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Abstract
We propose a scheme for a quantum game based on performing an EPR-type exper-
iment and in which each player’s spatial directional choices are considered as their
strategies. A classical mixed-strategy game is recovered by restricting the players’
choices to specific spatial trajectories. We show that for players’ directional choices
for which the Bell-CHSH inequality is violated, the players’ payoffs in the quantum
game have nomappingwithin the classicalmixed-strategy game. The scheme provides
a more direct link between classical and quantum games.

Keywords Quantum games · EPR experiments · Nash equilibria · Quantum
probability

1 Introduction

Broadly speaking, a quantum game [1–4] can be considered as a game [5–7] in which
a player’s payoff relations involve a set of quantum probabilities [8] that are obtained
from each player’s strategic actions or strategies. For instance, in the quantum version
of a 2 × 2 game proposed in the Eisert Wilkens Lewenstein (EWL) scheme [2, 3],
each player’s strategies are local unitary transformations performed on a maximally
entangled state. The state evolves unitarily, and the set of quantum probabilities is
obtained by projecting the final quantum state of the game to a basis in 2 ⊗ 2 Hilbert
space, in terms of which the payoff relations for each player are then expressed.
Quantum games are surveyed in Refs. [9, 10] and recent works in this area are in
Refs. [12–20]. An extensive list of articles in this area are in Ref. [11].

A strategy profile is a Nash equilibrium (NE) [5–7]—with one strategy associated
with each player—such that there remains no motivation for any player for unilater-
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ally deviating from that profile. In the EWL scheme, a NE is a set of local unitary
transformations that satisfies the Nash conditions.

A quantization scheme can be viewed as a mechanism that establishes a convincing
link between each player’s strategies—quantum or classical—and a set of quantum
probabilities, obtained from the players’ strategies, and in terms of which each player’s
payoffs are then expressed. As players have access to much larger strategy sets in
EWL scheme—relative to the strategy sets available to them in the classical game—
Enk and Pike [21] argued that a quantum game in that scheme can be considered
as an extended classical game. They argued that the quantized version of a game, in
EWL scheme, solves a new classical game—with players’ strategy sets extended—
without solving the dilemma within the original game. This led to suggestions for
using EPR-type experiment [8, 22–26] in constructing quantum games [27–33] and in
which each player’s strategy set remain classical while resulting in a set of quantum
probabilities—thus circumventing Enk and Pike’s argument.

It appears to us that historically there have been two distinct approaches in the
literature in the area of quantumgames. Thefirst approach considers specially designed
classical games, for instance, the game proposed by Vaidman in Ref. [4] that involves
a winning condition, in which a quantum advantage can be demonstrated directly.
The second approach, however, develops quantization procedures for a whole class
of classical games, as reported in Refs. [2, 3]. The second approach is distinct from
the first; in that a game is not designed in order to demonstrate an advantage in its
quantum mechanical implementation—usually tied to crafting a winning condition—
but the objective, instead, is to determine how an implementation that allows access
to the resources of quantum superposition and entanglement, resulting in a different
outcome of the game. The present paper is along the lines of the second approach.

Non-cooperative games using a tripartite EPR experiment with GHZ states are
discussed in Refs. [28, 30], and in references therein. A tripartite EPR setting using
GHZ states is considered in Ref. [33] that presents a quantum version of a three player
non-cooperative game. Each player’s strategic choices are three directions â, b̂, and ĉ
along which the dichotomic observables n · σ are measured, where n = â, b̂, ĉ and σ

is a vector whose components are the standard Pauli matrices σx , σy , and σz .
In this paper, we present a scheme for playing a two-player quantum game in which

each player’s (classical) strategy sets—consist of orientating his/her unit vector along
any direction in three dimensions—and dichotomic measurement outcomes of ±1
along those directions. This scheme therefore uses each player’s classical strategies to
obtain a set of quantum probabilities in terms of which each player’s payoff relations
are then expressed. As the players’ strategies are directional choices, Nash equilibria
of the game emerge as directional pairs. For the players’ directional choices for which
the Bell-CHSH inequality is violated, the payoffs in the quantum game cannot be
mapped to a classical mixed-strategy game. As the players in our scheme have access
to classical strategy sets, it provides a more direct link between classical and quantum
games.

The mixed-strategy version of a classical game is to be faithfully imbedded within
the corresponding quantum game. When each player’s strategies are spatial direc-
tions, we find that requiring a classical mixed strategy game to be imbedded in the
corresponding quantum game results in placing constraints on each player’s available
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Fig. 1 Plots of the mixed-strategy payoff relations of Eq. (2) with α = 3, β = 0, γ = 5, and δ = 1 for
the Prisoners’ Dilemma game. Here, p and q are independent variables in the horizontal plane and the blue
plane represents Alice’s payoff, whereas the green plane represents Bob’s payoff

directional choices. That is, we place restrictions on allowed trajectories on the surface
of a unit sphere of the heads of the unit vectors representing each player’s strategies.

2 Quantized Prisoners’ Dilemma game

Consider the symmetric bimatrix game

Alice
S1
S2

Bob
S′
1 S′

2
(α, α) (β, γ )

(γ, β) (δ, δ)
(1)

in which S1 and S2 are Alice’s moves and S′
1 and S′

2 are Bob’s pure strategies and
the entries in the brackets are the players’ payoffs. For instance, when Alice plays S1,
whereas Bob plays S′

2, Alice’s payoff is β and Bob’s payoff is γ . Let the players have
access to mixed strategies and p is Alice’s probability of playing S1, and thus (1− p)
is the probability of she playing S2. Likewise, q is Bob’s probability of playing S′

1,
and thus (1 − q) is the probability of he playing S′

2. For the game matrix (1), each
players’ payoffs in the mixed-strategy game are then obtained as

�A(p, q) = α pq + β p(1 − q) + γ (1 − p)q + δ(1 − p)(1 − q),

�B(p, q) = α pq + γ p(1 − q) + β(1 − p)q + δ(1 − p)(1 − q), (2)

where subscripts A and B are for Alice and Bob, respectively.
For the strategy pair (p∗, q∗) to be a NE—corresponding to the two players—

neither player is left with any motivation to unilaterally deviate from it, and this is
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defined by Nash inequalities

�A(p∗, q∗) − �A(p, q∗) ≥ 0, �B(p∗, q∗) − �B(p∗, q) ≥ 0. (3)

For the game of Prisoners’ Dilemma considered in Ref. [2], we have

α = 3, β = 0, γ = 5, δ = 1, (4)

and the inequalities (3) result in obtaining p∗ = 0 = q∗ and (S2, S′
2) emerging as the

unique NE of the game at which �A,B(0, 0) = 1.

2.1 EWL scheme

In the quantized version of the game (1) developed in Ref. [2]—henceforth referred to
as the EWL scheme—each player’s strategies consist of local unitary transformations
performed on amaximally entangled state. The state evolves and after passing through
an unentangling gate, it is measured in a suitable basis. The game (1) is played with
two qubits whose quantum state is described in a 2 ⊗ 2 dimensional Hilbert space.

For this game, a measurement basis for the quantum state of two qubits is cho-
sen as

∣
∣S1S′

1

〉

,
∣
∣S1S′

2

〉

,
∣
∣S2S′

1

〉

,
∣
∣S2S′

2

〉

. An entangled initial quantum state |ψi 〉 is

obtained by using a two-qubit entangling gate Ĵ , i.e., |ψi 〉 = Ĵ
∣
∣S1S′

1

〉

where

Ĵ = exp
{

iγ S2 ⊗ S′
2/2

}

and γ ∈ [0, π/2] is a measure of the game’s entanglement.
A separable or a product game has γ = 0, whereas a maximally entangled game has
γ = π/2. The players perform their local unitary transformations ÛA and ÛB on an
initial maximally entangled state |ψi 〉. The transformations ÛA and ÛB were from the
set

U (θ, φ) =
(

eiφ cos(θ/2) sin(θ/2)
- sin(θ/2) e−iφ cos(θ/2)

)

, (5)

where θ ∈ [0, π ], φ ∈ [0, π/2]. Note that EWL defined the unitary operator
Ĵ = exp {iγ S2 ⊗ S2/2} with γ ∈ [0, π/2] representing a measure of the game’s
entanglement. Each player’s actions change |ψi 〉 to (ÛA ⊗ ÛB) Ĵ

∣
∣S1S′

1

〉

and the state

then passes through an untangling gate Ĵ † and the state changes to the final state, i.e.,
∣
∣ψ f

〉 = Ĵ †(ÛA ⊗ ÛB) Ĵ
∣
∣S1S′

1

〉

. The state
∣
∣ψ f

〉

is now measured in the basis
∣
∣S1S′

1

〉

,
∣
∣S1S′

2

〉

,
∣
∣S2S′

1

〉

,
∣
∣S2S′

2

〉

. With the quantum probability rule, the players’ payoffs are then
obtained as

�A(ÛA, ÛB) = α
∣
∣
〈

S1S
′
1 | ψ f

〉∣
∣2 + β

∣
∣
〈

S1S
′
2 | ψ f

〉∣
∣2 + γ

∣
∣
〈

S2S
′
1 | ψ f

〉∣
∣2 + δ

∣
∣
〈

S2S
′
2 | ψ f

〉∣
∣2 ,

�B(ÛA, ÛB) = α
∣
∣
〈

S1S
′
1 | ψ f

〉∣
∣2 + γ

∣
∣
〈

S1S
′
2 | ψ f

〉∣
∣2 + β

∣
∣
〈

S2S
′
1 | ψ f

〉∣
∣2 + δ

∣
∣
〈

S2S
′
2 | ψ f

〉∣
∣2 .

(6)

As discussed above, Eq. (6) show the link that this quantization scheme establishes
between each player’s strategies—consisting of unitary transformations—and the
set of four quantum probabilities, i.e.,

∣
∣
〈

S1S′
1 | ψ f

〉∣
∣2,

∣
∣
〈

S1S′
2 | ψ f

〉∣
∣2,

∣
∣
〈

S2S′
1 | ψ f

〉∣
∣2,
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and
∣
∣
〈

S2S′
2 | ψ f

〉∣
∣
2. The NE for the quantum game consists of a pair (Û∗

A, Û∗
B)—

corresponding to the two players—of local unitary transformations that satisfy the
inequalities

�A(Û∗
A, Û∗

B) − �A(ÛA, Û∗
B) ≥ 0, �B(Û∗

A, Û∗
B) − �B(Û∗

A, ÛB) ≥ 0. (7)

That is, it is a pair (Û∗
A, Û∗

B) from which any unilateral deviation no longer improves
player payoff. For (4), a unique quantum NE (Q̂, Q̂) was realized where Q̂ =
(

i 0
0 −i

)

= Û (0, π/2). Benjamin and Hayden [34] noted that when their two-

parameter set is extended to include all local unitary operations, i.e., all of SU (2)
[8], the strategy Q̂ does not remain an equilibrium, and in the full space of deter-
ministic quantum strategies, there exists no equilibrium for the quantum Prisoners’
Dilemma. This was also discussed further in Ref. [35].

3 Quantum probabilities from players’ directional choices

In EWL scheme, the players’ unitary transformations ÛA and ÛB along with the
subsequent quantum measurements result in the quantum probability set:

∣
∣
〈

S1S
′
1 | ψ f

〉∣
∣
2
,

∣
∣
〈

S1S
′
2 | ψ f

〉∣
∣
2
,

∣
∣
〈

S2S
′
1 | ψ f

〉∣
∣
2
, and

∣
∣
〈

S2S
′
2 | ψ f

〉∣
∣
2
. (8)

The players’ payoff relations (6) are then expressed as expectation values of entries
in the game matrix (1) over the quantum probability set (8).

For a three-player symmetric game, a more direct approach in obtaining a set
of quantum probabilities is proposed in Ref. [33]. More specifically, this approach
cosiders tripartite EPR experiment performed on a GHZ state as a three-player non-
cooperative quantum game. Each player’s strategies are the three directions â, b̂, and
ĉ along which the dichotomic observables n̂ ·σ are measured, with the eigenvalues+1
or−1 where n̂ = â, b̂, or ĉ and σ is a vector whose components are the standard Pauli
matrices σx , σy , and σz . A three-player quantum game is developed whose underlying
setup is the tripartite EPR experiment.

In the present paper—instead of each player’s strategies consisting of local unitary
transformations ÛA and ÛB—we consider player A and B strategies as their directional
choices â and b̂. In an EPR setting, the measurement outcomes along â and b̂ are
denoted bym = ±1 and n = ±1, respectively. That is, the considered setting requires
that a pair of unit vectors (â, b̂) results in a set of quantum probabilities:

Pr
Q

(S1, S
′
1), Pr

Q
(S1, S

′
2), Pr

Q
(S2, S

′
1), Pr

Q
(S2, S

′
2), (9)

where
∑

PrQ(S1, S′
1)+PrQ(S1, S′

2)+PrQ(S2, S′
1)+PrQ(S2, S′

2) = 1.Now, acknowl-
edging that there is no unique way in obtaining the set (9) from each players’ strategies
(â, b̂), we propose to obtain this set as follows
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Pr
Q

(S1, S
′
1) = Pr

Q
[(â,m = +1), (b̂, l = +1)], Pr

Q
(S1, S

′
2) = Pr

Q
[(â,m = +1), (b̂, l = −1)],

Pr
Q

(S2, S
′
1) = Pr

Q
[(â,m = −1), (b̂, l = +1)], Pr

Q
(S2, S

′
2) = Pr

Q
[(â,m = −1), (b̂, l = −1)].

(10)

For instance, PrQ(S1, S′
2) is the quantumprobability that the polarizationmeasurement

along â gives the outcome m = +1 and polarization measurement along b̂ gives the
outcome n = −1.

The probabilities (10) are obtained as

Pr
Q

(S1, S
′
1) = ∣

∣
〈

ψini | (| ψ+1
〉

â ⊗ |ψ+1〉b̂)
∣
∣2 =

∣
∣
∣

〈

ψ â+1ψ
b̂+1 | ψini

〉∣
∣
∣

2
,

Pr
Q

(S1, S
′
2) = ∣

∣
〈

ψini | (| ψ+1
〉

â ⊗ |ψ−1〉b̂)
∣
∣2 =

∣
∣
∣

〈

ψ â+1ψ
b̂−1 | ψini

〉∣
∣
∣

2
,

Pr
Q

(S2, S
′
1) = ∣

∣
〈

ψini | (| ψ−1
〉

â ⊗ |ψ+1〉b̂)
∣
∣
2 =

∣
∣
∣

〈

ψ â−1ψ
b̂+1 | ψini

〉∣
∣
∣

2
,

Pr
Q

(S2, S
′
2) = ∣

∣
〈

ψini | (| ψ−1
〉

â ⊗ |ψ−1〉b̂)
∣
∣
2 =

∣
∣
∣

〈

ψ â−1ψ
b̂−1 | ψini

〉∣
∣
∣

2
, (11)

and each players’ payoff relations are then

�A(â, b̂) = α Pr
Q

(S1, S
′
1) + β Pr

Q
(S1, S

′
2) + γ Pr

Q
(S2, S

′
1) + δ Pr

Q
(S2, S

′
2), (12)

�B(â, b̂) = α Pr
Q

(S1, S
′
1) + γ Pr

Q
(S1, S

′
2) + β Pr

Q
(S2, S

′
1) + δ Pr

Q
(S2, S

′
2). (13)

A directional pair (â∗, b̂∗) is a NE when the inequalities

�A(â∗, b̂∗) − �A(â, b̂∗) ≥ 0, �B(â∗, b̂∗) − �B(â∗, b̂) ≥ 0, (14)

are true for any directional choices â and b̂ by players A and B, respectively.
Given each player’s strategies consisting of directional choices in three dimen-

sions, the classical mixed-strategy game is recovered from the quantum game if each
player’s directional choices consist of orientating their respective unit vectors â and
b̂ along specific trajectories on the surface of a unit sphere. When the players allow
their respective unit vectors â and b̂ to be orientated along directions beyond these
trajectories, it results in obtaining the quantum game.

3.1 Orientating a unit vector considered as each player’s strategy

In an EPR setting, we note that with player A’s strategy â, the polarization (or spin)
measurement results in the outcome m = ±1, and with the player B’s strategy b̂,
the polarization measurement results in the outcome n = ±1. We consider Pauli’s

matrices σx =
(

0 1
1 0

)

, σy =
(

0 −i
i 0

)

, σz =
(

1 0
0 −1

)

in the eigenbasis |0〉 =
(

1
0

)

,
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|1〉 =
(

0
1

)

:

σx = |0〉 〈1| + |1〉 〈0| , σy = i(|1〉 〈0| − |0〉 〈1|), σz = |0〉 〈0| − |1〉 〈1| , (15)

withσ = σx ı̂+σy ĵ+σz k̂ and â = ax ı̂+ay ĵ+azk̂, we haveσ ·â = axσx+ayσy+azσz ,
σ · b̂ = bxσx + byσy + bzσz that can be expressed in the diagonal form as σ · â =
(ax − iay) |0〉 〈1| + (ax + iay) |1〉 〈0| + az(|0〉 〈0| − |1〉 〈1|). Let |ψ〉 = α |0〉 + β |1〉
with |α|2 + |β|2 = 1 be the eigenstate of σ · â with the eigenvalue k = ±1, i.e.,
(σ ·â) |ψ〉 = k |ψ〉 or (σ ·â)(α |0〉+β |1〉) = k(α |0〉+β |1〉), or (σ ·â)(α |0〉+β |1〉) =
[αaz + β(ax − iay)] |0〉 + [α(ax + iay) − βaz] |1〉 = k(α |0〉 + β |1〉) which gives
αaz + β(ax − iay) = kα, α(ax + iay) − βaz = kβ, and the normalized eigenstates
for A with eigenvalues +1 and −1, respectively, are

∣
∣
∣ψ

â+1

〉

= 1√
2
[√1 + az |0〉 + ax + iay√

1 + az
|1〉 ],

∣
∣
∣ψ

â−1

〉

= 1√
2
[√1 − az |0〉 − ax + iay√

1 − az
|1〉 ]. (16)

Likewise, the eigenstates for B with the eigenvalues +1 and −1, respectively, are

∣
∣
∣ψ

b̂+1

〉

= 1√
2
[√1 + bz |0〉 + bx + iby√

1 + bz
|1〉 ],

∣
∣
∣ψ b̂−1

〉

= 1√
2
[√1 − bz |0〉 − bx + iby√

1 − bz
|1〉 ]. (17)

From these, we then obtain the eigenstates:

∣
∣
∣ψ

â+1ψ
b̂+1

〉

= 1

2
[√(1 + az)(1 + bz) |00〉 +

√

1 + az
1 + bz

(bx + iby) |01〉

+
√

1 + bz
1 + az

(ax + iay) |10〉 + (ax + iay)(bx + iby)
√

(1 + az)(1 + bz)
|11〉 ], (18)

∣
∣
∣ψ

â+1ψ
b̂−1

〉

= 1

2
[√(1 + az)(1 − bz) |00〉 −

√

1 + az
1 − bz

(bx + iby) |01〉

+
√

1 − bz
1 + az

(ax + iay) |10〉 − (ax + iay)(bx + iby)
√

(1 + az)(1 − bz)
|11〉 ], (19)
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∣
∣
∣ψ

â−1ψ
b̂+1

〉

= 1

2
[√(1 − az)(1 + bz) |00〉 +

√

1 − az
1 + bz

(bx + iby) |01〉

−
√

1 + bz
1 − az

(ax + iay) |10〉 − (ax + iay)(bx + iby)
√

(1 − az)(1 + bz)
|11〉 ], (20)

∣
∣
∣ψ

â−1ψ
b̂−1

〉

= 1

2
[√(1 − az)(1 − bz) |00〉 −

√

1 − az
1 − bz

(bx + iby) |01〉

−
√

1 − bz
1 − az

(ax + iay) |10〉 + (ax + iay)(bx + iby)
√

(1 − az)(1 − bz)
|11〉 ]. (21)

For instance, the eigenstate (20) corresponds when player A’s strategy con-
sists of orientating her unit vector â in one specific spatial direction, whereas
player B’s strategy consist of orientating his unit vector b̂ in other specific spa-
tial direction and the measurement in an EPR setting generates −1 on A’s side
and +1 on B’s side. Quantum probabilities PrQ(S1, S′

1),PrQ(S1, S′
2), PrQ(S2, S′

1),
and PrQ(S2, S′

2) are determined from these eigenstates using Eq. (11). That is,
with the players’ directional choices â and b̂, the new basis consisting of the kets
∣
∣
∣ψ â+1ψ

b̂+1

〉

,

∣
∣
∣ψ â+1ψ

b̂−1

〉

,

∣
∣
∣ψ â−1ψ

b̂+1

〉

,

∣
∣
∣ψ â−1ψ

b̂−1

〉

is prepared onto which the initial state

is then projected, during the quantum measurement, to obtain the set of quantum
probabilities.

Although the players’ strategy sets consist of classical actions of rotating their
respective unit vectors in three dimensions, the considered game is genuinely quantum
mechanical because the player’s payoff relations have an underlying set of quantum
mechanical probabilities. In particular, the players have access to directional choices
along which Bell’s inequalities can be violated. This indicates genuinely quantum
mechanical character of this scheme.

In the following, we present the resulting quantum games when the initial quantum
states |ψini〉 are the product state 1

2 (|00〉 + |01〉 + |10〉 + |11〉), the maximally entan-
gled state 1√

2
(|00〉 + i |11〉), and the entangled state 1

2 (|00〉 + |01〉 − |10〉 + |11〉).

4 Gamewith the quantum state |Ãini〉 = 1
2 (|00〉 + |01〉 + |10〉 + |11〉)

For this state, we can write

|ψini〉 = 1

2
(|00〉 + |01〉 + |10〉 + |11〉) = (|0〉 + |1〉)A√

2
⊗ (|0〉 + |1〉)B√

2
, (22)

i.e., the state is a product state. For this state, we find

Pr(â+1, b̂+1) =
∣
∣
∣

〈

ψ â+1ψ
b̂+1 | ψini

〉∣
∣
∣

2
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= 1

16(1 + az)(1 + bz)
{ [

(1 + az)(1 + bz) + (1 + az)bx

+(1 + bz)ax + (axbx − ayby)
]2

+ [

(1 + az)by + (1 + bz)ay + (axby + aybx )
]2 }, (23)

Pr(â+1, b̂−1) =
∣
∣
∣

〈

ψ â+1ψ
b̂−1 | ψini

〉∣
∣
∣

2

= 1

16(1 + az)(1 − bz)
{ [

(1 + az)(1 − bz) − (1 + az)bx

+(1 − bz)ax − (axbx − ayby)
]2

+ [

(1 + az)by − (1 − bz)ay + (axby + aybx )
]2 }, (24)

Pr(â−1, b̂+1) =
∣
∣
∣

〈

ψ â−1ψ
b̂+1 | ψini

〉∣
∣
∣

2

= 1

16(1 − az)(1 + bz)
{ [

(1 − az)(1 + bz) + (1 − az)bx

−(1 + bz)ax − (axbx − ayby)
]2

+ [

(1 − az)by − (1 + bz)ay − (axby + aybx )
]2 }, (25)

Pr(â−1, b̂−1) =
∣
∣
∣

〈

ψ â−1ψ
b̂−1 | ψini

〉∣
∣
∣

2

= 1

16(1 − az)(1 − bz)
{ [

(1 − az)(1 − bz) − (1 − az)bx

−(1 − bz)ax + (axbx − ayby)
]2

+ [

(1 − az)by + (1 − bz)ay − (axby + aybx )
]2 }. (26)

The payoff to the players (12) can then be expressed as

�A,B(â, b̂) = 1

16(1 + az)

[
(α, α)

(1 + bz)
{ [

(1 + az)(1 + bz) + (1 + az)bx

+(1 + bz)ax + (axbx − ayby)
]2

+ [

(1 + az)by + (1 + bz)ay + (axby + aybx )
]2 }

+ (β, γ )

(1 − bz)
{ [

(1 + az)(1 − bz) − (1 + az)bx + (1 − bz)ax − (axbx − ayby)
]2

+ [

(1 + az)by − (1 − bz)ay + (axby + aybx )
]2 }

]

+ 1

16(1 − az)

[
(γ, β)

(1 + bz)
{ [

(1 − az)(1 + bz) + (1 − az)bx

−(1 + bz)ax − (axbx − ayby)
]2

+ [

(1 − az)by − (1 + bz)ay − (axby + aybx )
]2 }

+ (δ, δ)

(1 − bz)
{ [

(1 − az)(1 − bz) − (1 − az)bx − (1 − bz)ax + (axbx − ayby)
]2
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+ [

(1 − az)by + (1 − bz)ay − (axby + aybx )
]2 }

]

, (27)

To convert to polar coordinates, we let â = (θA, φA) and b̂ = (θB, φB) with θA, θB ∈
[0, π ] and φA, φB ∈ [0, 2π) and have

ax = sin θA cosφA, bx = sin θB cosφB

ay = sin θA sin φA, by = sin θB sin φB

az = cos θA, bz = cos θB. (28)

This transformation reduces the independent variables â and b̂ to θA, θB, φA, and φB
and players payoffs are then expressed as

�A,B(θA, φA; θB, φB) = 1

4
[(α, α)(1 + sin θA cosφA)(1 + sin θB cosφB)

+(β, γ )(1 + sin θA cosφA)(1 − sin θB cosφB)

+(γ, β)(1 − sin θA cosφA)(1 + sin θB cosφB)

+(δ, δ)(1 − sin θA cosφA)(1 − sin θB cosφB)]. (29)

Note that EWL used the notation φA,B to describe one of the two parameters in
terms of which their (restricted) local unitary operators are defined. In this paper, we
have used notation φA,B when we change from Cartesian to spherical coordinates
in accordance with Eq. (28), i.e., our context is different. Comparing Eq. (29) with
Eq. (2), it is noticed that when we take

p = (1 + sin θA cosφA)/2, q = (1 + sin θB cosφB)/2, (30)

and thus

(1 − p) = (1 − sin θA cosφA)/2, (1 − q) = (1 − sin θB cosφB)/2, (31)

the quantum payoffs (29) are then reduced to players’ classical mixed strategy payoffs
(2).

This can be interpreted by stating that the quantum game considered here results
in the classical mixed strategy game (in which Alice plays the strategy p, whereas
Bob plays the strategy q) is obtained when the tips of Alice’s and Bob’s unit vectors
(representing their strategic choices) are constrained to trajectories on a unit sphere
that are defined by

sin θA cosφA = 2p − 1, sin θB cosφB = 2q − 1, (32)

and the classical mixed strategy game is recovered by interpreting (1+cosφA)
2 and

(1+cosφB)
2 in these equations as the probabilities p and q in the mixed strategy payoff

relations (2). Here, (1−cosφA)
2 and (1−cosφB)

2 are then interpreted as (1− p) and (1−q)

in (2).
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Fig. 2 Alice’s mixed strategy p is plotted using Eq. (30) against θA and φA for the product state |ψini〉 =
1
2 (|00〉 + |01〉 + |10〉 + |11〉)

Fig. 3 Plot of θA against φA for p = 0.6 obtained from the first equation in (32)

Consider the Prisoners’ Dilemma game, as defined by α = 3, β = 0, γ = 5, δ = 1
in the game matrix (1), a quantized version of which was considered in Ref. [2]. The
strategy pair (p, q) is a NE in the classical game, and therefore (θ∗

A, φ∗
A; θ∗

B, φ∗
B) is a

NE for which

(1 + sin θ∗
A cosφ∗

A) = 0 = (1 + sin θ∗
B cosφ∗

B), (33)

and we obtain the NE of the game as

(θ∗
A, φ∗

A; θ∗
B, φ∗

B) = (π/2, π;π/2, π), (34)
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at which the players’ payoffs are �A,B(π/2, π;π/2, π) = 1. That is, playing the
game with the state |ψini〉 = 1

2 (|00〉 + |01〉 + |10〉 + |11〉) results in the classical
mixed-strategy game.

5 Gamewith the quantum state |Ãini〉 = 1√
2

(|00〉 + i |11〉)

For the maximally entangled state |ψini〉 = 1√
2

(|00〉 + i |11〉) considered in Refs. [2,
3], following set of quantum probabilities are obtained

Pr(â+1, b̂+1) =
∣
∣
∣

〈

ψ â+1ψ
b̂+1 | ψini

〉∣
∣
∣

2 = 1

8

∣
∣
∣
∣
∣

√

(1 + az)(1 + bz) + (ax − iay)(bx − iby)i
√

(1 + az)(1 + bz)

∣
∣
∣
∣
∣

2

,

= 1

4
(1 + axby + aybx + azbz),

Pr(â+1, b̂−1) =
∣
∣
∣

〈

ψ â+1ψ
b̂−1 | ψini

〉∣
∣
∣

2 = 1

8

∣
∣
∣
∣
∣

√

(1 + az)(1 − bz) − (ax − iay)(bx − iby)i
√

(1 + az)(1 − bz)

∣
∣
∣
∣
∣

2

,

= 1

4
(1 − axby − aybx − azbz),

Pr(â−1, b̂+1) =
∣
∣
∣

〈

ψ â−1ψ
b̂+1 | ψini

〉∣
∣
∣

2 = 1

8

∣
∣
∣
∣
∣

√

(1 − az)(1 + bz) − (ax − iay)(bx − iby)i
√

(1 − az)(1 + bz)

∣
∣
∣
∣
∣

2

,

= 1

4
(1 − axby − aybx − azbz),

Pr(â−1, b̂−1) =
∣
∣
∣

〈

ψ â−1ψ
b̂−1 | ψini

〉∣
∣
∣

2 = 1

8

∣
∣
∣
∣
∣

√

(1 − az)(1 − bz) + (ax − iay)(bx − iby)i
√

(1 − az)(1 − bz)

∣
∣
∣
∣
∣

2

,

= 1

4
(1 + axby + aybx + azbz). (35)

To express these in polar coordinates, we use Eq. (28), and the quantum probabilities
(35) are

Pr(â+1, b̂+1) = 1

4
{1 + sin θA sin θB sin(φA + φB) + cos θA cos θB},

Pr(â+1, b̂−1) = 1

4
{1 − sin θA sin θB sin(φA + φB) − cos θA cos θB},

Pr(â−1, b̂+1) = 1

4
{1 − sin θA sin θB sin(φA + φB) − cos θA cos θB},

Pr(â−1, b̂−1) = 1

4
{1 + sin θA sin θB sin(φA + φB) + cos θA cos θB}. (36)

Players’ payoffs are obtained as

�A,B (θA, φA; θB, φB) = �(θA, φA; θB, φB)

= (α, α)Pr(â+1, b̂+1) + (β, γ )Pr(â+1, b̂−1)
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Fig. 4 At θB = π
4 = φB the payoff relation (37) is plotted against θA ∈ [0, π ] and φB ∈ [0, 2π) for

2 = 3 and 1 = 2

+(γ, β)Pr(â−1, b̂+1) + (δ, δ)Pr(â−1, b̂−1)

= 1

4
{2 + 1[sin θA sin θB sin(φA + φB) + cos θA cos θB]},

(37)

where

1 = α − β − γ + δ and 2 = α + β + γ + δ. (38)

We note that these payoffs cannot be reduced to the mixed strategy payoffs of
Eq. (2). Stated alternatively, there do not exist such trajectories for the tips of the
players’ unit vectors which if followed would result in the mixed-strategy version of
the classical game. To determine the NE (θ∗

A, φ∗
A; θ∗

B, φ∗
B), we require

�(θ∗
A, φ∗

A; θ∗
B, φ∗

B) − �(θA, φ∗
A; θ∗

B, φ∗
B) = (θ∗

A − θA)
∂�

∂θA
|∗

= 1

4
1[cos θ∗

A sin θ∗
B sin(φ∗

A + φ∗
B) − sin θ∗

A cos θ∗
B](θ∗

A − θA) ≥ 0,

�(θ∗
A, φ∗

A; θ∗
B, φ∗

B) − �(θ∗
A, φ∗

A; θB, φ∗
B) = (θ∗

B − θB)
∂�

∂θB
|∗

= 1

4
1[sin θ∗

A cos θ∗
B sin(φ∗

A + φ∗
B) − cos θ∗

A sin θ∗
B](θ∗

B − θB) ≥ 0,

�(θ∗
A, φ∗

A; θ∗
B, φ∗

B) − �(θ∗
A, φA; θ∗

B, φ∗
B) = (φ∗

A − φA)
∂�

∂φA
|∗

= 1

4
1[sin θ∗

A sin θ∗
B cos(φ∗

A + φ∗
B)](φ∗

A − φA) ≥ 0,
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�(θ∗
A, φ∗

A; θ∗
B, φ∗

B) − �(θ∗
A, φ∗

A; θ∗
B, φB) = (φ∗

B − φB)
∂�

∂φB
|∗

= 1

4
1[sin θ∗

A sin θ∗
B cos(φ∗

A + φ∗
B)](φ∗

B − φB) ≥ 0. (39)

Now, consider the case when only equalities are involved in the above expressions,
i.e.,

cos θ∗
A sin θ∗

B sin(φ∗
A + φ∗

B) − sin θ∗
A cos θ∗

B = 0, (40)

sin θ∗
A cos θ∗

B sin(φ∗
A + φ∗

B) − cos θ∗
A sin θ∗

B = 0, (41)

sin θ∗
A sin θ∗

B cos(φ∗
A + φ∗

B) = 0. (42)

As θA, θB ∈ [0, π ], these equations would hold true when θ∗
A, θ∗

B = 0, π and for
any φA, φB. There both players’ payoffs are obtained from Eq. (37) as

�A,B(θ∗
A, φA; θ∗

B, φB) = 1

4
{2 + 1 cos θ∗

A cos θ∗
B} = 1

2
(α + δ),

1

2
(β + γ ).

(43)

Alternatively, Eq. (42) holds when cos(φ∗
A + φ∗

B) = 0, i.e., sin(φ∗
A + φ∗

B) = ±1.
We note that for sin(φ∗

A + φ∗
B) = +1, Eqs. (40, 41) give sin(θ∗

A − θ∗
B) = 0 or

θ∗
A − θ∗

B = 0, ±π . For this NE, both players’ payoffs are obtained from Eq. (37) as

�A,B(θ∗
A, φ∗

A; θ∗
B, φ∗

B) = 1

4
{2 + 1 cos(θ

∗
A − θ∗

B)} = 1

2
(α + δ),

1

2
(β + γ ).

(44)

However, for sin(φ∗
A+φ∗

B) = −1, Eqs. (40, 41) give sin(θ∗
A+θ∗

B) = 0 or θ∗
A+θ∗

B = 0,
π, 2π . For this NE, both players’ payoffs are then obtained from Eq. (37) as

�A,B(θ∗
A, φ∗

A; θ∗
B, φ∗

B) = 1

4
{2 + 1 cos(θ

∗
A + θ∗

B)} = 1

2
(α + δ),

1

2
(β + γ ).

(45)

Therefore, for all these equilibria, both players’ payoffs are same, i.e., either 1
2 (α + δ)

or 1
2 (β + γ ). We also note that for the edges located at

(0, 0; 0, 0), (0, 0; 0, 2π), (0, 2π; 0, 0), (0, 2π; 0, 2π);
(0, 0;π, 0), (0, 0;π, 2π), (0, 2π;π, 0), (0, 2π;π, 2π);
(π, 0; 0, 0), (π, 0; 0, 2π), (π, 2π; 0, 0), (π, 2π; 0, 2π);
(π, 0;π, 0), (π, 0;π, 2π), (π, 2π;π, 0), (π, 2π;π, 2π), (46)

and we have θ∗
A, θ∗

B = 0 or π , and therefore sin θ∗
A = 0 = sin θ∗

B. That is, Eqs. (40,
41, 42) are true for all these edges, and both players’ payoffs at these are the same as
given by Eq. (45).
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6 Gamewith the quantum state |Ãini〉 = 1
2 (|00〉 + |01〉 − |10〉 + |11〉)

This is an entangled state for which we find

Pr(â+1, b̂+1) =
∣
∣
∣

〈

ψ â+1ψ
b̂+1 | ψini

〉∣
∣
∣

2

= 1

16(1 + az)(1 + bz)
{ [

(1 + az)(1 + bz) + (1 + az)bx

−(1 + bz)ax + (axbx − ayby)
]2 +

[

(1 + az)by − (1 + bz)ay + (axby + aybx )
]2 },

Pr(â+1, b̂−1) =
∣
∣
∣

〈

ψ â+1ψ
b̂−1 | ψini

〉∣
∣
∣

2

= 1

16(1 + az)(1 − bz)
{ [

(1 + az)(1 − bz) − (1 + az)bx

−(1 − bz)ax − (axbx − ayby)
]2

+ [

(1 + az)by + (1 − bz)ay + (axby + aybx )
]2 },

Pr(â−1, b̂+1) =
∣
∣
∣

〈

ψ â−1ψ
b̂+1 | ψini

〉∣
∣
∣

2

= 1

16(1 − az)(1 + bz)
{ [

(1 − az)(1 + bz) + (1 − az)bx

+(1 + bz)ax − (axbx − ayby)
]2

+ [

(1 − az)by + (1 + bz)ay − (axby + aybx )
]2 },

Pr(â−1, b̂−1) =
∣
∣
∣

〈

ψ â−1ψ
b̂−1 | ψini

〉∣
∣
∣

2

= 1

16(1 − az)(1 − bz)
{ [

(1 − az)(1 − bz) − (1 − az)bx

+(1 − bz)ax + (axbx − ayby)
]2

+ [

(1 − az)by − (1 − bz)ay − (axby + aybx )
]2 }. (47)

The transformations (28) reduce the independent variables â and b̂ to θA, θB, φA,
and φB and players payoffs can be expressed as

�A,B(θA, φA; θB, φB)

= 1

4
{2 − 1[sin θA sin θB sin φA sin φB

+ sin θA cos θB cosφA − cos θA sin θB cosφB]}. (48)

We note that as was the case for the state 1√
2

(|00〉 + i |11〉), these payoffs cannot be
reduced to the classical mixed strategy payoffs in the game. In other words, there do
not exist such trajectories for the tips of each players’ unit vectors which if followed
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can result in the classical mixed-strategy game. To determine the NE (θ∗
A, φ∗

A; θ∗
B, φ∗

B),
we require

�(θ∗
A, φ∗

A; θ∗
B, φ∗

B) − �(θA, φ∗
A; θ∗

B, φ∗
B)

= (θ∗
A − θA)

∂�

∂θA
|∗

= −1

4
1[cos θ∗

A sin θ∗
B sin φ∗

A sin φ∗
B + cos θ∗

A cos θ∗
B cosφ∗

A

+ sin θ∗
A sin θ∗

B cosφ∗
B](θ∗

A − θA) ≥ 0,

�(θ∗
A, φ∗

A; θ∗
B, φ∗

B) − �(θ∗
A, φ∗

A; θB, φ∗
B)

= (θ∗
B − θB)

∂�

∂θB
|∗

= −1

4
1[sin θ∗

A cos θ∗
B sin φ∗

A sin φ∗
B − sin θ∗

A sin θ∗
B cosφ∗

A

− cos θ∗
A cos θ∗

B cosφ∗
B](θ∗

B − θB) ≥ 0,

�(θ∗
A, φ∗

A; θ∗
B, φ∗

B) − �(θ∗
A, φA; θ∗

B, φ∗
B)

= (φ∗
A − φA)

∂�

∂φA
|∗

= −1

4
1[sin θ∗

A sin θ∗
B cosφ∗

A sin φ∗
B

− sin θ∗
A cos θ∗

B sin φ∗
A](φ∗

A − φA) ≥ 0,

�(θ∗
A, φ∗

A; θ∗
B, φ∗

B) − �(θ∗
A, φ∗

A; θ∗
B, φB)

= (φ∗
B − φB)

∂�

∂φB
|∗

= −1

4
1[sin θ∗

A sin θ∗
B sin φ∗

A cosφ∗
B

+ cos θ∗
A sin θ∗

B sin φ∗
B](φ∗

B − φB) ≥ 0. (49)

We firstly consider the casewhen only equalities are involved in the above expressions,
i.e.,

sin θ∗
B(cos θ∗

A sin φ∗
A sin φ∗

B + sin θ∗
A cosφ∗

B) + cos θ∗
A cos θ∗

B cosφ∗
A = 0,

sin θ∗
A(cos θ∗

B sin φ∗
A sin φ∗

B − sin θ∗
B cosφ∗

A) − cos θ∗
A cos θ∗

B cosφ∗
B = 0,

sin θ∗
A(sin θ∗

B cosφ∗
A sin φ∗

B − cos θ∗
B sin φ∗

A) = 0,

sin θ∗
B(sin θ∗

A sin φ∗
A cosφ∗

B + cos θ∗
A sin φ∗

B) = 0, (50)

where θA, θB ∈ [0, π ] and φA, φB ∈ [0, 2π). Now, we consider the following cases:

6.1 Case sin�∗
A = 0 = sin�∗

B

For sin θ∗
A = 0 = sin θ∗

B, we also have cos θ∗
A = ±1 and cos θ∗

B = ±1 and this results
the first two equation in (50) to give ± cosφ∗

A = 0 and ± cosφ∗
B = 0. This gives
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θ∗
A = 0, π; θ∗

B = 0, π; φ∗
A = π/2, 3π/2; and φ∗

B = π/2, 3π/2, (51)

which result in the set of solutions for (θ∗
A, φ∗

A; θ∗
B, φ∗

B) as

(0, π/2; 0, π/2), (0, π/2; 0, 3π/2), (0, 3π/2; 0, π/2), (0, 3π/2; 0, 3π/2),

(0, π/2;π, π/2), (0, π/2;π, 3π/2), (0, 3π/2;π, π/2), (0, 3π/2;π, 3π/2),

(π, π/2; 0, π/2), (π, π/2; 0, 3π/2), (π, 3π/2; 0, π/2), (π, 3π/2; 0, 3π/2),

(π, π/2;π, π/2), (π, π/2;π, 3π/2), (π, 3π/2;π, π/2), (π, 3π/2;π, 3π/2), (52)

and the players’ payoffs at these Nash equilibria are obtained from Eq. (48) as

�A,B(θ∗
A, φ∗

A; θ∗
B, φ∗

B) = 1

4
2 = 1

4
(α + β + γ + δ). (53)

6.2 Case sin�∗
A �= 0 and sin�∗

B �= 0

When sin θ∗
A 
= 0 and sin θ∗

B 
= 0, we have from the last two equations in (50)

sin θ∗
B cosφ∗

A sin φ∗
B − cos θ∗

B sin φ∗
A = 0,

sin θ∗
A sin φ∗

A cosφ∗
B + cos θ∗

A sin φ∗
B = 0, (54)

that can be expressed as

cosφ∗
A sin φ∗

B − cot θ∗
B sin φ∗

A = 0, (55)

sin φ∗
A cosφ∗

B + cot θ∗
A sin φ∗

B = 0. (56)

Now, the first two equations in (50) are

sin θ∗
B(cos θ∗

A sin φ∗
B sin φ∗

A + sin θ∗
A cosφ∗

B) + cos θ∗
A cos θ∗

B cosφ∗
A = 0, (57)

sin θ∗
A(cos θ∗

B sin φ∗
A sin φ∗

B − sin θ∗
B cosφ∗

A) − cos θ∗
A cos θ∗

B cosφ∗
B = 0, (58)

and given that sin θ∗
A 
= 0 and sin θ∗

B 
= 0, we divide Eq. (57) with sin θ∗
B and Eq. (58)

by sin θ∗
A to obtain

cos θ∗
A(sin φ∗

B sin φ∗
A + cot θ∗

B cosφ∗
A) + sin θ∗

A cosφ∗
B = 0, (59)

cos θ∗
B(sin φ∗

A sin φ∗
B − cot θ∗

A cosφ∗
B) − sin θ∗

B cosφ∗
A = 0. (60)

Now, divide Eq. (59) by sin θ∗
A and divide Eq. (60) by sin θ∗

B to obtain

cot θ∗
A(sin φ∗

B sin φ∗
A + cot θ∗

B cosφ∗
A) + cosφ∗

B = 0, (61)

cot θ∗
B(sin φ∗

A sin φ∗
B − cot θ∗

A cosφ∗
B) − cosφ∗

A = 0. (62)
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As Eqs. (61, 62) are to be considered along with Eqs. (55, 56), we rewrite (61, 62) as

(cot θ∗
A sin φ∗

B) sin φ∗
A + cot θ∗

A cot θ∗
B cosφ∗

A + cosφ∗
B = 0, (63)

(cot θ∗
B sin φ∗

A) sin φ∗
B − cot θ∗

A cot θ∗
B cosφ∗

B − cosφ∗
A = 0, (64)

and substitute from (55, 56) to (63, 64) to obtain

(cosφ∗
A cosφ∗

B + cot θ∗
A cot θ∗

B) cosφ∗
A = 0, (65)

(cosφ∗
A cosφ∗

B + cot θ∗
A cot θ∗

B) cosφ∗
B = 0. (66)

The above solution of Eqs. (65, 66, 55, 56) are obtained under the requirement that
sin θ∗

A 
= 0 and sin θ∗
B 
= 0. This leads us to consider the following cases:

6.2.1 Case sin�∗
A �= 0, sin�∗

B �= 0 and cos�∗
A = 0 = cos�∗

B

In this case, we have a solution for which sin φ∗
A = ±1 and sin φ∗

B = ±1, and from
Eqs. (55, 56), we then have cot θ∗

A = 0 = cot θ∗
B, i.e., cos θ∗

A = 0 = cos θ∗
B and

therefore sin θ∗
A = ±1 and sin θ∗

B = ±1. Players’ payoffs at these Nash equilibria are
then obtained from Eq. (48) as

�A,B(θ∗
A, φ∗

A; θ∗
B, φ∗

B) = 1

4
(2 ± 1) = 1

2
(α + δ),

1

2
(β + γ ). (67)

6.2.2 Case sin�∗
A �= 0, sin�∗

B �= 0 and sin�∗
A = 0 = sin�∗

B

In this case, we have a solution for which cosφ∗
A = ±1 and cosφ∗

B = ±1, and from
(65, 66), we then have

± (±1 + cot θ∗
A cot θ∗

B) = 0, (68)

whereas (55, 56) hold true. That is, when cot θ∗
A cot θ∗

B = ±1 or when cot θ∗
A = ±1

and cot θ∗
B = ±1, i.e.,

sin φ∗
A = 0 = sin φ∗

B, cot θ∗
A = ±1 and cot θ∗

B = ±1. (69)

As θA, θB ∈ [0, π ], we have cos θ∗
A = ± 1√

2
, sin θ∗

A = 1√
2
and cos θ∗

B = ± 1√
2
,

sin θ∗
B = 1√

2
. Therefore, sin θ∗

A cos θ∗
B = ± 1

2 and cos θ∗
A sin θ∗

B = ± 1
2 . Also, then we

have cosφ∗
A = ±1 and cosφ∗

B = ±1. This yields

�A,B(θ∗
A, φ∗

A; θ∗
B, φ∗

B)

= 1

4
{2 − 1[sin θ∗

A cos θ∗
B cosφ∗

A − cos θ∗
A sin θ∗

B cosφ∗
B]},

= 1

4
{2 − 1[±(±1

2
) ± (±1

2
)]},
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= 1

4
{2 − 1

2
1[±1 ± 1]} = 1

4
{2 − 1

2
1(2,−2, 0)},

= 1

4
(2 ± 1),

1

4
2,

= 1

2
(α + δ),

1

2
(β + γ ),

1

4
(α + β + γ + δ). (70)

6.2.3 Case sin�∗
A �= 0, sin�∗

B �= 0 and cos�∗
A �= 0 and cos�∗

B �= 0

Referring to (65, 66), we then have

cosφ∗
A cosφ∗

B + cot θ∗
A cot θ∗

B = 0, (71)

which must hold true along with Eqs. (55, 56). That is, the problem then is to find a
solution for (θ∗

A, φ∗
A; θ∗

B, φ∗
B) from Eqs. (55, 56, 71). Equations (55, 56) can be written

as

cosφ∗
A sin φ∗

B = cot θ∗
B sin φ∗

A, sin φ∗
A cosφ∗

B = − cot θ∗
A sin φ∗

B, (72)

and on multiplying the sides together, we obtain

cosφ∗
A cosφ∗

B sin φ∗
A sin φ∗

B = − sin φ∗
A sin φ∗

B cot θ∗
A cot θ∗

B,

from which Eq. (71) follows as given below:

cosφ∗
A cosφ∗

B + cot θ∗
A cot θ∗

B = 0. (73)

As Eq. (71) follows from (55, 56), it is not required to consider Eq. (71) and can rewrite
Eqs. (55, 56) as

cosφ∗
A sin φ∗

B − cot θ∗
B sin φ∗

A = 0, sin φ∗
A cosφ∗

B + cot θ∗
A sin φ∗

B = 0. (74)

When sin φ∗
A 
= 0 and sin φ∗

B 
= 0, the above equations can be written as

cot φ∗
A sin φ∗

B = cot θ∗
B, − sin φ∗

A cot φ∗
B = cot θ∗

A. (75)

Note that substituting from Eq. (75) into Eqs. (61, 62) and Eqs. (55, 56) changes them
to identities. From (75), we obtain

θ∗
A = arccot(− sin φ∗

A cot φ∗
B), θ∗

B = arccot(cot φ∗
A sin φ∗

B). (76)

As sin θ∗
A 
= 0, sin θ∗

B 
= 0 and cosφ∗
A 
= 0, cosφ∗

B 
= 0, the players’ payoffs are
obtained as
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Fig. 5 An infinite number of Nash equilbria exist when the game is played with the state |ψini 〉 =
1
2 (|00〉 + |01〉 − |10〉 + |11〉). Players’ payoffs at these equilibria�A,B (φ∗

A; φ∗
B ) and given in Eq. (78) are

plotted for 2 = 3 and 1 = 2 againt variables φ∗
A, φ∗

B ∈ [0, 2π) considered independent. The φ∗
A, φ∗

B
plane is found to be divided into rectangular patches with respect to the variation of players’ payoffs. Angles
θ∗
A, θ∗

B that correspond to φ∗
A, φ∗

B are determined from Eq. ( 76)

�A,B(θ∗
A, φ∗

A; θ∗
B, φ∗

B)

= 1

4
{2 − 1 sin θ∗

A sin θ∗
B[sin φ∗

A sin φ∗
B + cot θ∗

B cosφ∗
A − cot θ∗

A cosφ∗
B]},

(77)

and by substituting from Eqs. (75) to (77), we obtain

�A,B(θ∗
A, φ∗

A; θ∗
B, φ∗

B) = �A,B(φ∗
A;φ∗

B)

= 1

4
{2 − 1 sin[arccot(− sin φ∗

A cot φ∗
B)] sin[arccot(cot φ∗

A sin φ∗
B)]

×[sin φ∗
A sin φ∗

B + cot φ∗
A cosφ∗

A sin φ∗
B + sin φ∗

A cosφ∗
B cot φ∗

B]}. (78)

An example, consider the case when φ∗
A = π/4 and φ∗

B = 3π/4 for which θ∗
A =

0.95532 = θ∗
B. As the pair (θ∗

A, θ∗
B) can be determined from a pair (φ∗

A, φ∗
B) that

is arbitrarily chosen, there exist an infinite set of Nash equilibria. With (φ∗
A, φ∗

B) ∈
[0, 2π), the players’ payoffs at all these equilibria can be plotted as below with φ∗

A
and φ∗

B taken as independent coordinates.
The above plot in a different range of values for φ∗

A, φ∗
B is given below.

7 Players’ directional choices and the violation of Bell-CHSH
inequality

The proposed setup for playing a two-player quantum game uses the setting of an
EPR type experiment. Consider such an experiment that is designed to test the Bell-
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Fig. 6 Players’ payoffs �A,B (φ∗
A; φ∗

B ) for the state |ψini〉 = 1
2 (|00〉 + |01〉 − |10〉 + |11〉) as given in

Eq. (78) are plotted for 2 = 3 and 1 = 2 againt the variables φ∗
A, φ∗

B in a different range

CHSH inequality [8] in which two correlated particles 1 and 2 fly apart in opposite
directions from some common source. Subsequently, each of the particles enters its
own measuring apparatus which can measure either along â or â′ for particle 1 and b̂
or b̂′ for particle 2. The possible values of these variables may be taken to be +1 and
−1, and the source emits a very large number of particle pairs. We let

â = (θA, φA), â′ = (θ ′
A, φ′

A), b̂ = (θB, φB), b̂′ = (θ ′
B, φ′

B), (79)

where θA, θB, θ ′
A, θ ′

B ∈ [0, π ] and φA, φB, φ′
A, φ′

B ∈ [0, 2π). Bell-CHSH inequality
can be written as |�| ≤ 2 where

� = 2[Pr(â+1, b̂+1) + Pr(â−1, b̂−1) + Pr(â+1, b̂′+1) + Pr(â−1, b̂′−1)

+Pr(â′+1, b̂+1) + Pr(â′−1, b̂−1) + Pr(â′+1, b̂
′−1) + Pr(â′−1, b̂

′+1) − 2]
(80)

Now, for the state |ψini〉 = 1√
2

(|00〉 + i |11〉), considered above, we have

Pr(â+1, b̂+1) = 1

4
{1 + sin θA sin θB sin(φA + φB) + cos θA cos θB},

Pr(â−1, b̂−1) = 1

4
{1 + sin θA sin θB sin(φA + φB) + cos θA cos θB},

. . .

Pr(â′−1, b̂
′+1) = 1

4
{1 − sin θ ′

A sin θ ′
B sin(φ′

A + φ′
B) − cos θ ′

A cos θ ′
B}, (81)

and we obtain

� = sin θA sin θB sin(φA + φB) + sin θA sin θ ′
B sin(φA + φ′

B) + sin θ ′
A sin θB sin(φ′

A + φB)
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− sin θ ′
A sin θ ′

B sin(φ′
A + φ′

B) + cos θA cos θB

+ cos θA cos θ ′
B + cos θ ′

A cos θB − cos θ ′
A cos θ ′

B,

that can be expressed as

� = sin θA[sin θB sin(φA + φB) + sin θ ′
B sin(φA + φ′

B)]
+ sin θ ′

A[sin θB sin(φ′
A + φB) − sin θ ′

B sin(φ′
A + φ′

B)]
+ cos θA(cos θB + cos θ ′

B) + cos θ ′
A(cos θB − cos θ ′

B). (82)

We take, for instance, φA = φB = φ′
A = φ′

B = π/4 and this reduces (82) to

� = sin θA(sin θB + sin θ ′
B) + sin θ ′

A(sin θB − sin θ ′
B)

+ cos θA(cos θB + cos θ ′
B) + cos θ ′

A(cos θB − cos θ ′
B). (83)

Now, consider the case when θA = π/4, θ ′
A = 3π/4, θB = π/2, θ ′

B = π/4, and
we obtain � = 1 + √

2 ≥ 2, and Bell’s inequality is violated. For the state |ψini〉 =
1√
2

(|00〉 + i |11〉), and with φA = φB = φ′
A = φ′

B = π/4, the players’ payoffs (37)
are then obtained as

�A,B (π/4, π/4;π/2, π/4) = 1

4
{α(1 + 1/

√
2)

+β(1 − 1/
√
2) + γ (1 − 1/

√
2) + δ(1 + 1/

√
2)}.
(84)

To knowwhether these players’ payoffs in the quantum game can be embedded within
the classical game, we refer to the players’ payoffs (2) in the mixed strategy game.
We require �A(p, q) = �B(p, q) in accordance with the players’ payoff relations
(37) in the quantum game. This results in β = γ , and the players’ payoffs in the
mixed-strategy classical game (2) become

�A,B(p, q) = α pq + β(p + q − 2pq) + δ(1 − p)(1 − q). (85)

The players’ payoffs in the quantum game for the directional choice (π/4, π/4;π/2,
π/4), and at which Bell’s inequalities are violated, are

�A,B (π/4, π/4;π/2, π/4) = 1

4
{α(1 + 1/

√
2) + β(2 − √

2) + δ(1 + 1/
√
2)}.

(86)

Comparing (85) with (86) gives

pq = 1

4
(1 + 1/

√
2), p + q − 2pq = 1

4
(2 − √

2), (1 − p)(1 − q) = 1

4
(1 + 1/

√
2),

(87)
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and from which we obtain p + q = 1 and q = 1±
√

−1/
√
2

2 , showing that for the
directional choice (π/4, π/4;π/2, π/4) on behalf of the two players, and at which
the players’ payoffs are given by (86), the players’ payoffs in the quantum game have
no mapping within the classical mixed-strategy game.

8 Discussion

This paper presents a quantization scheme for playing two-player games in which each
player’s strategy consist of orientating a unit vector in three dimensions. In the usual
approach, a Nash equilibrium is a pair of unitary operators (Û∗

A, Û∗
B) defined by the

inequalities (7). For the given initial quantum state |ψini〉, the proposed quantum game
uses an EPR setting in which player A’s and player B’s strategies consist of orientating
the unit vector â and b̂, respectively. The polarization (or spin) measurements in an
EPR setting result in the outcome m = ±1 along â and n = ±1 along b̂. The players’
payoff relations in the considered scheme involves a set of quantum probabilities
that are obtained, according to Eq. (11) from each player’s strategies, entries of the
matrix of the game, and the initial quantum state |ψini〉. The payoff relations in the
quantum game are defined in terms of this set as described by Eqs. (12, 13). That is, the
set of underlying quantum probabilities are generated by each player’s strategies—
consisting of the players’ directional choices—along with the initial quantum state
|ψini〉.

With directional choices as player’s strategies, the NE in the quantum game con-
sists of a pair of unit vectors (â∗, b̂∗) in three dimensional space. Also, the classical
mixed strategy game is recovered—for certain initial states |ψini〉—when each player’s
directional choices â and b̂ follow the assigned trajectories in space.

The scheme is analyzed for three initial states |ψini〉.We show that playing the game
with the quantum state |ψini〉 = 1

2 (|00〉 + |01〉 + |10〉 + |11〉) results in the classical
mixed strategy game in which Alice’s and Bob’s directional choices are given by
(30, 31). These express their strategies p and q in the classical mixed strategy game in
terms of the angles θA, φA; θB, φB—representing player A’s and player B’s directional
choices. For givenvalues of p andq, Eqs. (30, 31) therefore represent the trajectories on
the surface of a unit sphere traced by the tips of the unit vectors â and b̂, respectively.
Playing the game with the maximally entangled state |ψini〉 = 1√

2
(|00〉 + i |11〉)

results in obtaining the players’ payoff relations (37) that cannot be reduced to the
classical mixed-strategy payoff relations. That is interpreted by stating that there do
not exist such trajectories on the unit sphere such that when these trajectories are
followed by the tips of each player’s strategic choices, the quantum game results in
the classical mixed-strategy game.

Playing the game with the state |ψini〉 = 1
2 (|00〉 + |01〉 − |10〉 + |11〉) results in

a number of Nash equilibria appearing as the edge cases. For the non-edge cases,
we determine that there exist an infinite number of Nash equilibria. At these Nash
equilibria we consider φ∗

A, φ∗
B ∈ [0, 2π) as independent variables from which the

angles θ∗
A, θ∗

B ∈ [0, π ] can be obtained using Eq. (76). Corresponding to these angles,
the players’ payoffs at theNash equilibria, i.e.,�A,B(φ∗

A;φ∗
B) are obtained by Eq. (78).
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Theφ∗
A, φ∗

B plane is found to bedivided into rectangular patcheswith the corresponding
variation of the players’ payoffs into two distinct values.

We agree with the perspective that if quantum advantage (or an improved game-
theoretical outcome) does not emerge in a quantum game, it does not necessarily
change a quantum game to a classical game. The games considered in this paper are
truly quantum as they involve quantum superposition and entanglement. In particular,
the players’ payoff relations are defined from underlying quantum mechanical prob-
ability distributions and that the corresponding classical games are recoverable by
restricting players’ directional choices along specific trajectories in three dimensions.

ConsideringBell-CHSH inequality for the directional choice (π/4, π/4;π/2, π/4)
on behalf of two players, we show that Bell’s inequalities are violated. For these
directional choices, the players’ payoffs in the quantum game are shown to have no
mapping within the classical mixed-strategy game. An EPR setting provides the route
for the players’ access to quantum probability distributions that can violate Bell’s
inequalities. As the quantum game involves classical strategy sets, Enk and Pike’s
argument [21] is circumvented.

9 Conclusion

Game theory is widely used in a number of disciplines, and this paper presents a
scheme for two-player quantum games that establishes a more direct link between a
classical game and its quantum version. Players in the quantum game have access to
classical strategy sets as is the case in the corresponding classical game, allowing us
to circumvent Enk and Pike’s argument. As the contribution of this paper to the theory
of quantum games is built on the EPR paradox, a possible future research direction
can be to interpret the EPR paradox as a strategic quantum game. Also, the proposed
scheme motivates studying refinements of the NE concept using an EPR setting with
players’ moves consisting of directional choices.
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