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Abstract

In the standard approach to quantum games, players’ strategic moves are local unitary
transformations on an entangled state that is subsequently measured. Players’ payoffs
are then obtained as expected values of the entries in the payoff matrix of the classical
game on a set of quantum probabilities obtained from the quantum measurement. In
this paper, we approach quantum games from a diametrically opposite perspective. We
consider a classical three-player symmetric game along with a known expression for
a set of quantum probabilities relevant to a tripartite Einstein—Podolsky—Rosen (EPR)
experiment that depends on three players’ directional choices in the experiment. We
define the players’ strategic moves as their directional choices in an EPR setting and
then express their payoff relations in the resulting quantum game in terms of their
directional choices, the entries of the payoff matrix, and the quantum probability
distribution relevant to the tripartite EPR experiment.

Keywords Quantum games - Tripartite EPR experiment - GHZ state - Quantum
probabilities

1 Introduction

In the standard scheme [1,2] of a quantized version of a non-cooperative game [3], the
players share an entangled state, their strategic moves are local unitary transforma-
tions on the state, and the quantum measurement [4] generates the players’ payoffs.
The resulting players’ payoffs in the quantum game can be understood as the expected
values of the entries in the payoff matrix of the (classical) game [5-7] arising from a
set of quantum probabilities [4]. The key concerns in determining the players’ payoffs
relations in the quantum game are (a) What are the players’ moves in the quantum

B Azhar Igbal
azhar.igbal @adelaide.edu.au

1 School of Electrical and Electronic Engineering, The University of Adelaide, Adelaide, SA 5005,
Australia

Published online: 06 October 2018 @ Springer


http://crossmark.crossref.org/dialog/?doi=10.1007/s11128-018-2083-7&domain=pdf
http://orcid.org/0000-0002-5221-9384

313 Page2of13 A.Igbal, D. Abbott

game? (b) Which set of quantum probabilities is obtained by quantum measurement?
and (c) How the players’ strategic moves are related to the set of quantum probabili-
ties?

This brings us to question whether the unitary transformations are really necessary
in the set-up of a quantum game. A proposed scheme [8—11] for playing a quantum
game in which players’ strategic moves are not unitary transformations uses the setting
of an Einstein—Podolsky—Rosen (EPR) experiment [4,12—16]. Two players are located
in space-like separated regions and share a singlet state. In a run of the experiment, each
player decides one out of the two available directions and a quantum measurement
is performed. This leads to obtaining a (normalized) set of quantum probabilities
along with a listing of the directional choices the players make in each run of the
experiment. As the players’ directional choices determine the quantum probability
distribution, the setting can be used to develop a quantum version of a two-player game.
A multipartite EPR experiment would then be required for a multiplayer quantum
game.

In this paper, we consider a classical three-player symmetric game, along with
a reported expression for a quantum probability distribution, which is relevant to
the three-partite EPR experiment. We then define players’ directional choices in the
experiment as their strategic moves and express players’ payoff relations in the quan-
tum game in terms of the three directional choices and the entries of the payoff
matrix.

This paper thus provides a game theoretic perspective on the peculiarity of quantum
probabilities. The first perspective along game theoretical lines on quantum probabil-
ities that are associated with a GHZ state [4] was provided by Vaidman [17]. Vaidman
proposed a set of rules defining a game that can only be won by a team of three play-
ers when they share a GHZ state. The present paper extends Vaidman’s perspective
by considering Nash equilibria in the set of symmetric games played by a team of
three players in a non-cooperative game setting. Vaidman presented his game without
invoking Hilbert space as is the case in the present paper.

2 Three-player games with mixed strategies

Consider a three-player (non-cooperative) game in which the players Alice (A), Bob
(B), and Chris (C) make their strategic moves simultaneously. The players are assumed
located at distance and are unable to communicate to one another. Each player has to
decide between two choices, called the pure strategies, and in repeated version of the
game they can also play the mixed strategies. The payoff relations depend on the game
matrix, the players’ pure strategies, and the probability distribution on pure strategies.

To be specific, we assume that the player A’s pure strategies are Sp, S2; the player
B’s pure strategies are S|, S5; and the player C’s pure strategies are S|, S;. Also, the
game is defined by the following pure strategy payoff relations [18]
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Ma.z.c (81,87, ) = (S1. 85, 85) =
M4, (2. 81, 8]) = a2, ﬂz 72 HABC(S 51,55’) o, 56 J/6, )
MaB.c(S1.85.8]) =3, B3, 35 Hap.c (528, 5) =
Mag.c (51,57, 8)) = a4, Ba. va: Hap.c(S2.85.5))

For example, I14 p ¢ (Sl, S5, Si’) = a3, B3, 3 states that the players A, B, and C
obtain the payoffs a3, B3, and y3, respectively, when they play the pure strategies S,
S’ and S, respectively.

In a repeated version of this game, a player can choose between his/her two pure
strategies with some probability, which defines his/her mixed strategy. We specify a
mixed strategy by x, y, z € [0, 1] for players A, B, and C, respectively. These are the
probabilities with which the players A, B, and C play the pure strategies Sy, S|, and
S, respectively. They, then, play the pure strategies S», S5, and S with probabilities
(1 —-x), 1 —1y),and (1 — z), respectively, and the mixed strategy payoff relations,
therefore, read

Mag,c(x,y,2) =xyzlla e (S, 51, S7) + x(1 — y)zl4 g.c (S1. 5. S7)
+xy(1 = 2)ap.c (51,81, 87) +x(1 = )1 = D)4 p.c (S1, 55, 57)
+ (1 —x)yzla e (S2. 5. 1) + (1 = x)(1 — y)zMa B¢ (S2. 55. S7)
+ (1 = x)y(1 = )4 5.c (52, 51, 57)
+ (1 =)A=y —2)a.c (S2. 9. 57). 2

that can also be written as

Mapc@ .= Y Pre(Su 8, 5) Mase (S 5.5). @
ijk=1,2

where Pr,. (Si, S ; S ,’(’) are the factorizable probabilities, and for instance, Pr, (S 1,87,
$Y) = xy(1 — z) and Prc (Sy. 8}, 87) = (1 — x)(1 — y)z.

2.1 Symmetric three-player games

Symmetric three-player games are defined by the condition that a player’s payoff is
decided by his/her strategic move and not by his/her identity. Mathematically, this is
expressed by the conditions

Ma(x,y,2) = Max, 2, y) = Mgy, x,2) = Mgz, x, y) = ey, 2, x) = ez, y, x),

(4)
i.e. the player A’s payoff when s/he plays x remains the same either when player B
plays y, whereas player C plays y or when player B plays x, whereas player C play
x. The payoff relations (2) satisfy the conditions (4) when [18]
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Bi=oa1, Br=a3, Br=ay, Ps=oa3,
Bs =as, PBo=oas, pr=oas Ps=as,
YI=0ol, V2=03, Y3=0a3, Y4=0dy, 5
Vs =06, VY6 =0, Y7=0a5, Y3 =03,
g = 7, o3 = 4.

A symmetric three-player game can, therefore, be defined by only six constants o,
o, a3, o5, o6, and ag. In the rest of this paper, we will define these six constants to
be «, B, 6, €, 60, and w, where ] = a0, 0 = B, 03 = 8, a5 = €, g = 0, and ag = w.
The pure strategy payoff relations (1) in this symmetric game are then re-expressed as

Mag.c (81,5 8)=aa,a; Mapc(S1,85 55) =¢€06,0;
a.gc (52,81, 8))=B.8,8 TMapc(S,S].5)=0,€0;
T I T G (6)
a..c(S1.85.8))=38,8.8 Mapc(S, 5 5)=0,0,¢
Nac (51,5, 8) =888 TMapc($ 8 8) =000
The mixed strategy payoff relations in Eq. (2) then take the form
[ B.c(x,y,2) =xyzle, a, ) + x(1 = y)z(8, B, 8) + xy(1 — 2)(3, 6, B)
+x(1 = y)(1 —2)(€,0,0) + (1 —x)yz(B, 3, 6)
+(1 =) =yz0,0,¢) + (1 —x)y(1 —2)(0,¢,0)
+1-x)1 -y —-2)(w, v, w). @)
3 Quantum probability distribution for a GHZ state
Now, consider a GHZ state
[¥) = (10)1 10)210)3 + 1)1 [1)2 11)3)/+/2, (®)

that is shared among three the three players, where |i); is the i-th state of the j-th
qubit and the setting of the generalized EPR experiments. Each player measures the
dichotomic observable 7.5 where 7i = a, b, ¢ and & is a vector the components of
which are standard Pauli matrices. The family of observables 7. covers all possible
dichotomic observables for a qubit system [4].

Kaszlikowski and Zukowski [19] show that the probability of obtaining the result
m = =1 for the player A, when s/he plays the strategy a, the result [ = =+1 for the
player B, when s/he plays the strategy b and the result k = =1 for the player C, when
s/he plays the strategy ¢ is given by

3
o 1 -
S{I(m, l,k;a,b,c) = 3 |:l + mlazby + mkazcy + lkbycy + mlk E M,psarbpcs:| R

r,p,s=1
. )
where a,, b), ¢y are components of vectors a, b, ¢ and where nonzero elements of
the tensor M,ps are My11 = 1, M1 = —1, Ma12 = —1, My = —1. In view
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of this, the only terms in the product a,bpc, that contribute towards the probabil-
ity Prop(m, 1, k; a, b, ¢) are aybic1, aibaca, azbica, and azbycy. Equation (9) can
therefore be written as

o 7 oo 1
5}{/[(m, l,k;a,b,c) = 3 [1 4+ mlazbs + mkaszcs + lkbscs + mlk(ai1bicy

—aibycy — azbicr — axbrey)]. (10)

Note that Eq. (9) gives a quantum probability distribution without reference to the
underlying Hilbert space, unitary transformations, or quantum measurement.

We consider playing a three-player quantum game in which the strategic moves of
the players A, B, and C consist of choosing the directions a, b, and ¢, respectively.
The players’s payoff relations are then expressed in terms of the quantum probability
distribution given in Eq. (9).

3.1 Players sharing a GHZ state and when choosing a direction is a player’s
strategic move

Letd = d(ay, az, az), b = b(by, by, b3), ¢ = &(c1, ¢2, c3) be the players’ directional
choices that we consider as their strategies. Denoting the quantum probabilities by
Pr, the set of quantum probabilities can be obtained from Eq. (10) as follows

fg (S1, 81, S7) Ig[(&, m=+1), (b, 1 =+1), @k =+1)]

1
=3 [1+ a3b3 + azcs + bzes + Al;
Pr(S1, 83, 87) = Pri@ m = +1), (b,1 = =1, @ k = +1)]
1
=3 [1 —a3bs + azc3 — bacs — Al;
Pr (S1,81,85) = Ig[(&, m=+1), (b, =+1), (C k= —1)]

1
=3 [1+4+a3bz —azcz — bsc; — Al;

Pr(S1. 3. 53) = Pri@.m = +1), (bl =—1), . k=-1)]

[1 —a3b3 — azc3 + b3z + Al;
(@ m=—1), (b, 1=+1),Ek=+1)]

-

Pr (S2. 51, 1)

[1 —a3bz —azcz + b3c; — Al;

13(52, S, 8) = Prl(@,m = —1), (b,l = —1), G k = +1)]

—

o — QT ®l— QT ool —

[1+a3bz —azcz — bscs + Al;
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Pr (S, ], 85) = Pri@,m = =1), (b, 1 = +1), @ k = ~1)]

1
=3 [1 —a3bs + azc3 — bzcs + Al;
Pr(S2. 83 83) = Prl(@ m = -1), (bl =—1), @ k=-1)]

1
= §[1+a3b3 + azc3 + b3ez — A, (11D

where A = a1bic1 — arbaco — axbicr — axbacy. We define players A’s, B’s, C’s
payoff relations in the quantum game as follows

2
Masc@b o= 3 Pr(s s 8)Mapc(s.8;.80). 2
i jk=1

i.e. these are obtained as the expectation of payoff entries (6) on the set of quantum
probabilities (11). For the symmetric game defined in Eq. (6), the payoffs to the players
A, B, and C, given in (12), can then be expanded as follows:

M4 5@, b, )

- %[ [1 4+ asbs + ascs + byes + Al (@, @, @) + [1 — asbs + ascs — bycs — AL (8, B, 8)
+[1 + azbz — azcz — bzcz — A] (6,8, B) + [1 — azbz — azez + byez + Al (6,0, 0)
+[1 —aszbs — azcz + bzcs — Al (B, 6,08) + [1 + azbs —azcz3 — bzez + A] (6,0, ¢€)
+[1 — ashs + ascs — bses + Al (0, €, 0) + [1 + asbs + azcs + bzes — Al (0, o, w)].

(13)

Let a3 = b3 = c3 = 0, i.e. when the players’ unit vectors are confined to the X-Y

plane, the payoff relations (13) can be written as

M4 5.c(a, b, ¢)
1

= g{(l + A)(o, ) + (1= A)(6, B,8) + (1 —A)(S,68,8)+ (1 + A)(e,0,0)
+(1—-A)B,68,)+ 1+ A)0,0,0)+(1+A)0,¢,0) + (1 - A)(w, o, w)}-
(14)
It is apparent from above that the resulting payoff relations (14) in the quantum game
cannot be put into a form that is same as for the classical mixed strategy game, i.e.
Eq. (7). This raises the question whether there exist constraints that can be placed on
the players’ directional choices, i.e. the unit vectors a, b, and ¢, such that the payoff

relations (13) in the quantum game are reduced to the players’ payoffs in the classical
game allowing mixed strategies (7). In order to find an answer to this, we set

[4 g.c(a, b,?) = My B,c(x,y,2), (15)
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and equate the right sides of Egs. (13, 7), i.e.

% [1+ azb3 + azcz + bzcs + Al = xyz, (16)
§ (1 —asbs + ases — baey = A = x(1 )z, (a7
% [1+4a3b3 —aze3 — bzcs — Al = xy(1 — 2), (18)
%[1 —aszbs —azez +bzcs + Al =x(1 —y)(1 —2), (19)
§ (1 —asby — ases + bacy — A = (1= )z, 0)
% [1+azb3 —azcz — b3z + Al = (1 —x)(1 —y)z, 20
% [1—a3zb3 +azcz — b3z + Al = (1 —x)y(1 —2), (22)
%[1+a3b3 4+azcz3 +bsc3—Al=00—-x)1—y(1 —2). (23)

Now, by adding Eqgs. (16) and (17) we obtain

1
Z(l + azc3) = xz, (24)
adding Egs. (16) and (18) gives
1
70+ azbz) = xy, (25)
adding Egs. (16) and (20) gives
1
7 (L +b3cs) = yz, (26)
adding Egs. (18) and (19) gives
1
Z(l —azc3) = x(1 — 2). (27)

Now, we add Eqs. (24) and (27) to obtain x = % Adding Egs. (22) and (23) gives
1
Z(l +azcz) = (1 —x)(1 —2), (28)
and substitution from Eq. (24) and x = % gives z = % Similarly, adding Egs. (17)
and (19) gives

1
7 (I —asbs) = x(1 =), (29)

@ Springer



313 Page8of 13 A.Igbal, D. Abbott

and adding Egs. (21) and (23) gives

1
Z(l +azbz) = (1 —x)(1 —y). (30)

By adding Egs. (29) and (30), we obtain y = %, and thus, (x, y,z) = (%, %, %) is

obtained as the solution of Egs. (16)—(23).

Therefore, the mixed strategy payoff relations (7) can be recovered from the pay-
offs relations (13) for the quantum game only for the special case when (x, y, z) =
(% % %) This is because the quantum probability distribution for the GHZ state,
from which the payoff relations (13) are constructed, is inherently non-factorizable.
In the research area of quantum games, recovering the mixed strategy classical payoff
relations from the payoff relations for a quantum game is quite often considered an
essential requirement. When the underlying quantum probabilities in a quantum game
are obtained from the GHZ state, this requirement is not satisfied except for a very
special case, i.e. (x, y,z) = (% % %)

Considering the payoff relations (13) in the quantum game, a Nash equilibrium
(NE) is a directional triple (a*, b*, ¢*) that satisfies the following constraints:

I, (a b*, 5*) — T, (a, b*, z*) >0,
Mg (a b, z*) —Tig (a b, E*) > 0,

Me (a*, b*, E*) e (a*, b, E) >0, 31)

for all a, b , and ¢. For the symmetric game, these Nash inequalities take the form

e P o L oo o 1
Ms(@*, b*, ¢*) — Ma(a, b*, ¢*) = 3 [(af —a3)Aiy1 + y2(al —a)) Ay — ya(as — az)A3] = 0,
ok Tw = kP o 1 ,
MaG" 5%, &) = MA@ 5.8 = 5 [(65 = b) ATy = 7263 = b2) A + ya(bf — b1) 85 2 0,
N N 1
[a(@*, b*, ¢*) — Ma(a*, b*,¢c) = 3 [(c5 — c3) ATyt — va(cs — ) AY + ya(cf — c)AS] = 0,
(32)
where
yi=a—B—€e+w and p=a—20—B+e+20—w, (33)
and
Ay =b3+c3, Ay =bicy —bycy, Az =bicy+ bacy,
I=az+c3, Ay=aicr+ax), Ay=ajci —arer,
A/l/ = a3 + b3, A/z/ =a1by + arby, Ag =a1b; — apbs. (34)
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3.2 Three-player Prisoners’ Dilemma

Prisoner’s Dilemma (PD) is a non-cooperative game [5—7] that is widely known in the
areas of economics, social, and political sciences. In recent years, quantum physics
has been added to this list. It was investigated early in the history of quantum games
and provided significant motivation for further work in this area [1,2].

Two-player PD is about two suspects, considered here as the players in a game,
who have been arrested on the allegations of having committed a crime, but there
is no enough available evidence to convict them. The investigators come up with an
ingenious plan to make the suspects confess their crime.

They are taken to separate cells and are not allowed to communicate. They are
contacted individually and, along with being dictated a set of rules, are asked to choose
between two choices (strategies): fo Confess (D) and Not to Confess (€), where € and
® stand for cooperation and defection. These are the well-known wordings for the
available choices for them and refer to the choice they make to the fellow prisoner,
and not to the authorities.

The rules state that if neither prisoner confesses, i.e. (&, €), both are given freedom;
when one prisoner confesses () and the other does not (¢), i.e. (€, D) or (D, €),
the prisoner who confesses (D) gets freedom as well as a financial reward, while the
prisoner who did not confess ends up in prison for a longer term. If both prisoners
confess, i.e. (9, D), both are given a reduced term.

In the two-player case, involving the players A and B the strategy pair (D, D)
comes out as the unique NE (and the rational outcome) of the game, leading to the
situation of both ending up in jail with reduced term. The game offers a dilemma as
the rational outcome (2, ) differs from the outcome (&, €), which is an available
choice, and for which both prisoners obtain freedom.

With the above notation, the three-player PD can be defined by making the following
associations

Si~€C S~ Sj~¢ S5~ S ~¢ S~ (35)

and afterwards imposing the following conditions [20]:
(a) The strategy S; is a dominant choice [6] for each player. For Alice, this requires

Iy (52, St Si/) > Ila (51, St Si/) ,
Iy (Sz, S5, Sé/) > 14 (S], S5, Sg) ,
M4 (S2, 87, 87) > T (81,57, 57) (36)
and similar inequalities hold for players Bob and Chris.
(b) A player is better off if more of his/her opponents choose to cooperate. For

Alice, this requires

T4 (Sz, Si, S;/) > [14 (Sz, ;, Sé/) > [14 (Sz, Sé, Sé/),
M4 (S1, 87, 8) > a (81,87, 85) > 4 (81, 85, 85), (37)
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and similar relations hold for Bob and Chris.
(c) If one player’s choice is fixed, the other two players are left in the situation of
a two-player PD. For Alice, this requires

S],Sg) > [14 (Sz, Sz, Sé/)
S1.81,87) > Ma (82, 81, 57).,
S1.81,87) > (1/2) {14 (1, $5. S5) + M4 (S2. 81, 7)1
S1. 81, 87) > (1/2) {T1a (1, 81, 83) + Ta (82, 81, 87)}, - (39)

AA/-\A

and similar relations hold for Bob and Chris.
Translating the above conditions while using the notation introduced in (6) requires

Af>a, w>e 6>9,
b)f>60>w, o>3>c¢,
O)d>w, a>0, §>1/2)(e+0), a>(1/2)©E+B), (39)

which defines the generalized three-player PD. For example, [20], by letting
a=7 =9, §=3, €=0, w=1, 6=35, (40)

all of these conditions hold.

4 Three-player quantum Prisoners’ Dilemma with GHZ state

The values in (40) give y; = —1 and y» = 1. With the deltas given in (34), the Nash
inequalities (32 ) take the form
M (@@*, b*, &) — a(@, b*, &)
= % [—(@@f —a3) (b3 + c3) + (af — a)(bicy — byea) — (a5 — az)(bicy + bye))] = 0,
M4 @*, b*, &) — Ma@*, b, &)
= % [— (b5 — b3)(a3 + c3) — (b3 — ba)(arcr + axcr) + (b} — bi)(arc1 — axcz)] = 0,
[a(a*, b*, ¢*) — Ma(a*, b*, <)
= % [—(c3 — c3) (a3 + b3) — (c5 — c2)(@1ba + azby) + (cf — c1)(a1b) — azba)] = 0.
41)

These inequalities show that for the PD game defined in (40), no directional triplet
can exist as a NE when the three players have the choice to direct their respective
unit vector along any direction, i.e. there are no restrictions placed on the players’
directional choices.

The inequalities (32) suggest the following cases:
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4.1 Case (a)

Consider a3 = b3 = ¢3 = 0. Nash inequalities (32) then take the form

e Tx o W P o 1

[y (@@*, b*, c*) — Myu(a, b*, c*) = e [(a} —a) Ay — (@5 — a2)A3] = 0,
N NN 1

Ma(a@*, b*, ¢*) — My(a*, b, c*) = 37 [— (b5 — b)) AS + (b — b1)AS] =0,

ok Tx o ok Tx o 1
MA@ 5%, &) — TIA@*. B*. &) = " [—(c3 — ) AY + (cf —c)Af] = 0,
(42)

that can also be expressed as

T4 @*, b*, &) — MA@, b*, &%) = %Vz [af A2 —a305 4+ 6] >0,

M4 (@@*, b*, &) — Ma@*, b, &) = %V2 [—0345 +bAy + 5] =0,

A @G, b*, &%) — TIa(@*, b*, ¢) = %Vz [-3A) + A +6] =20, (43)
where

¢ = aibycy + azbicy — arbicy + azbacy. (44)

Consider the case when y» > 0, then for given af, b}, and ¢, the restrictions on the

directions that the unit vectors a, b, and ¢ can take can be determined. For instance,
foraj,= b}, =c] = 1,i.e. thenaj = b5 = ¢ = 0, these constraints become

Ar+¢>0, A+¢>0, Aj+¢>0. (45)

4.2 Case (b)

Consider y» = 0and a3 = b3 = ¢3 = 0. With these constraints, the allowed directions
are confined to the XY plane and any directional triplet then exists as a NE. In this
case, from Eq. (34) we then have A| = A} = A = 0. Asa, b, and ¢ are unit vectors,

we also have ap = + l—a%, 1) :i‘/l—bz,andcz:i‘/l —c%.

5 Discussion

We present an analysis of the three-partite EPR experiments that use a GHZ state
and its setting is considered in order to play a three-player non-cooperative quantum
game. The players’ strategic choices are the three directions a, b, and ¢ along which the
dichotomic observables 7.6 are measured, where n = a, b, ¢ and & is a vector whose
components are the standard Pauli matrices. Using Kaszlikowski and Zukowski’s [19]
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results for the quantum probabilities involved in such experiments, we develop a three-
player quantum game, with the underlying setting of the three-partite EPR experiment
This extends an approach to quantum games by Vaidman [17] that does not involve
Hilbert space, and/or quantum measurement, and shows how three-player quantum
games with EPR experiments can be developed. Players’ strategies are their directions
in terms of which their payoffs are expressed using Eq. (10). Nash inequalities are used
to obtain Nash equilibria as direction triples and the players’ payoffs are then compared
to their payoffs for the Nash equilibria in the classical game.

For a three-player Prisoners’ Dilemma game, defined in (40), we conclude that no
directional triplet can exist as a NE when no restrictions are placed on the players’
directional choices. A directional triplet, however, can exist as a NE under constraints
placed on the directions allowed to the players. This is in accordance with Eisert et
al.’s result in Ref. [1], showing that a pair of unitary transformations (Q, Q), where
Q ~ U, /2), exists as a NE in PD when the players’ allowed actions are restricted
to certain subsets of the set SU(2) consisting of all unitary transformations.

As is known [21,22] that the particular subset of unitary transformations that Eisert
et al. used in order to obtain the NE of (Q, Q) in two-player quantum Prisoners’
Dilemma is not even closed under composition. In particular, in Eisert et al.’s [1]
protocol for 2 x 2 quantum games, the new Nash equilibria, and the classical-quantum
transitions that occur are the outcomes of the particular strategy space chosen that is
a two-parameter subset of single qubit unitary operators. By choosing a different, but
equally plausible, two-parameter strategy a different Nash equilibria with different
classical-quantum transitions can arise.

Using an EPR setting, and a shared GHZ state, for a three-player quantum Prisoners’
Dilemma game, we present an approach that is driven along purely probabilistic lines
with only an implicit reference to the mathematical formalism of quantum theory and
showing the constraints on the players’ directional choices under which a particular
triplet can exist as a NE in the game.
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