions of agents with different strategies in Case 1 on three games and three networks, when the fraction of the quantum strategy A isincreased
to 25%. (a) Prisoners’ Dilemma. (b) Snowdrift. (¢) Stag-Hunt. In the upper, middle, and lower subfigures of (a)-(c), games are played on SL, NW, and SF
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networks, respectively.

of results when 1% quantum strategies happen to be played by some agents only with small degrees. If an agent with a
quantum strategy occupies a hub, i.e., a node with the largest degree, the fluctuations reduce considerably. Furthermore, if

the fractions of quantum strategies are increased significantly, they can dominate a network from the outset.
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