
Quantum Inf Process (2013) 12:1719–1735
DOI 10.1007/s11128-012-0483-7

An improved formalism for quantum computation
based on geometric algebra—case study: Grover’s
search algorithm

James M. Chappell · Azhar Iqbal · M. A. Lohe ·
Lorenz von Smekal · Derek Abbott

Received: 23 May 2012 / Accepted: 28 August 2012 / Published online: 21 September 2012
© Springer Science+Business Media, LLC 2012

Abstract The Grover search algorithm is one of the two key algorithms in the field
of quantum computing, and hence it is desirable to represent it in the simplest and
most intuitive formalism possible. We show firstly, that Clifford’s geometric algebra,
provides a significantly simpler representation than the conventional bra-ket notation,
and secondly, that the basis defined by the states of maximum and minimum weight in
the Grover search space, allows a simple visualization of the Grover search analogous
to the precession of a spin- 1

2 particle. Using this formalism we efficiently solve the
exact search problem, as well as easily representing more general search situations.
We do not claim the development of an improved algorithm, but show in a tutorial
paper that geometric algebra provides extremely compact and elegant expressions with
improved clarity for the Grover search algorithm. Being a key algorithm in quantum
computing and one of the most studied, it forms an ideal basis for a tutorial on how to
elucidate quantum operations in terms of geometric algebra—this is then of interest
in extending the applicability of geometric algebra to more complicated problems in
fields of quantum computing, quantum decision theory, and quantum information.
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1720 J. M. Chappell et al.

Fig. 1 Geometry of starting state |σ 〉 assuming real coefficients on the basis vectors

1 Introduction

The Grover search algorithm [1–3] seeks to evolve a wave function from some start-
ing state |σ 〉, into the solution state |m〉, representing the set of all solutions, which
upon measurement will yield one element from this set [4–6]. In order to analyze
this evolution, typically an orthonormal basis |m〉 and |m⊥〉 is defined, as shown on
Fig. 1 upon which the starting state |σ 〉 is plotted. However in this paper we use an
alternative basis defined by the states of maximum and minimum weight. This allows
the initial state |σ 〉 and the solution state |m〉 to be symmetrically positioned in this
space, allowing the conceptualizing of the Grover search process, analogous to the
precession of a spin- 1

2 particle in a magnetic field [7]. The particle, in the case of
the Grover search, precessing from the direction of the initial state |σ 〉 to the solu-
tion state |m〉. This approach is similar to an SO(3) picture that has previously been
developed [8], which also plots the path of the state vector during the application of
the Grover operator. Clifford algebra has also been applied previously to Grover’s
algorithm [9–11], however the approach adopted here combines the benefits of an
efficient representation as well as an integral geometric visualization. The geometric
product of Clifford’s geometric algebra can also be used as an alternative to the tensor
product notation, hence allowing an alternative description of multi-qubit quantum
computation and hence quantum algorithms without the conventional formalism of
quantum mechanics [12–18]. Clifford geometric algebra has also been demonstrated
to provide a tractable framework for the analysis of N -partite qubit interactions where
N is large [19].

1.1 The standard Grover search

Given a search space of N elements, with M of these elements being solutions to a
search query as defined by an oracle f (x), where by definition f (x) = 1 if x is a
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An improved formalism 1721

solution, and f (x) = 0 if x is not a solution. We set up a quantum register with n
qubits to index the search space, where we assume for simplicity that N = 2n , and
then define the two states

|m〉 = 1√
M

∑

x∈M

|x〉, |m⊥〉 = 1√
N − M

∑

x /∈M

|x〉. (1)

This allows us to define a uniform superposition starting state [5] in terms of these
two states as

|σ 〉 = 1√
N

N−1∑

x=0

|x〉 =
√

N − M

N
|m⊥〉 +

√
M

N
|m〉, (2)

which is plotted in Fig. 1. It should be remembered that this figure showing a real
two-dimensional space does not describe the whole story, in that in general we allow
complex coefficients on the basis vectors, thus describing an SU(2) space. In the fol-
lowing section we use the isomorphism so(3) ∼= su(2)1 to describe the search process
within a real three-dimensional space.

Grover’s solution to the search process [4] involves iteratively applying a unitary
operator G defined by

G = −GσGm = − (I − 2|σ 〉〈σ |) (I − 2|m〉〈m|) . (3)

This operator applied to the n = log N qubits representing the search space, rotates
the state vector an angle θ given by

sin
θ

2
=

√
M

N
(4)

at each application, and after

R ≤
⌈
π

4

√
N

M

⌉
(5)

iterations, the wave function will lie close to the solution state |m〉.

1.2 Modified basis vectors for the search space

The Grover search space is known to be isomorphic to an SU(2) space [20], hence
we now seek the three generators derived from this two-dimensional complex space
shown in Fig. 1. In this case we need to utilize the two non-orthogonal states |m〉
and |σ 〉 as the basis. We therefore have available the four possible operators: |m〉〈σ |,
|σ 〉〈m|, |m〉〈m| and |σ 〉〈σ | from which we define:

1 The Lie groups are represented by uppercase letters and the same symbols in lowercase for the corre-
sponding Lie algebras.
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1722 J. M. Chappell et al.

J1 = P − |σ 〉〈σ | − |m〉〈m|
2|α| , J2 = −i (α∗|m〉〈σ | − α|σ 〉〈m|)

2|α|β , (6)

J3 = |σ 〉〈σ | − |m〉〈m|
2β

,

where α = 〈σ |m〉, β = √
1 − |α|2, and i = √−1 with P = (|σ 〉〈σ |−|m〉〈m|)2

β2 . We then
find the commutation relations

[Ji , J j ] = iεi jk Jk , [Ji , J j ]+ = δi j
P

2
, [P, Ji ] = 0, (7)

where δ is the Kronecker delta symbol, the + subscript representing the anticommuta-
tor and ε the Levi–Civita symbol, with the Casimir invariant C = J 2

1 + J 2
2 + J 2

3 = 3
4 P

confirming we have an su(2) algebra. We have the raising and lowering operators

J± = J1 ± iJ2 (8)

and requiring J+| ↑〉 = 0 and J−| ↓〉 = 0, we find the states of highest and lowest
weight

| ↑〉 = sec
θ

2

(
cos

θ

4
|σ 〉 − e−iδ sin

θ

4
|m〉

)
, (9)

| ↓〉 = sec
θ

2

(
sin

θ

4
|σ 〉 − e−iδ cos

θ

4
|m〉

)
,

where sin θ
2 = |α| and α = sin θ

2 eiδ , and we have ignored a possible complex phase
factor. We then find J3| ↑〉 = + 1

2 | ↑〉 and J3| ↓〉 = − 1
2 | ↓〉, as expected for a spin− 1

2
system. Hence we can see that the Grover search process, involving the transformation
of the starting state |σ 〉 to the solution state |m〉, is essentially a spin-flip operation in
an SU(2) space. Writing |σ 〉 and |m〉 in this new basis we obtain

|σ 〉 = cos
θ

4
| ↑〉 − sin

θ

4
| ↓〉 (10)

|m〉 = eiδ
(

sin
θ

4
| ↑〉 − cos

θ

4
| ↓〉

)
.

Using these results, we can substitute back into the Grover iteration defined in Eq. (3)
to find

G = −I + 2 cos2 θ

2
| ↑〉〈↑ | + sin θ | ↑〉〈↓ | − sin θ | ↓〉〈↑ | + 2 cos2 θ

2
| ↓〉〈↓ |.

(11)
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This can be immediately written in matrix form as

G =
[

cos θ sin θ
− sin θ cos θ

]
, (12)

which shows as expected, that the Grover operation rotates the state vector by an angle
θ , where the starting state will be for this basis

|σ 〉 =
[

cos θ4− sin θ
4

]
. (13)

1.3 Clifford’s algebra of three-space

Using the orthonormal basis | ↑〉, | ↓〉, defined in Eq. (9), we now model the search
process using the real associative algebra of Clifford’s geometric algebra (GA) [21].
We define unit algebraic elements e1, e2, e3, such that e2

1 = e2
2 = e2

3 = 1, and for
distinct i and j we have the anticommutation rule ei e j = −e j ei . The algebraic ele-
ments e1, e2, e3, define a three-dimensional space, and so we can define two vectors
a = a1e1 + a2e2 + a3e3 and b = b1e1 + b2e2 + b3e3. It then follows, using the
distributive law of multiplication over addition, that

ab = (a1e1 + a2e2 + a3e3)(b1e1 + b2e2 + b3e3) (14)

= a1b1 + a2b2 + a3b3

+(a2b3 − b2a3)e2e3 + (a1b3 − a3b1)e1e3 + (a1b2 − b1a2)e1e2

= a · b + ιa × b = a · b + a ∧ b,

where a · b is therefore the conventional dot or inner product and a ∧ b is the wedge
or outer product. In three dimensions we have the relationship with the conventional
vector product that a ∧ b = −ιa × b, where we have defined the trivector ι = e1e2e3
denoted by the Greek symbol iota, ι, which represents an oriented unit volume. The tri-
vector ι allows the use of the dual representation for bivectors, specifically, ιe1 = e2e3,
ιe2 = e3e1 and ιe3 = e1e2.

Using the product defined by Eq. (14), with orthonormal basis elements, we find

ei e j = ei .e j + ei ∧ e j = δi j + ιεi jkek, (15)

indicating that we have an isomorphism between the basis vectors e1, e2, e3
and the Pauli matrices through the use of the geometric product. We find that
ι2 = e1e2e3e1e2e3 = −1 and we also find that ι commutes with all other elements of
the algebra and so behaves equivalently to the unit imaginary i = √−1. The bivec-
tors also square to negative one, that is (ei e j )

2 = (ei e j )(ei e j ) = −ei e j e j ei = −1,
assuming i = j , which are used to define rotations in the plane of the bivector.
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1724 J. M. Chappell et al.

1.3.1 Rotations in 3-space with geometric algebra

The Grover search process involves the incremental rotation of the state vector and in
geometric algebra in order to rotate a given vector about an axis defined by a vector
a, where the length of this vector |a| gives the rotation angle, we define a rotor

R = e−ιa/2 = cos

( |a|
2

)
− ι

a
|a| sin

( |a|
2

)
. (16)

This rotor acts by conjugation to rotate a vector v = v1e1 + v2e2 + v2e3, using

v
R−→ v

′ = RvR† = e−ιa/2veιa/2. (17)

The † symbol represents the reversion operation, which flips the order of the terms
and switches the sign of ι and is used here as it acts analogously to the conventional
adjoint † operation that takes the conjugate transpose of a complex matrix.

Either R or −R effects the rotation of the vector v → v′, as Eq. (17) shows, which
is simply a statement that the map from the group SU(2) to SO(3) is 2:1. This causes
no ambiguity as the rotated vector v′ is the same for either map.

1.3.2 Representing quantum states in GA

We can identify a simple 1:1 mapping from complex spinors to the scalars and bivectors
of GA as follows [21–23]

|ψ〉 = z1| ↑〉 + z2| ↓〉 =
[

a0 + ia3
−a2 + ia1

]
↔ ψ = a0 + a1ιe1 + a2ιe2 + a3ιe3. (18)

The set of even grade multivectors (the scalars and bivectors of GA in three dimen-
sions) used to represent spinors, is closed under the Clifford product, and itself forms
an algebra that is called the even subalgebra.

Converting the complex spinors defined in Eq. (10), we find using Eq. (18)

|σ 〉 �→ cos
θ

4
+ sin

θ

4
ιe2 = eιe2θ/4 (19)

|m〉 �→
(

sin
θ

4
+ cos

θ

4
ιe2

)
eιδe3 = eιe2(π/2−θ/4)eιδe3 = ιe2e−ιe2θ/4eιδe3 .

We can now transform GA type spinors into a real space representation through the
transformation

S = ψe3ψ
†, (20)

which describes an isomorphism between quaternion style rotations and real three-
space vectors equivalent to the Bloch sphere representation [8]. This is simply a restate-
ment of the well-known isomorphism so(3) ∼= su(2).
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This gives us the three-space vectors

σ = eιe2θ/4e3e−ιe2θ/4 = eιe2θ/2e3 = − sin
θ

2
e1 + cos

θ

2
e3 (21)

m = eιe2(π/2−θ/4)eιδe3e3e−ιδe3 e−ιe2(π/2−θ/4)

= −e−ιe2θ/2e3 = − sin
θ

2
e1 − cos

θ

2
e3.

Analogously we can find m⊥ = sin θ
2 e1+cos θ2 e3, so that the vectors σ , m and m⊥, can

now be plotted in real Cartesian space shown in Fig. 2, where the angle θ is measured
from e3, and φ is measured from e1.

2 The Grover search operator in GA

The action of the oracle Gm on |m〉 is (I − 2|m〉〈m|) |m〉 = −|m〉, which is to flip the
‘m’ coordinate about the |m⊥〉 axis [5]. Reflections are easily handled in GA, through
double sided multiplication of the vector representing the axis of reflection, the action
of the oracle being therefore

mσm. (22)

We can see from Fig. 2 that the same axis of reflection is also provided by −m⊥. Using
the starting state defined in Eq. (21) we find the action of the oracle on the starting
state σ as

mσm = e−ιe2θ/2e3e3e−ιe2θ/2e−ιe2θ/2e3 = e−ιe23θ/2e3 = cos
3θ

2
e3 + sin

3θ

2
e1,

(23)

which is the required vector (see Fig. 2).
The action of the other half of the Grover operator Gσ = I − 2|σ 〉〈σ | also pro-

duces a reflection, but this time about the σ vector. This therefore implies a full Grover
iteration of the starting state will be σ(mσm)σ = (σm)σ (mσ) = GσG†, where we
have used the associativity of GA. This then gives the combined Grover operator as

G = −σm = eιe2θ/2e3e3eιe2θ/2 = eιe2θ , (24)

a significantly more compact form for the standard Grover operator, in comparison to
Eq. (3). We can see by inspection, that the Grover operator represents a rotation of 2θ
about the e2 axis, which will clearly rotate the vector σ onto m, after an appropriate
number of operations, as shown in Fig. 2. Clearly this formula provides a minimal-
ist algebraic expression for the Grover search, consisting simply of the exponential
of an angle θ , and a rotation plane ιe2. This expression is also easily generalized to
describe the general Grover search by simply replacing the rotation plane ιe2 with a
more general rotation plane in three dimensions as shown in Eq. (33).

123



1726 J. M. Chappell et al.

Fig. 2 Grover search in three-space based on states of maximum and minimum weight. The two possible
precession axes are now simply e1 and e2, which will rotate σ onto m and hence solve the search problem.
The starting state σ lies at an angle of θ

2 to the e3 axis and the action of the oracle Gm on σ , will flip
this state about the m axis to Gmσ as shown. The angle φ is measured in the plane of e1 and e2 as
shown

Hence, after k iterations we require the Grover operator G to rotate the vector σ ,
defined in Eq. (21), onto the solution vector m, and so we require

GkσG†k = eιke2θeιe2θ/2e3e−ιke2θ = eιe2(2kθ+θ/2)e3 = m, (25)

using
(
eιe2θ

)k = eιke2θ , with m defined in Eq. (21). We therefore require

eιe2(2kθ+θ/2)e3 = eιe2(π−θ/2)e3. (26)

Now, by equating exponents, ignoring rotations modulo 2π , we find the condition

k = π

2θ
− 1

2
, (27)
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and using θ = 2 arcsin
√

M
N for a database with M solutions, we find

k = π

4 arcsin
√

M
N

− 1

2
≈ π

4

√
N

M
, (28)

the well known result for the standard Grover search. However, clearly, there is no
guarantee that the formula will return k as an integer, and because it will need to be
rounded to the nearest integer describing the number of Grover operations, we will not
always return exactly the solution space upon measurement. However we can modify
the search slightly, in order to guarantee that k will be an integer, and hence reliably
return the solution state |m〉.

2.1 Exact Grover search

The Grover operator, defined in Eq. (3), can be modified so that it rotates the starting
state |σ 〉 exactly onto the solution states |m〉, thus finding a solution with certainty
[20,24]. In order to create the exact Grover search, the Grover operator is typically
generalized to

G = −
(

I − (1 − eiφ1)|σ 〉〈σ |
) (

I − (1 − eiφ2)|m〉〈m|
)
, (29)

so that when the oracle identifies a solution it applies a complex phase eiφ2 to the
wave function and not just the scalar negative one [20]. This has the effect of slightly
slowing down the search process allowing the solution state |m〉 to be reached exactly
using an integral number of iterations.

A reflection can be viewed as a rotation by π in one higher dimension, so if we
rotate by an angle φ2 about the m axis, which will be clockwise as viewed from above
the e3 axis, we obtain the oracle

Gm = eι
φ2
2 (sin(θ/2)e1+cos(θ/2)e3). (30)

For φ2 = π we find Gm = ι(sin(θ/2)e1 + cos(θ/2)e3) = ιm, so that the action of the
oracle

GmσG†
m = ιmσ(−ιm) = mσm, (31)

gives the same result as the standard Grover oracle found previously in Eq. (22).
Similarly

Gσ = e−ι φ1
2 (− sin(θ/2)e1+cos(θ/2)e3) (32)
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1728 J. M. Chappell et al.

will be a rotation about the σ axis. Hence the Grover operator for the exact search will
be

G = −GσGm (33)

= −e−ι φ1
2 (− sin(θ/2)e1+cos(θ/2)e3)eι

φ2
2 (sin(θ/2)e1+cos(θ/2)e3)

= −eιβv̂,

where we have written the Grover operator in terms of a unit three-vector v̂ describing
a precession axis, and β a rotation angle about this axis. Clearly this is a significantly
more compact form than the conventional operator shown in Eq. (29). Expanding the
second line of Eq. (33) above we find

G = cos
φ1

2
cos

φ2

2
+ cos θ sin

φ1

2
sin

φ2

2
+ sin

φ1 + φ2

2
sin

θ

2
ιe1 (34)

+ sin
φ1

2
sin

φ2

2
sin θιe2 − cos

θ

2
sin

φ1 − φ2

2
ιe3,

giving a detailed expression for the general Grover operator. Eq. (33) can be written
as G = − cosβ − ιv̂ sin β, which when compared with Eq. (34) allows β and v to
be easily calculated. This result, however, is not required in what follows and so for
brevity, the relation is not included.

2.1.1 Phase matching

We can see from Fig. 2, which uses the alternate orthonormal basis | ↑〉 and | ↓〉, that
σ and m now lie in the plane of e1 and e3, and hence using a geometric argument the
Grover precession axis must therefore lie in the plane of e1 and e2 in order for the σ
vector to be able to be rotated precisely onto the m vector. Hence we need to eliminate
the e3 component in the precession axis, and so, by inspection of Eq. (34), we require
φ1 = φ2, which is the well known phase matching condition [24,25]. Hence the exact
search will be in the form

G = −eιβ(sin αe1+cosαe2), (35)

where we find

sin
β

2
= sin

θ

2
sin

φ

2
(36)

cot α = cos
θ

2
tan

φ

2
,

which can be re-expressed assuming a normalization factor Z as

G = eιβ(cos φ2 e1+cos θ2 sin φ
2 e2)/Z . (37)
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This equation clearly shows the precession plane perpendicular to the vector
cos φ2 e1 + cos θ2 sin φ

2 e2, and if we select φ = π , we recover the standard Grover
search operation.

To calculate φ for the exact search we, once again, have the vector equation given
by Eq. (25). Substituting our modified Grover operator, along with Eq. (21), we find

eιkβ(sin αe1+cosαe2)eιe2θ/2e3e−ιkβ(sin αe1+cosαe2) = −e−ιe2θ/2e3, (38)

which can be rearranged to

eιkβ(sin αe1+cosαe2)eιe2θ/2eιkβ(sin αe1+cosαe2)eιe2θ/2 = −1 (39)

or

(eιkβ(sin αe1+cosαe2)eιe2θ/2)2 = −1. (40)

Now, because we can always replace two consecutive precessions, with a single pre-
cession operation, we can write

eιkβ(sin αe1+cosαe2)eιe2θ/2 = eικ v̂ = cos κ + ιv̂ sin κ, (41)

for some unit vector v̂. Thus, from Eq. (40), we need to solve

(eικ v̂)2 = e2ικ v̂ = cos 2κ + ιv̂ sin 2κ = −1 (42)

and so clearly κ = π
2 . Thus the right hand side of Eq. (41), is equal to ιv̂, implying

that the scalar part is zero. Expanding the L.H.S. of Eq. (41), and setting the scalar
part to zero, we find

〈
(cos kβ + ι sin kβ(sin αe1 + cosαe2))

(
cos

θ

2
+ ι sin

θ

2
e2

)〉

0
(43)

= cos kβ cos
θ

2
− sin kβ sin

θ

2
cosα = 0.

Re-arranging this equation we find

cot kβ = tan
θ

2
cosα = sin θ

2√
cos2 θ

2 + cot2 φ
2

. (44)

Isolating k, we find

k =
arccot

(
sin θ

2√
cos2 θ

2 +cot2 φ
2

)

2 arcsin(sin θ
2 sin φ

2 )
. (45)
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Using calculus we can find the minimum at φ = π , which thus returns the number
of iterations for the standard Grover search given by Eq. (27), which shows that this
modification fails to speed up the search [26–31]. However we are able now to set φ
in Eq. (45), so as to make k an integer, which will therefore be the fastest exact search
possible. Hence the minimum integer iterations will be

km =
⌈
π

2θ
− 1

2

⌉
. (46)

Substituting back into Eq. (45) and re-arranging we then find an expression for φ

2km arcsin

(
sin

θ

2
sin

φ

2

)
= arccot

⎛

⎝ sin θ
2√

cos2 θ
2 + cot2 φ

2

⎞

⎠ , (47)

which we can simplify to give explicitly

sin
φ

2
= sin

π

4km + 2
csc

θ

2
. (48)

We have φ now determined directly from the known θ and km defined in Eqs. (4) and
(46) respectively, thus solving the exact search using the Grover operator defined in
Eq. (35).

An example using this formula for the exact search is given in the “Appendix”,
which shows how the starting polarization vector now rotates exactly onto the solu-
tion states, as required.

2.2 General exact Grover search

Most generally we can write the Grover operator as

G = −U IγU−1Gm = −G ′
σGm (49)

where G ′
σ = U IγU−1 and Iγ = I + (eiφ1 − 1)|γ 〉〈γ | where we normally choose

γ = |0〉 = |0 . . . 0〉 [2,32,33]. For U = H we have

G ′
σ = −U IγU−1 = I + (eiφ1 − 1)H |γ 〉〈γ |H = I + (eiφ1 − 1)|σ 〉〈σ | = Gσ .

So with this modified operator we effectively use a modified vector to σ , namely the
vector γ = U |0〉, giving

|γ 〉 = −e−iφ/2 cos
θ0

4
| ↑〉 + eiφ/2 sin

θ0

4
| ↓〉,
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equivalent to a starting polarization vector

γ = − sin
θ0

2
cosφ0e1 − sin

θ0

2
sin φ0e2 + cos

θ0

2
e3. (50)

Comparing this with the polarization vector for the standard Grover search
σ = − sin θ

2 e1 + cos θ2 e3, as shown on Fig. 2, we see that we have changed the
projection in the e3 direction by changing θ to θ0, and hence rotated the vector in the
e12 plane given by the angle φ0. If φ0 = 0, then we recover the standard exact Grover
search. As the starting polarization vector in Eq. (50) is a unit vector, we simply adapt
Gσ to rotate about this new vector, that is we have

Gγ = e−ιγ φ1/2 = e−ι φ1
2 (− sin θ0

2 cosφ0e1−sin θ0
2 sin φ0e2+cos θ02 e3) (51)

and hence for the general exact search, given by G = −GγGm , we have

G = e−ι φ1
2 (− sin θ0

2 cosφ0e1−sin θ0
2 sin φ0e2+cos θ02 e3)eιφ2/2(sin(θ/2)e1+cos(θ/2)e3). (52)

However this equation is clearly fairly cumbersome. As a more elegant alternative, we
can simply adjust our basis states, given by Eq. (9), and then the exact solution, given
by Eq. (35), immediately applies.

3 Summary

The two main strengths of geometric algebra are its method of handling rotations and
its integral geometric representation, and hence its perfect suitability in describing
the Grover search. We find Clifford’s geometric algebra provides a simplified repre-
sentation for the Grover operator shown in Eq. (24) compared with Eq. (3) and also
provides a clear geometric picture of the search process. Using the states of maxi-
mum and minimum weight, we find that we can interpret the search process as the
precession of a spin- 1

2 particle, thus providing a simple visual picture, as shown in
Fig. 2. This is not possible with the standard formalism as it requires two complex
axes, forming a four-dimensional space, and hence is difficult to visualize. We also
find that the exact Grover search Eq. (35) has an efficient algebraic solution, as shown
in Eq. (48). Improved intuition obtained via the use of Clifford’s geometric algebra
may possibly assist the search for new quantum algorithms.

This tutorial has been based on the standard Grover search algorithm [4] but an
interesting extension would be to apply the GA formalism to the partial search process,
which is also describable within an SU(2) space [34] and to the fixed point search [35].

Acknowledgments We are grateful to Sam Braunstein for drawing our attention to the potential applica-
bility of our approach to the partial search process.
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4 Appendix

4.1 Example of an exact search over 16 elements

After k iterations we have the polarization vector

P = GkσG†k
(53)

= eιkβ(sin αe1+cosαe2)eιe2θ/2e3e−ιkβ(sin αe1+cosαe2)

= −
(

sin2 α sin
θ

2
+ sin

θ

2
cos2 α cos 2βk + cosα cos

θ

2
sin 2βk

)
e1

+
(

−1

2
sin

θ

2
sin 2α + 1

2
sin 2α sin

θ

2
cos 2βk + cos

θ

2
sin α sin 2βk

)
e2

+
(

cos
θ

2
cos 2βk − cosα sin

θ

2
sin 2βk

)
e3.

For 16 elements we find from Eq. (46) km = 3, and we then find φ from Eq. (48) for
an exact search of φ = 2.19506. This gives the polarization vector after k iterations

P = −(0.0546434 + 0.195357 cos 2βk + 0.855913 sin 2βk)e1 (54)

+(−0.10332 + 0.10332 cos 2βk + 0.452673 sin 2βk)e2

+(0.968246 cos 2βk − 0.220996 sin 2βk)e3.

Using α and β defined in Eq. (36), beginning from a starting vector σ = (−0.25,
0, 0.9682), with a required solution vector m = (−0.25, 0,−0.9682), we generate a
polarization vector P as

σ = (−0.25, 0, 0.9682) (55)

Gσ = (−0.8456, 0.315, 0.4309)

G2σ = (−0.8456, 0.315,−0.4309)

G3σ = (−0.25, 0,−0.9682)

thus producing the exact solution m after km = 3 iterations as required.

4.2 Description of the Grover su(2) algebra

We found previously

P = (|σ 〉〈σ | − |m〉〈m|)2
β2 = |σ 〉〈σ | − α|σ 〉〈m| − α∗|m〉〈σ | + |m〉〈m|

1 − |α|2 , (56)

so that

P2 = |σ 〉〈σ | − α|σ 〉〈m| − α∗|m〉〈σ | + |m〉〈m|
1 − |α|2 = P. (57)
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We also find

P|σ 〉 = |σ 〉〈σ | − α|σ 〉〈m| − α∗|m〉〈σ | + |m〉〈m|
1 − |α|2 |σ 〉 = |σ 〉 (58)

P|m〉 = |σ 〉〈σ | − α|σ 〉〈m| − α∗|m〉〈σ | + |m〉〈m|
1 − |α|2 |m〉 = |m〉.

We can calculate

J1 J2 = i (|σ 〉〈σ | − |m〉〈m|)
4β

= 1

2
iJ3 (59)

J2 J1 = − i (|σ 〉〈σ | − |m〉〈m|)
4β

= −1

2
iJ3

J2 J3 = i
(|α|2|σ 〉〈σ | + |α|2|m〉〈m| − α|σ 〉〈m| − α∗|m〉〈σ |)

4|α|(1 − |α|2) = 1

2
iJ1

J3 J2 = i
(−|α|2|σ 〉〈σ | − |α|2|m〉〈m| + α|σ 〉〈m| + α∗|m〉〈σ |)

4|α|(1 − |α|2) = −1

2
iJ1

J3 J1 = α∗|m〉〈σ | − α|σ 〉〈m|
4|α|β = 1

2
iJ2

J1 J3 = −α∗|m〉〈σ | + α|σ 〉〈m|
4|α|β = −1

2
iJ2

and noting that P commutes with J1, J2 and J3, we have demonstrated the commutator
relations shown in Eq. (7).

We have raising and lowering operators J± = J1 ± iJ2 from which we define the
states of highest and lowest weight, requiring

J+(d1|m〉 + d2|σ 〉) = 0 (60)

J−(d3|m〉 + d4|σ 〉) = 0.

We firstly note that

J1|σ 〉 = −α∗

2|α| |m〉 (61)

J1|m〉 = −α
2|α| |σ 〉

J2|σ 〉 = −iα∗

2|α|√1 − |α|2 |m〉 + i|α|
2
√

1 − |α|2 |σ 〉

J2|m〉 = −i|α|
2
√

1 − |α|2 |m〉 + iα

2|α|√1 − |α|2 |σ 〉

J3|σ 〉 = 1

2
√

1 − |α|2 (|σ 〉 − α∗|m〉)
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J3|m〉 = 1

2
√

1 − |α|2 (α|σ 〉 − |m〉).

From Eq. (60) we then find

d1 = −d2
α∗(1 − β)

|α|2 , d3 = −d4
α∗(1 + β)

|α|2 , (62)

which gives the states of maximum and minimum weight

| ↑〉 = d2

(
−α

∗(1 − β)

|α|2 |m〉 + |σ 〉
)

= k1

(
−e−iδ sin

θ

4
|m〉 + cos

θ

4
|σ 〉

)
(63)

| ↓〉 = d4

(
−α

∗(1 + β)

|α|2 |m〉 + |σ 〉
)

= k2

(
−e−iδ cos

θ

4
|m〉 + sin

θ

4
|σ 〉

)

and with the normalization 〈↑ | ↑〉 = 〈↓ | ↓〉 = 1 we find |k1| = |k2| = sec θ2 , and
ignoring a global phase we therefore have the results shown in Eq. (9).
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